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SUMMARY: The construction sector faces persistent challenges in scaling emerging technologies such as 3D 

Concrete Printing (3DCP), despite their potential to reduce material waste and accelerate build times. This paper 

addresses a key barrier to adoption: economic uncertainty in the development and deployment of 3DCP production 

systems. Drawing on a case study of a commercial 3DCP facility, we develop a three-stage stochastic decision-

support framework to guide scaling efforts. The first stage quantifies cost uncertainties in hardware, software, and 

material systems. The second stage evaluates strategic development pathways under multiple future scenarios. 

The third stage integrates investment costs to support full cost-benefit assessments. Anchored in the Resource-

Based View (RBV), our approach identifies how firms can mobilize technological, financial, and human resources 

in uncertain environments. Methodologically, we combine Monte Carlo simulations with Simulation 

Decomposition (SimDec) to enable multivariate cost-benefit analysis. The result is a practical toolkit for managers 

navigating early-stage innovation in construction production. This research contributes to scholarship on 

technology adoption, strategic investment under uncertainty, and sustainability transitions in construction. 
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1. INTRODUCTION 

Three‑dimensional concrete printing (3DCP) is rapidly emerging as a potentially green‑technology for the 

construction sector (Hassan et al. 2024). By depositing cementitious material layer‑by‑layer, 3DCP can drastically 

reduce material waste, shorten build times, and enable highly customised geometries (Hager et al. 2016; 

De Wolf, Pomponi & Moncaster 2017; Bos et al. 2016). However, both established and early‑stage (Startup) firms 

have multiple barriers to efficient technology development. They often operate in high‑uncertainty environments 

(Tan et al. 2025), have limited historical production and project data (Ayyagari, Chen & García de Soto 2023), and 

lack structured decision‑support tools for such large investment (Taylor & Levitt 2004; Myers 2003; Myers 2016). 

In addition to this, varying stakeholder misalignments further hinder industry adoption (Walzer et al. 2024b).  

Existing literature has extensively covered the technical and environmental advantages of 3DCP, but has often 

overlooked the economic implications and long-term viability (De Schutter et al. 2018). This oversight extends to 

integrating 3DCP with advanced construction planning technologies such as Building Information Modeling 

(BIM), where decision-support tools that address multi-criteria requirements are established (Tan et al. 2021). 

However, specific studies linking these tools with 3DCP practices are sparse, leaving a gap in holistic decision-

support methodologies that accommodate the unique aspects of 3DCP. Previous studies have explored general unit 

production costs predominantly from the demand side (Cheng 1991), yet comprehensive cost estimation 

frameworks specifically tailored for 3DCP supply remain underdeveloped (Nagatoishi  & Fruchter 2023). While 

frameworks exist for cost estimation in industrial design products involving economies of scale (Park & Simpson 

2005), their applicability to 3DCP has not been empirically validated (Walzer et al. 2024a). Furthermore, existing 

models either (i) treat cost deterministically, ignoring the stochastic nature of material prices, labour rates, and 

hardware performance, or (ii) lack a strategic lens that connects resource‑based capabilities to investment 

decisions. Vast literature on uncertainty analysis and strategic decision support provides comprehensive 

frameworks for risk analysis, but lacks capability of factoring in a multitude of interlinked decisions due to growing 

combinatorial complexity (Hubbard 2020; Savage & Markowitz 2009; Trigeorgis & Reuer 2017). Without such a 

framework, firms cannot reliably construct portfolios of development opportunities under said uncertainty. 

 

The pressing question for this study remains: How can emerging firms navigate uncertainties to adopt 3DCP and 

enhance their innovative competitiveness in a resource-constrained environment? What type of modeling and 

simulation is suitable for this task? And how could these results be effectively communicated so that a 3DCP firm 

can make decisions based on them?  

 

This study explores the intersection of 3DCP and strategic construction management to develop a non-

deterministic framework. This framework aims to help firms navigate technological and economic risks while 

identifying potential opportunities for growth (Eisenhardt & Martin, 2000; Teece et al., 1997). Consequently, in 

this paper, we propose a three‑stage stochastic decision‑support framework:   

• Stage 1: Quantify cost uncertainties in hardware, software, and material subsystems using Monte Carlo 

simulation.   

• Stage 2: Evaluate development pathways by embedding “on/off” switches for each resource upgrade and 

analysing their joint impact with SimDec.   

• Stage 3: Conduct a cost‑benefit analysis that incorporates investment costs and calculates the breakeven 

production volume.   

The framework is validated with a real world case study of Hyperion Robotics, a Finnish Startup that manufactures 

water‑tanks, foundations, and wall elements via 3DCP. The results deliver a practical toolkit for managers to (i) 

identify the most influential cost drivers, (ii) prioritize resource upgrades, and (iii) assess economic viability under 

uncertainty. We adopt a Resource‑Based View (RBV) perspective (Barney 1991; Wernerfelt 1984). The rather 

seminal RBV stresses that a firm’s competitive advantage is derived from the value, rarity, inimitability, and 

non‑substitutability (VRIN) of its tangible and intangible assets. When applied to 3DCP, the RBV suggests that 

strategic deployment of hardware, software, and material resources can turn a technologically promising process 

into a financially viable production system. 
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2. BACKGROUND 

2.1 Cost-estimation for emerging construction technologies 

Traditional construction cost estimation focuses on whole‑project budgets and relies heavily on deterministic 

spreadsheets (Akintoye 2000; Ranasinghe 1996). Recent literature shows that such approaches under‑represent 

uncertainty in component‑level costs, especially for novel processes where historical data are scarce 

(Dmitrenko et al. 2018). Stochastic methods (Monte Carlo simulation, Bayesian networks, and scenario analysis) 

have been proposed for prefabrication and modular construction (Gibb & Isack 2003; Eastman et al. 2011) but have 

not yet been applied in the context of 3DCP. Therefore, previous work developed a probabilistic unit-cost modeling 

framework for emerging technologies that combined Monte Carlo simulation with Simulation Decomposition 

(SimDec) to make cost uncertainty, economies of scale, and key cost drivers transparent (Walzer, Kozlova & 

Yeomans  2024, Walzer et al. 2024a). That work focused on clarifying the unit economics of additive 

manufacturing in construction on the technology level to help stakeholders understand when and why 3DCP may 

become cost-competitive. In contrast, this paper builds on the same analytical foundations to support strategic 

decision-making on a firm level: rather than asking “What does this technology cost?”, this study instead assesses 

“Which strategic choices matter most, under uncertainty, and through which mechanisms do they shape 

outcomes?” The resulting toolkit shifts the emphasis from technology cost assessment to actionable strategy design 

under uncertainty. 

2.2 Monte Carlo simulation, global sensitivity analysis, and simulation decomposition 

Monte Carlo (MC) simulation is a standard approach for analyzing uncertainty in complex models by propagating 

probabilistic input assumptions to output distributions (Robert & Casella 2004). It allows decision-makers to move 

beyond point estimates and reason about risks, ranges, and likelihoods of outcomes (Mantha et al. 2025). In most 

applications, MC analysis focuses primarily on external uncertainty sources, while decision variables are held 

fixed to reflect factors outside managerial control that nonetheless shape outcomes (Hubbard 2020; Saltelli et al. 

2020; Savage & Markowitz 2009). Global Sensitivity Analysis (GSA) complements MC simulation by quantifying 

how much individual inputs and their interactions contribute to the variance of the model output (Saltelli et al. 

2008). By decomposing output uncertainty into attributable sources, GSA identifies the dominant drivers of a 

model behavior which makes the impacts of uncertainty more transparent. This variance-based perspective enables 

prioritization by distinguishing influential uncertainties from those with negligible impact. In this context, the 

recently-developed SimDec procedure combines global sensitivity analysis with a visual decomposition of output 

distributions (Kozlova & Yeomans 2022) that allows decision‑makers to see how groups of inputs jointly shape 

outcomes. SimDec extends MC and GSA by decomposing simulated output distributions into interpretable sub-

distributions associated with combinations of influential input states (Kozlova et al. 2024c). Through visual 

decomposition, SimDec reveals interaction effects, structurally distinct scenarios, and non-obvious dependencies 

that are difficult to detect using summary statistics alone. This approach already demonstrated tangible value to 

applications in multiple business, environmental, and engineering contexts (Kozlova & Yeomans 2024). 

Open‑source implementations in Python, R, Matlab, and Julia, together with a no-code web dashboard, make 

SimDec readily accessible for practitioners (Roy & Kozlova 2024). Furthermore, uncertainty analysis has 

traditionally avoided shifting attention from uncertain parameters to decision variables due to combinatorial 

complexity. However, such a shift is essential for strategic analysis when driven by the needs of a case company. 

SimDec enables this transition by structuring high-dimensional decision spaces in an interpretable way, making it 

possible to analyze how alternative strategic choices perform under uncertainty. This a perspective has rarely been, 

if ever, operationalized in prior work on 3DCP. 

2.3 Empirical application in 3DCP 

In recent years, 3DCP has emerged as a technology stack in both research and practice (Gardan, Hedjazi & Attajer 

2025; Lim et al. 2012). Yet, empirical case studies on the unit economics of 3DCP are still limited (Bischof 2022). 

Most studies in this nascent field have focused on either technical feasibility (Bos et al. 2016; Le et al. 2012) or 

environmental impact (Hager et al. 2016), while only a handful have addressed economic decision‑making under 

uncertainty (Graser et al. 2023; Walzer 2025). Consequently, a gap exists for a structured, stochastic 

decision‑support framework that integrates RBV insights with SimDec‑based sensitivity analysis for 

production‑investment planning as described above.  



 

 

 
ITcon Vol. 31 (2026), Walzer et al., pg. 183 

3. METHODOLOGY 

3.1 Case-study design 

The integration and development of 3DCP technologies within a construction firm are examined through a single-

case study approach that provides deep, context-rich insights into the complex processes of adopting and adapting 

new technologies in a unique organizational setting (Yin 2018; Eisenhardt 1989; Eisenhardt and Graebner 2007). 

This methodology focuses on understanding the organizational adaptability and contextual awareness required for 

effective technology integration (Hargadon and Douglas 2001; Siggelkow 2007). Case studies are particularly 

useful in construction‑management research because they comprehensively capture real‑world phenomena 

operating within their natural context (Taylor et al. 2010). Cases allow researchers to explore the intricacies of 

implementation by incorporating both qualitative and quantitative data (Cheng 1991) into robust theoretical 

models (Yin 2018). This study adheres to these principles by employing a structured data‑collection and analysis 

protocol to ensure the robustness of the findings. Through the study of Hyperion Robotics, a Finnish Startup that 

manufactures water‑tanks, foundations, trenches and wall elements via 3DCP (Figure 2), the research aims to (i) 

identify critical factors influencing the integration of 3DCP technologies, and (ii) develop actionable insights that 

can inform broader industry practice. Thus, we propose a multi-staged analytical framework (Figure 1). 

 

Figure 1: The proposed multi-stage analytical framework. 

3.2 Empirical context and case description 

Hyperion Robotics (Hyperion 2024) was founded in 2019 and has grown rapidly due to public funding and 

venture‑capital investments that recognise the potential of its sustainable‑construction approach. The firm operates 

a micro‑factory in Espoo, Finland (Figure 2, left) that produces water‑tanks, foundations, trenches and wall 

elements through 3DCP (Figure 2, right). 

Table 1: The three stages of the analysis. 

Stage Question Model 

Inputs to hybrid uncertainty-

sensitivity analysis method 

SimDec 

1 
Which sources of uncertainty/variation 

drive the unit cost? 

Existing deterministic spreadsheet model of 

the case company that computes unit cost. 

Numerical properties of the 

process 

2 
Which development opportunities 

produce the most benefit? 

Updating the existing model by embedding 

the effects of the development opportunities 

via a selection tool. 

Selection tool elements 

3 

Which development opportunities make 

sense to implement first from the short-

term economic viability viewpoint? 

Updating the Stage 2 unit cost model with 

investment costs to conduct a cost-benefit 

analysis. 

Investment cost, selection tool 

elements 
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Figure 2: 3DCP Workspace in Espoo, Finland (left) and Infrastructure Foundation Products (right). Image 

courtesy of Hyperion Robotics (2022, 2025). 

The studied firm presents a compelling case for exploring the development of decision-support mechanisms to 

customize 3DCP offerings, aligning them with organizational goals and operational constraints. The decision 

problem faced by the company is approached in the three stages outlined in Table 1. 

3.2.1 Unit-Cost Modelling 

The accurate estimation of component costs is a complex task influenced by a multitude of external and internal 

factors, making heuristic methods insufficient (Horngren et al. 2010). External factors such as supply chain 

dynamics, commodity price fluctuations, and market demand, along with internal factors including process 

stability, prototype testing, and human considerations, contribute to the uncertainty and variability in unit cost 

estimates (Chopra and Meindl 2001; Curran et al. 2004). Given this complexity, the model's level of detail needs 

to align with the company's stage, processes, and decision-making context. Consequently, we present an empirical 

model incorporating actual values from a real-world production project within the case firm. This model includes 

basic equations, such as the one depicted below, which outlines the structure of the initial unit cost model. 

𝑈𝑛𝑖𝑡 𝑐𝑜𝑠𝑡 [€] =  
𝑙𝑎𝑏𝑜𝑟 𝑐𝑜𝑠𝑡+𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠 𝑐𝑜𝑠𝑡+𝑐𝑜𝑛𝑠𝑢𝑚𝑎𝑏𝑙𝑒𝑠 𝑐𝑜𝑠𝑡+𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡

𝑢𝑛𝑖𝑡𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑
  (1) 

Equation (1) demonstrates fundamental costing principles. By breaking down the unit cost into its constituent 

components, this equation provides a clear initial framework for understanding and managing the various cost 

drivers involved in the production process. It also ensures that the model's granularity accurately reflects both 

current operational realities and strategic needs. 

3.2.2 Modelling of development opportunities 

Table 2 categorizes the innovation into three distinct areas: materials, software, and hardware. Each developmental 

opportunity is evaluated against a standard baseline consisting of Material 1.1 and the current 3DCP process 

baseline to determine outputs such as unit cost. The table presents several prospective opportunities for material 

development, including various material combinations that may require specific hardware enhancements. It is 

important to note that Environmental Product Declarations for these materials are currently unavailable, as they 

have not yet been fully developed or tested. Additionally, the table outlines potential advancements in hardware, 

highlighting expected benefits such as increased deposition speeds and reduced interruptions during the printing 

process. Finally, the table discusses two software enhancement opportunities and their anticipated effects. 

3.2.3 Monte Carlo-based Simulation Decomposition 

The method for the model analysis chosen in this study is a hybrid sensitivity-uncertainty approach called 

Simulation Decomposition or SimDec (Kozlova et al. 2024c). SimDec consists of the computation of sensitivity 

indices (the global sensitivity analysis component) and a visualization based on a novel decomposition procedure 

(the uncertainty analysis element). The rationale behind both components and their algorithmic procedures are 

described in this section. Models are only useful for decision-making when their solution space is properly 

explored because only then can the combined effect of uncertainties and managerial actions be elucidated upon 

(Saltelli et al. 2019). The estimation of the importance of different factors when all the moving parts of the model 

are altered simultaneously is the pinnacle of the global sensitivity analysis field. Various families of global 
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sensitivity analysis methods have been under active development and evaluation (Pianosi et al. 2016). One of the 

most straightforward global sensitivity analysis methods created for computing sensitivity indices is the “simple 

binning approach” of Kozlova et al. (2025). Binning methods are computationally efficient and extremely accurate 

(Marzban & Lahmer 2016; Kucherenko et al. 2017), and also capable of capturing the impacts from inherent` 

dependencies in the input variables, an important feature for the analysis of complex models (Kucherenko et al. 

2017; Kozlova et al. 2025). The simple binning approach for sensitivity indices is a variance-based sensitivity 

analysis, which estimates the contribution of (groups of) input variables to the variability of the output. In practice, 

it involves the estimation of conditional variance in accordance with the classic formulation of Sobol’ indices. In 

the simple binning approach, the estimation of indices is implemented by binning the  Xi, computing the averages 

of Y in each bin of  Xi, taking the variance of those averages, and scaling this conditional variance by dividing by 

the overall variance of the output. 

𝑆𝑋𝑖
=

𝑉𝑎𝑟(𝔼(𝑌|𝑋𝑖))

𝑉𝑎𝑟(𝑌)
  (2) 

Furthermore, in the subsequent analysis, the individual (first-order) and pair-wise (second-order) effects of input 

variables are amalgamated to produce a combined, or closed, sensitivity index for each variable. The detailed 

procedure and tests of its performance are presented in Kozlova et al. (2025).  However, identifying which specific 

variables are important represents only a partial exposition of the underlying impacts. It has been shown that input 

variables, and most especially interactions from their combinations, can produce intricate effects of different 

shapes on the output variable. The nature of the shapes of these relationships critically influences the insights for 

decision-making (Kozlova et al. 2024c). A rare visualization pattern can reveal clear insights from 

multidimensional data and SimDec has proven uniquely capable for uncovering such revelations (Kozlova, Lo 

Piano and Yeomans 2024a). SimDec partitions the data into scenarios comprised of combinations of the ranges of 

the most important input variables and then visualizes the decomposed distribution of the output variables as 

stacked histograms, box plots or scatter plots. The input variables for decomposition are ordered by the magnitudes 

of their corresponding sensitivity indices. The most important input variable goes first and its ranges partition the 

output distribution into the most distinct subdistributions. This visualization is further enhanced by the coloring 

procedure, which assigns distinct primary colors to the subdistributions produced from the most important input 

variable, with shadings of these main colors applied to any further variable partitions. The specific scenario 

ordering and coloring procedures in a decomposition are structured to ensure the most meaningful visual outcomes 

(Alam et al. 2023). Initially introduced as a visualization-only procedure (Kozlova, Collan & Luukka 2016; 

Kozlova & Yeomans 2022), SimDec was later transformed into a global sensitivity analysis-based procedure for 

the automatic detection and selection of the most important input variablesComplete details on all algorithms, their 

usage, and resulting interpretation can be found in Kozlova et al. (2024b). 

