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SUMMARY: Bridge decks’ maintenance funding requirements are influenced by bridge decks' current and 

predicted future conditions. Additionally, the serviceability of bridges may be negatively impacted by the 

degradation of bridge decks. Bridge inspections require considerable effort, time, cost, and resources; besides, 

such inspections may introduce hazards and safety concerns. This paper introduces a data-driven hybrid feature 

selection framework for predicting bridge deck deterioration conditions and applying it to a bridge deck in Iowa 

State, USA. Firstly, the Boruta algorithm, stepwise regression, and multi-layer perceptron are employed to find 

the best subset of features that contribute to bridge deck deterioration. Then, four classification models were 

developed using the best feature subset of features, namely k-nearest neighbours, random forest, artificial neural 

networks, and deep neural networks. The hyperparameters of the models were optimized to get their best 

performance. The developed models showed comparable performance, and the random forest model outperformed 

the other models in prediction accuracy with fewer misclassifications. The developed models are thought to reduce 

field inspections and give insights into the most influential factors in bridge deck deterioration conditions. 
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1. INTRODUCTION 

Bridges are essential transportation systems that enable movement between different geographical locations. The 

deterioration of bridges is a critical issue that may result in a partial or whole collapse of such vital infrastructure 

components. Their failure may be catastrophic regarding human life as well as social, environmental, and 

economic impacts. The deterioration of bridge decks is the most frequent cause of bridges failure or being 

classified as structurally deficient/poor. Bridge decks provide a driving surface that facilitates the movement of 

people and cargo. Environmental factors, increasing traffic volumes, accidents, deferred maintenance, and aging 

are just a few contributing factors to this element deterioration (Omar and Moselhi 2022). Improving bridge deck 

maintenance, rehabilitation, and replacement work can effectively lower overall bridge expenditures as well as the 

bridge's life cycle costs, since maintenance actions of bridge decks account for 50% to 85% of total bridge costs 

(Gucunski et al. 2014). In this regard, timely condition monitoring of bridge decks is required to efficiently 

determine appropriate intervention actions and avoid unnecessary or expensive maintenance by taking preventative 

maintenance measures. 

Visual examinations and non-destructive evaluation methods (e.g., digital imaging, ground-penetrating radar, and 

infrared thermography) are utilized to assess the current condition of bridge decks at uniform inspection intervals, 

e.g., 24 months (FHWA 2004; Omar and Moselhi 2022). However, due to the fact that there are a large number of 

bridges that require regular inspection, this process requires considerable effort, time, cost, and resources, besides 

being a source of substantial danger. In this context, developing data-driven methods to accurately predict bridge 

deck deterioration conditions is highly important to transportation agencies. A deterioration model of a bridge deck 

is a relationship between a bridge deck’s condition and a vector of explanatory features, i.e., variables; features 

and variables will be used interchangeably hereinafter. These features reflect a collection of variables that impact 

the bridge deck's performance, such as age, load capacity, material properties, and deck geometry. The ability to 

anticipate deck conditions and the probability of failure is a major concern for transportation authorities (Liu and 

El-Gohary 2017). 

This paper aims to develop a data-driven method to predict the conditions of reinforced concrete bridge decks, and 

apply it to a bridge deck in Iowa State, USA. The main goal can be broken down into the following objectives: (i) 

identifying the most influential features of the deterioration of bridge decks; and (ii) investigating the performance 

of four machine learning models to predict the condition of bridge decks. The developed methodology would help 

transportation agencies allocate resources and reduce field inspections. 

2. LITERATURE REVIEW 

Bridge decks’ maintenance funding requirements are influenced by bridge decks' current and future conditions 

(Abed-Al-Rahim and Johnston 1995). Additionally, the serviceability of bridges may be negatively impacted by 

the degradation of bridge decks (Scott et al. 2003). Consequently, keeping an eye on the state of bridge decks is 

crucial to minimize any harm that can result from poor inspections and evaluations (Assaad and El-adaway 2020). 

Deterioration models should complement (rather than replace) field inspections to better plan for such inspections. 

On the other hand, data collected from the field inspections should be used to continuously improve these models 

(Omar et al. 2022). 

Deterioration models can be classified into two main categories: deterministic models and stochastic models. 

Deterministic models are based on a mathematical and statistical formula for the relationship between the features 

influencing bridge deck deterioration and the bridge deck’s condition. These models can be developed utilizing 

linear and non-linear regression, straight-line extrapolation, curve fitting, support vector machines, and Artificial 

Neural Networks (ANNs). On the other hand, stochastic models define the deterioration process as consisting of 

one or more random variables representing this process's uncertainty and randomness. Such random variables can 

be modelled using probability distribution functions (Agrawal et al. 2010). Regression analysis is considered the 

most common technique for deterministic models and Markov chain for stochastic models (Muñoz et al. 2016). 

Stochastic models can be divided into state- and time-based models (Mauch and Madanat 2001). In state-based 

models, such as Markov chains, the deterioration process is modeled through a probability of transition from one 

condition state to another in a discrete time. Whereas, in time-based models, the duration that a bridge element 

stays at a specific condition state is represented as a random variable utilizing Weibull-based probability density 

functions to define the deterioration process (Agrawal et al. 2010). Most recent research on deterioration models 
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of different bridge components (i.e., deck, superstructure, substructure, or the whole bridge) is highlighted below, 

and a summary is provided in Table 1. 

TABLE 1: Summary of literature on deterioration modelling of bridges 

Study Focus & Methods Data Considered features 

(Assaad 

and El-

adaway 

2020) 

Predicting bridge deck conditions using 

ANNs and k-NNs & using feature selec-

tion and hyperparameters optimization 

to improve the models’ performance. 

NBI, 

Missouri 

Age, ADT, maximum span length, bridge 

length, deck width, superstructure and 

substructure conditions, operating and 

inventory ratings, and structural evaluation 

(Martinez et 

al. 2020) 

Predicting Bridge Condition Index using 

k-NNs, DT, LR, ANNs, and DNNs. 

Ontario, 

Canada 

Age, number of lanes, material, structural 

type, number of spans, width, and length 

(Nguyen 

and Dinh 

2019) 

Predicting bridge deck conditions using 

ANNs & developing deterioration 

curves. 

NBI, 

Alabama 

Age, ADT, design load, main structure 

design, approach span design, number of 

spans, truck ADT, and ADT growth rate 

(Abdelkade

r et al. 

2019) 

Developing a defect-based deterioration 

model to forecast bridge deck 

conditions using a Markovian model. 

Quebec, 

Canada 

Age 

(Ali et al. 

2019) 

Predicting conditions of different 

bridge elements using ANNs. 

NBI, 

Missouri 

Age, ADT, service type, material, structure 

type, length of maximum span, bridge 

length, deck width, year reconstructed, 

deck type, surface type, membrane type, 

deck protection, and truck ADT 

(Zambon et 

al. 2017) 

Predicting bridge deck conditions using 

different Markov chain models. 

Portugal 

Infrastructures 

Age 

(Shim and 

Lee 2017) 

Predicting bridge deck conditions using 

a Markovian deterioration model. 

NBI, 

Wyoming 

Age 

(Muñoz et 

al. 2016) 

Estimating the deterioration of different 

bridge components using Markov-

chain models and regression analysis. 

NBI, 

Nevada 

Age and material 

(Bu et al. 

2015) 

Developing bridge deterioration models 

incorporating time- and state-based 

models with Elman neural networks. 

NBI, 

New York 

Age, bridge component, material, ADT, 

and construction era 

(Le and 

Andrews 

2015) 

Using Weibull distribution to model 

the deterioration of bridge components. 

UK railways Age, material, and intervention type 

(Mašović 

and Hajdin 

2014) 

Predicting the deterioration of different 

elements using the Markov chain. 

Serbia Age 

(Ranjith et 

al. 2013) 

Predicting conditions of timber bridge 

elements using Markov chain models. 

VicRoads, 

Australia 

Age 

Although the objectives of the highlighted studies in this area are quietly similar, i.e., predicting deterioration 

conditions of different bridge components, the methods, the data used, and the included features are different. Age 

and Average Daily Traffic (ADT) are among the most used features in models. It is worth noting that ADT 

calculations differ from those of Annual Average Daily Traffic (AADT); for more information about these 
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calculations, the reader may refer to FHWA (2018). The National Bridge Inventory (NBI) constitutes the primary 

source of data (FHWA 2022a). The NBI was compiled by Federal Highway Administration (FHWA) to serve as a 

database with information about all bridges and tunnels in the USA that have roads passing above or below them. 

Regarding employed methods, machine learning algorithms, including ANNs, Deep Neural Networks (DNNs), 

Decision Trees (DTs), k-Nearest Neighbours (k-NNs), and Linear Regression (LR), are thriving in recent studies 

by Ali et al. (2019); Assaad and El-adaway (2020); Martinez et al. (2020); Nguyen and Dinh (2019). In addition, 

different Markov-chain models with different calibration methods and Weibull distribution models were also 

applied by Abdelkader et al. (2019); Bu et al. (2015); Le and Andrews (2015); Mašović and Hajdin (2014); Muñoz et 

al. (2016); Ranjith et al. (2013); Shim and Lee (2017); Zambon et al. (2017). However, a few studies have considered 

feature selection or clustering to investigate the most influential factors on bridge deterioration, such as Assaad 

and El-adaway (2020). 

3. METHODOLOGY 

An overview of the developed 6-step methodology, along with the algorithms utilized is depicted in Fig. 1. The 

details of each step will be described subsequently. 

 

FIG. 1: Research Methodology 

3.1 Data Collection 

The two datasets used in this study were retrieved from NBI for Iowa State. Iowa is ranked the seventh in the 

number of bridges in the USA; however, it has the highest number of structurally deficient/poor bridges. The 

average bridge age of Iowa’s primary highway system is 41 years approaching the intended lifespan of 50 years 

(Iowa DOT, 2022). Iowa Department of Transportation (DOT) uses NBI data to develop deterioration models to 

secure future funding needs for their bridges' replacement, rehabilitation, and repair (Iowa DOT, 2022). The 

retrieved datasets include bridge condition information for the years 2021 (FHWA 2021) and 2022 (FHWA 

2022b). The Recording and Coding Guide for the Structure Inventory and Appraisal of the Nation's Bridges 

(FHWA 1995) describes in detail all data items (variables) in these datasets. In order to maintain consistency 

among bridge inspectors, FHWA provided guidelines for rating and coding conditions of different bridge 

components, i.e., deck, superstructure, and substructure (FHWA 1995). These condition ratings are utilized to 

describe the existing, in-place bridge as compared to the as-built condition using integer values from “0” (Failed 

Condition) to “9” (Excellent Condition), and “N” (Not Applicable) (FHWA 1995). As such, the deterioration of 

bridge deck conditions is a classification problem since conditions are provided as integers, i.e., categories. 
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3.2 Data Preprocessing 

The following preprocessing steps were performed on the 2021 and 2022 datasets. The 2021 dataset consists 

mainly of 123 features, including 23,870 data points. Irrelevant variables to this study, such as County Code, 

Owner, and Culverts Condition Ratings, were excluded. For deck condition ratings, the code “N” means that this 

data point belongs to culverts or other structures without decks; so, their related data points (4,735 data points: 

19.84%) were removed. In addition, the deck conditions rated as: “0” (Failed Condition; 253 data points: 1.06%), 

“1” (Imminent Failure Condition; two data points: 0.01%), or “2” (Critical Condition; two data points: 0.01%) 

means that these bridges are in a severe condition and need reconstruction rather than inspection. So, their related 

data points were dropped from the dataset. Data points with any of the following criteria were also filtered out: (i) 

missing values; (ii) bridges that had been reconstructed; and (iii) extreme values, i.e., “199”: for detours of length 

199 kilometers or more; “99”: to indicate a significant variation in skews of substructure units; “99.9”: when the 

restriction is 100 meters or greater for total horizontal clearance for the inventory route; “99.9”: for operating 

rating and inventory rating for a structure under sufficient fill; and “99.9”: for truck ADT greater than or equal 

99.9% (FHWA 1995). Eventually, only reinforced concrete bridges with cast-in-place reinforced concrete decks 

were considered for the scope of this study. The same steps were also applied to the 2022 dataset. Accordingly, 

the datasets ended up with: 5,138 data points for 2021; 5,212 data points for 2022; and 42 variables. These variables 

are classified into eight main categories, as depicted in Fig. 2. It must be noted that the variable ID is the same as 

the data item number in the Recording and Coding Guide (FHWA 1995) to facilitate the tracking of variables. 

The original variables have three data types; however, in this study, they are expressed in numeric-integer codes 

according to the Recording and Coding Guide (FHWA 1995). Categoric data were transformed into numeric-

integer/ordinal values since most machine learning algorithms cannot handle such data representation (Garg 2022). 

Although dummy coding or one-hot-encoding can be used to transform categoric data, it considerably increases 

the dimensionality of the problem. Due to the fact that different numeric-real variables are measured on different 

scales with different ranges, they were discretized into numeric-integer values. Discretization (i.e., binning or 

bucketing) helps to minimize the effect of errors due to minor observations and outliers, and reduce the risk of 

overfitting. It can be unsupervised or supervised. Unsupervised discretization does not account for the label, e.g., 

discretizing a continuous variable into bins with equal widths or frequencies. In contrast, supervised discretization 

considers the label, e.g., discretizing a variable based on the highest information gain (Datacadamia 2022; 

Kotsiantis and Kanellopoulos 2006). This paper uses discretizing into bins with equal frequencies, i.e., an equal 

% of data points in each interval; the advantage is that this method takes the distribution of the variable into account 

and can be generalized to a new dataset regardless of the distribution of the label itself. 

3.3 Split Data 

The 2021 dataset was divided randomly into two sets: a training set with 4,110 records representing 80% of the 

dataset and a testing set (Testing 1) of 1,028 records representing 20% of the dataset. However, all 2022 data were 

used as a testing set (Testing 2) to investigate the generalization capabilities of the developed models. Then, feature 

scaling was applied to each set separately using Eq. 1 for min-max normalization. 

 𝒁𝒊 =
𝑿𝒊 − 𝒙𝒎𝒊𝒏

𝒙𝒎𝒂𝒙 − 𝒙𝒎𝒊𝒏
 Eq. 1  

Where: 𝑍𝑖 is the scaled value of the ith original value of the independent variable 𝑋; 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥  are the minimum 

and maximum values of the independent variable 𝑋, respectively. The new ranges will be [0,1]. It is worth pointing 

out that feature scaling helps machine learning algorithms converge much faster and improve their performance. 

In addition, distance-based algorithms, e.g., Euclidean distance in k-NNs, are much more sensitive to feature 

scaling (Singh et al. 2015). 
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FIG. 2: Categorization of the variables included in this study 

3.4 Feature Selection 

Feature selection is the process of removing irrelevant and/or redundant features to find the best subset of data that 

contributes the most to the predicted label, i.e., deck condition in the present study. The importance of feature 

selection in machine learning lies in the fact that it helps: improve the model’s prediction performance, reduce the 

dimensionality of the data; remove multi-collinearity (for regression models) and dependency (for algorithms like 

Naïve Bayes); reduce computational time, complexity and memory requirements; reduce the risk of overfitting; 

produce more interpretable predictive models; and, most importantly, provide better insights and understanding of 

the most influential features affecting deck deterioration conditions (Assaad and El-adaway 2020; Ebrahimi et al. 

