ITcon Vol. 30, pg. 213-242, http://www.itcon.org/2025/10

Design and Usability Evaluation of an End User Programming Environment for Equipping Construction Students with Sensor Data Analytics Skills

DOI:10.36680/j.itcon.2025.010
submitted:March 2024
revised:May 2024
published:March 2025
editor(s):Amor R
authors:Mohammad Khalid, Ph.D. Student
Virginia Polytechnic Institute and State University, Virginia, United States
khalidm21@vt.edu

Abiola Akanmu, Associate Professor
Virginia Polytechnic Institute and State University, Virginia, United States
abiola@vt.edu

Adedeji Afolabi, Research Associate
Virginia Polytechnic Institute and State University, Virginia, United States
adedeji@vt.edu

Homero Murzi, Associate Professor
Virginia Polytechnic Institute and State University, Virginia, United States
hmurzi@vt.edu

Ibukun Awolusi, Assistant Professor
The University of Texas at San Antonio, San Antonio, TX, United States
ibukun.awolusi@utsa.edu

Philip Agee, Assistant Professor
Virginia Polytechnic Institute and State University, Virginia, United States
pragee@vt.edu
summary:Classification of construction resource states, using sensor data analytics, has implications for improving informed decision-making for safety and productivity. However, training on sensor data analytics in construction education faces challenges owing to the complexity of analytical processes and the large stream of raw data involved. This research presents the development and user evaluation of ActionSens, a block-based end-user programming platform, for training students from construction-related disciplines to classify resources using sensor data analytics. ActionSens was designed for construction students to perform sensor data analytics such as activity recognition in construction. ActionSens was compared to traditional tools (i.e., combining Excel and MATLAB) used for performing sensor data analytics in terms of usability, workload, visual attention, and processing time using the System Usability Scale, NASA Task Load Index, eye-tracking, and qualitative feedback. Twenty students participated, performing data analytics tasks with both approaches. ActionSens exhibited a better user experience compared to conventional platforms, through higher usability scores and lower cognitive workload. This was evident through participants' interaction behavior, showcasing optimized attentional resource allocation across key tasks. The study contributes to knowledge by illustrating how the integration of construction domain information into block-based programming environments can equip students with the necessary skills for sensor data analytics. The development of ActionSens contributes to the Learning-for-Use framework by employing graphical and interactive programming objects to foster procedural knowledge for addressing challenges in sensor data analytics. The formative evaluation provides insights into how students engage with the programming environment and assesses the impact of the environment on their cognitive load.
keywords:Construction, Sensor, Data Analytics, Machine Learning, Usability, End-User Programming, Construction Education
full text: (PDF file, 1.77 MB)
citation:Khalid M, Akanmu A, Afolabi A, Murzi H, Awolusi I, Agee P (2025). Design and Usability Evaluation of an End User Programming Environment for Equipping Construction Students with Sensor Data Analytics Skills, ITcon Vol. 30, pg. 213-242, https://doi.org/10.36680/j.itcon.2025.010
statistics: