Journal of Information Technology in Construction
ITcon Vol. 27, pg. 1028-1041, http://www.itcon.org/2022/50
Hybrid feature selection framework for predicting bridge deck conditions
DOI: | 10.36680/j.itcon.2022.050 | |
submitted: | September 2022 | |
revised: | November 2022 | |
published: | November 2022 | |
editor(s): | Kumar B | |
authors: | Abdelhady Omar, Ph.D. Student,
Concordia University, Department of Building, Civil and Environmental Engineering, Montreal, QC, Canada Structural Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, Egypt abdelhady.omar@mail.concordia.ca Osama Moselhi, Professor, Director of Centre for Innovation in Construction and Infrastructure Engineering and Management (CICIEM), Concordia University, Department of Building, Civil and Environmental Engineering Montreal, QC, Canada moselhi@encs.concordia.ca | |
summary: | Bridge decks’ maintenance funding requirements are influenced by bridge decks' current and predicted future conditions. Additionally, the serviceability of bridges may be negatively impacted by the degradation of bridge decks. Bridge inspections require considerable effort, time, cost, and resources; besides, such inspections may introduce hazards and safety concerns. This paper introduces a data-driven hybrid feature selection framework for predicting bridge deck deterioration conditions and applying it to a bridge deck in Iowa State, USA. Firstly, the Boruta algorithm, stepwise regression, and multi-layer perceptron are employed to find the best subset of features that contribute to bridge deck deterioration. Then, four classification models were developed using the best feature subset of features, namely k-nearest neighbours, random forest, artificial neural networks, and deep neural networks. The hyperparameters of the models were optimized to get their best performance. The developed models showed comparable performance, and the random forest model outperformed the other models in prediction accuracy with fewer misclassifications. The developed models are thought to reduce field inspections and give insights into the most influential factors in bridge deck deterioration conditions. | |
keywords: | Bridge Deck Deterioration, Feature Selection, Classification Models, Random Forest, Stepwise Regression, Multi-Layer perceptron | |
full text: | (PDF file, 0.649 MB) | |
citation: | Omar A, Moselhi O (2022). Hybrid feature selection framework for predicting bridge deck conditions, ITcon Vol. 27, pg. 1028-1041, https://doi.org/10.36680/j.itcon.2022.050 | |
statistics: |