2022; Jain et al. 2014; Nik‐Bakht 2021; Solorio-Fernández et al. 2020). Feature selection or selecting significant 

parameters was employed in different areas, including: selecting the best subset of features for predicting 

deterioration conditions in NBI data (Althaqafi 2021; Assaad and El-adaway 2020); finding significant parameters 

impacting construction labour productivity (Ebrahimi et al. 2022; Moselhi and Khan 2012); identification of 

significant impact factors affecting process times at workstations in modular construction (Bhatia et al. 2022); and 

determining the significant design parameters in modular construction workplace that contribute most to 

ergonomic risk scores (Zaalouk and Han 2021). 
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Feature selection methods can be clustered into two main categories: filter methods and wrapper methods. It is 

also worth pointing out that a hybrid of these methods can be utilized (Ebrahimi et al. 2022). Filter methods 

include: t-test, correlation analysis, chi-square test, and principal component analysis; while wrapper methods 

include: stepwise regression, forward selection, and backward elimination. The idea behind filter methods is to 

select top-ranked features using a specific criterion; a threshold is utilized to discriminate between selected and 

discarded features. Filter methods are applied before training predictive models relying only upon the statistical 

characteristics of the training set regardless of the algorithm applied. Although filter methods (i.e., ranking 

methods) are computationally light, they ignore predictive algorithms, and the selected subset may not be optimal 

for specific learning algorithms. In addition, for example, correlation analysis and chi-square test may produce a 

subset of features that are highly correlated with each presenting the risk of multi-collinearity in the dataset, besides 

needing a threshold which is, sometimes, difficult to be determined (Chandrashekar and Sahin 2014; Solorio-

Fernández et al. 2020; Tsai 2009). On the other hand, wrapper methods are based on iteratively selecting those 

features that improve the performance of a specific algorithm. Although they are computationally intensive 

compared to ranking methods, they produce a subset of features that leads to the highest performance of the 

algorithm. The optimal subset, however, may be different from one algorithm to another. The risk of overfitting 

may be present in the wrapper method, necessitating careful training and testing considerations (Chandrashekar 

and Sahin 2014; Solorio-Fernández et al. 2020; Tsai 2009). 

In the present study, three-iterative algorithms are utilized: the Boruta algorithm, stepwise regression, and Multi-

Layer Perceptron (MLP). The Boruta is not a stand-alone algorithm, but rather it has an embedded Random Forest 

(RF) classifier. The algorithm goes through a specified number of iterations. In each iteration, features start to be 

classified as important or unimportant until all features are classified, or the set number of iterations is reached. 

This method is demonstrated to be effective in finding the best subset of features for developing high-performance 

forecasting models. It can perform computationally fast, even when dealing with a large number of variables. In 

addition, unlike filter methods, it can process features with complex and non-linear relationships. For the detailed 

steps involved in this method, the reader may refer to Andrew (2021); Cao et al. (2018); Kursa and Rudnicki 

(2010). In stepwise regression, forward selection and backward elimination criteria are used to assess which 

variables should be included in the regression equation. If a variable meets the statistical requirements, it is input 

one at a time; however, if the variable no longer meaningfully contributes to the regression model, it may be 

eliminated at any stage (Ho 2013). MLP was utilized as the baseline model to initially evaluate selected features 

against the classification problem, and find the relative weight of each feature. It is a type of feed-forward neural 

network. MLP may resolve complex issues that are not linearly separable. Prediction, classification, and Pattern 

recognition are among the main applications of MLP (Abirami and Chitra 2020; Menzies et al. 2015). 

3.5 Predictive Models 

Four predictive algorithms were employed in this study: k-NNs, RF, ANN, and DNN. The k-NNs algorithm is the 

simplest form of machine learning. It classifies a new unlabelled data point based on the majority class of its k-

closest data points or “neighbours” in the data space (Kramer 2013). In this connection, two hyperparameters are 

needed for this algorithm to work: the value of k (number of closest neighbours), and a measure to determine those 

closest neighbours, i.e., a measure of proximity. Previous studies found that the best performance of k-NNs 

algorithm can be obtained at k values from 5 to 11 (Ashari et al. 2013; Batista and Silva 2009). In addition, among 

different measures of proximity (e.g., Euclidean Distance, Cosine Similarity, and Jaccard Similarity), Euclidean 

Distance is the most commonly used in the case of numeric predictors (Melhem and Cheng 2003). RF algorithm 

is an ensemble machine learning technique whose outcome is based on the majority voting of multiple decision 

tree models (Breiman 1996; Cutler et al. 2007; Kim et al. 2022). RF is very tolerant to outliers and noise, unlikely 

to overfitting, and has a good prediction accuracy (Sun et al. 2020). RF model involves many hyperparameters 

that should be fine-tuned to get the best performance. These hyperparameters include: the sample segmentation 

criterion or impurity measure, the number of decision trees, and the maximal depth of the decision tree (Koehrsen 

2018; Sun et al. 2020). ANNs are inspired by biological networks consisting of an input layer, i.e., the predictors, 

hidden layers, and the output layer, i.e., the label (Moselhi et al. 1991). The number of neurons in the hidden layer, 

training cycles, and learning rate are among the hyperparameters that should be optimized for ANNs. Deep 

architectures like DNNs are composed of ANNs with many hidden layers. The number of hidden layers, the 

number of neurons in each layer, activation function (Rectifier activation function is the most popular), and deep 

learning epochs should be considered for its fine-tuning (Radhakrishnan 2017; Yoo 2019). 
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The performance of a machine learning algorithm model is significantly influenced by hyperparameters selection. 

The process of hyperparameter optimization or fine-tuning involves choosing the best hyperparameter values that 

give the highest performance (Koehrsen 2018; Sun et al. 2020). This study has utilized grid search and 10-fold 

cross validation to find the ideal hyperparameter values. The optimized hyperparameters, along with the search 

ranges and/or values, are presented in Table 2. The hidden layer size is denoted in the form [ℎ1, ℎ2, … , ℎ𝑚] to 

represent a network with (m) hidden layers that contain: ℎ1 neurons in the first hidden layer, ℎ2 neurons in the 

second layer, and ℎ𝑚 neurons in the last layer. 

TABLE 2: Investigated hyperparameters of the models 

Model Hyperparameters and their investigated values 

k-NNs k = 5−50 with step equal to 5. 

RF Number of trees = 10−100 with step equal to 10; impurity measure = Gini Index, Information Gain, 

Gain Ratio; maximal depth = 0−100 with step equal to10; apply/not apply pruning and pre-pruning. 

ANN Hidden layer size = 5, 8, 10, 15, 25; number of training cycles = 10−200 with step equal to 10; 

learning rate = 0.001−0.1 with 20 steps on logarithmic scale. 

DNN Different configurations of hidden layers = [50, 50], [25, 25], [25, 25, 25, 25], [10, 10, 10, 10]; deep 

learning epochs = 10−500 with 10 steps on linear scale. 

3.6 Evaluation 

In order to minimize the impact of a single sampling technique on model outcomes and reduce the risk of 

overfitting, the 10-fold cross validation with stratified random sampling was utilized to evaluate the performance 

of the four models and optimize their respective hyperparameters in the training dataset. The stratified random 

sampling was used as it allows to obtain a sample population that best represents the entire population of the 

dataset. In addition, in 10-fold cross validation, the dataset is divided into ten subsets or folds. The models are 

iteratively fitted ten times, each time trained on nine folds of the data and tested on the remaining fold. The highest 

average cross-validation accuracy was utilized as the objective function to optimize the models' hyperparameters. 

Then, the optimal hyperparameters were used to evaluate the models’ performance using the two testing datasets. 

In addition, the performance of the models under the training and testing datasets was compared using the 

confusion matrix and other related performance metrics, i.e., accuracy, precision, and recall using Eq. 2, Eq. 3, 

and Eq. 4, respectively (Kotu and Deshpande 2019). 

 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =  (𝑻𝑷 + 𝑻𝑵)/(𝑻𝑷 + 𝑭𝑷 + 𝑻𝑵 + 𝑭𝑵) Eq. 2  

 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =  𝑻𝑷/(𝑻𝑷 + 𝑭𝑷) Eq. 3  

 𝑹𝒆𝒄𝒂𝒍𝒍 =  𝑻𝑷/(𝑻𝑷 + 𝑭𝑵) Eq. 4  

Where, TP = True Positive, TN = True Negative, FP = False Positive, and FN = False Negative. It is worth 

pointing out that the precision and recall were calculated as the average for all classes. 

4. RESULTS AND DISCUSSIONS 

The three-iterative algorithms for feature selection, referred to above, were applied to the training set. Firstly, the 

39 predictors were fed into the Boruta algorithm. For the embedded ensemble RF, hyperparameters were optimized 

using random search and grid search cross validation. The optimized hyperparameters include: the number of trees 

in the forest, maximal depth of the tree, minimum number of samples required to split an internal node, minimum 

number of samples required to be at a leaf node, and bootstrap samples (Koehrsen 2018; Sun et al. 2020). It took 

the algorithm 52 iterations to converge and resulted in 10 important features. These features were then fed into a 

stepwise regression to check the potential for excluding any other redundant and multi-collinearity. Two features 

were excluded in this step as they did not contribute to the regression model. The remaining features were included 
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in the regression model. In addition, they have a Variance Inflation Factor (VIF) of [1.04, 9.82]. As such, small 

values of VIF (i.e., VIF < 10) ensure absence of multi-collinear variables (Ho 2013). The final regression model 

showed a high coefficient of determination, 𝑅2, of 0.94. 

The MLP was used as a baseline model to evaluate the prediction capabilities of different subsets of features. It 

was applied before and after each application of the Boruta algorithm and stepwise regression to test the resultant 

subset of features. The classification accuracy was improved from 91.60%/training and 89.10%/testing using all 

features to 92.20%/training and 93.60%/testing using the last eight features. The Receiver Operating Characteristic 

(ROC) curve (Tripepi et al. 2009), as well as the Area Under the Curve (AUC) values for each deck condition 

class, are depicted in Fig. 3. The AUC values are greater than or equal to 0.974 indicating improved predictive 

capabilities for MLP using the best subset of features. In addition, the relative importance of features derived from 

the MLP is shown in Fig. 4. Superstructure condition and structural evaluation are the most influential factors in 

predicting bridge deck deterioration conditions. 

 
FIG. 3: ROC as well as AUC of the final iteration of MLP 

The best subset of features that resulted from the previous phase was fed into the four models of k-NNs, RF, ANN, 

and DNN. In order to get the optimal (or near-optimal) hyperparameters that give the highest possible model 

performance, each model was then fine-tuned using the training set. These optimal hyperparameters are presented 

in Table 3. It is worth pointing out that the best performance, for the RF and ANN models, were obtained using 

different combinations of hyperparameters. For instance, for RF Model, using a combination of: number of trees 

= 70; impurity measure = Gain Ratio; and maximal depth = 60, produced the best performance. Likewise, changing 

the number of cycles for ANN to 120 or 130 with a learning rate of 0.06 yielded the best outcomes. 

The results of training and testing the four models are presented in Table 4. Generally, RF, ANN, and DNN models 

showed comparable good performance in terms of accuracy, precision, and recall, whereas the k-NNs model had 

substantially less performance in training and testing. However, RF outperformed all other models in terms of: 

training accuracy and precision (92.87% and 89.96, respectively); testing accuracies (93.78% and 93.82%); testing 

precisions (92.15% and 91.27%); and testing recalls (94.25% and 92.93%). Concerning training recall: RF showed 

a little less recall than DNN by about 0.51%. In addition, as shown, the RF model showed better performance 

metrics in testing than in training which ensures that the model is not overfitted and possesses good generalization 

capabilities. Better precisions and recalls for RF also assure that the model provides better predictions with fewer 

misclassifications. Another point worth mentioning is that the standard deviations for training cross validation are: 

±1.60%, ±0.94%, ±1.09%, and ±1.71% for k-NNs, RF, ANN, and DNN, respectively, indicating that the RF 

model is the most stable. 
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FIG. 4: Feature importance derived from MLP 

TABLE 3: Optimal fine-tuned hyperparameters of the models 

Model Optimal fine-tuned hyperparameters 

k-NNs k = 5; proximity measure = Euclidean Distance 

RF Number of trees = 40; impurity measure = Gini Index; maximal depth = 10; apply pruning and pre-pruning 

ANN Hidden layer size = [8]; number of training cycles = 200; learning rate = 0.05 

DNN Activation function = Rectifier; hidden layers size = [10, 10, 10, 10]; deep learning epochs = 157 

TABLE 4: Cross-validation training results as well as testing results of the models 

Model Training 

(using 80% of 2021 data) 

Testing 1 

(using 20% of 2021 data) 

Testing 2 

(using all 2022 data) 

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall 

k-NNs 80.88% 78.62% 72.69% 80.54% 75.82% 69.05% 84.61% 82.90% 77.22% 

RF 92.87% 89.96% 91.13% 93.87% 92.15% 94.25% 93.82% 91.27% 92.93% 

ANN 92.19% 89.02% 87.82% 93.68% 91.97% 93.58% 93.48% 90.95% 92.56% 

DNN 92.68% 89.15% 91.64% 91.54% 85.23% 88.39% 93.40% 90.43% 92.24% 
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Many studies have introduced diverse machine learning models in this domain, i.e., predicting bridge deck 

deterioration conditions. Unlike those studies, this paper contributes to the body of knowledge on three fronts. 

First, it introduces a hybrid framework to systematically find the best subset of features, associated with their 

relative weights, for predicting bridge deck deterioration conditions. The framework incorporates three-iterative 

algorithms, selected based on several iterations and trials of other algorithms (e.g., correlation analysis, Gini index, 

entropy theory, forward selection, backward elimination, and principal component analysis), which ensures 

removal of redundancy and multi-collinearity in the final subset. In addition, it can be generalized for NBI datasets 

to give better insights into the most influential factors on the probability of failure and deterioration of bridge 

decks. Second, it presents four newly developed classification models with comparable good performance. The 

developed models are a combination of simple models (e.g., k-NNs), ensemble machine learning models (e.g., 

RF), and computationally challenging models (e.g., DNN). The results showed the superiority of the RF model, 

which is rarely used before in this domain despite its ease of application compared to neural networks. Third, it 

provides a detailed road map for preparing NBI datasets and optimizing the models’ hyperparameters, which are 

crucial steps in machine learning applications. The used dataset, along with the developed models and code are 

available upon request to facilitate future application and/or evaluation of the proposed methodology. 

5. CONCLUSIONS AND FUTURE WORK 

This paper introduced a hybrid feature selection framework for predicting bridge deck deterioration conditions. 

The Boruta algorithm, stepwise regression, and multi-layer perceptron were employed to find the best subset of 

features that contribute to bridge deck deterioration. When applied to Iowa State, USA, 2021 and 2022 datasets, 

only eight out of 38 features were selected. Superstructure condition, structural evaluation, operating rating, and 

bridge age were the most influential factors, followed by inventory rating, functional classification, deck width, 

and average daily traffic. Upon using these eight features as input to the four classification models of k-nearest 

neighbours, random forest, artificial neural network, and deep neural networks for prediction of the bridge deck 

conditions, the random forest model yielded the best prediction. It provided an accuracy of about 92.87% in 

training as well as 93.87% and 93.82 in testing. Future studies should investigate using the current features and 

models to develop maintenance plans and budget allocation for bridge decks. 
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