3.2.4 Cost-Benefit Analysis and Choice of Profitability Indicator 

Multiple methods, including payback period, net present value (NPV), and breakeven production volume, were 

considered for evaluating the investment options of the Hyperion case. The payback period method calculates the 

time required for unit cost savings to recoup the investment. Despite its relative simplicity, this approach hinges 

on assumptions about annual production volume, which can vary across development options and be technically 

constrained. Furthermore, it risks double-counting production volumes already included in unit costs. The major 

drawback is its disregard for the time value of money and any cash flows beyond the breakeven point, thereby 

providing a somewhat incomplete picture of investment profitability (Akintoye 2000; Myers 2003). Conversely, 

Net Present Value (NPV) lays out future cash flows for each development scenario, providing a comprehensive 

assessment by accounting for varying production volumes. Although detailed and robust, NPV requires extensive 

data and effort, which may be challenging given the current dataset's limitations. NPV's strength lies in its ability 

to incorporate the time value of money by discounting future cash flows to their present value. However, its 

reliability depends heavily on the complex task of accurately estimating the discount rate (Brealey et al. 2011; 

Hager et al. 2016). Although the first two methods possess numerous unique strengths and limitations, the 

breakeven production volume was deemed most appropriate to represent the complex context of the case and the 

level of knowledge regarding its financial assumptions. In contrast to NPV (which requires assumptions on the 

discount rate, the production volumes for several years ahead, and the time horizon), breakeven analysis requires 

no additional assumptions (Needles et al. 2011). The breakeven quantity of units simply shows how many units 
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need to be manufactured before the savings from unit cost reduction pay off the initial investment (3) (Garrison et 

al. 2021). 

𝐵𝑟𝑒𝑎𝑘𝑒𝑣𝑒𝑛 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 [𝑢𝑛𝑖𝑡𝑠] =  
𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡 [€]

𝑢𝑛𝑖𝑡 𝑐𝑜𝑠𝑡 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 [€]
  (3) 

This calculation assumes a single product type and presumes that its market price remains unchanged, regardless 

of the material or production method applied. If either the product mix or the selling price shifts because of the 

investment, the breakeven quantity becomes less meaningful as a basis for decision-making. 

Table 2: Development opportunities of the case company. Source: Hyperion Robotics. 

Innovation 

Category 

Development 

opportunity 
Description 

Anticipated Effect 

Price, 

€/ton 

CO2, 

kg/ton 
Comment 

Implementation 

cost 

Material 

Material 1.1 
Baseline material 

v1 
440 173  0 

Material 1.2 
Baseline material 

v2 
-19% -2%  20k 

Material 1.3 
Baseline material 
v3 

-32% -23% - only available with Hardware 1 40k 

Material 2.1 Alternative -23% -61%  30k 

Material 2.2 Alternative -29% -117%  120k 

Material 3 Alternative -2% -70%  30k 

Material 4 Alternative -49% -95%  30k 

Material 5 Alternative +6% -154%  80k 

Material 6.1 Alternative +45% N.A. - only available with Hardware 5 40k 

Material 6.2 Alternative +26% N.A. - only available with Hardware 5 40k 

Material 6.3 Alternative +14% N.A. 
- only available with Hardware 5 

- only available with Hardware 1 
40k 

Hardware 

Hardware 1 Mixer Upgrade 
- Self-compacting concrete to minimum 

- enables cheaper versions of Material 1.3 and 6.3 70-90k 

Hardware 2 End-Effector v1 - minus one robot operator person 50k 

Hardware 3 End-Effector v2 

- Waste mortar/buffer reduced to 10% 

- Halts during the print reduced to 50% 

- Space constraint to 4 units per day 
100k 

Hardware 4 Robot Upgrade - Space constraint to 6 units per day 200-300k 

Hardware 5 Pump Upgrade 

- Pre-print time to 0 

- Printing Halts to 25% 

- Waste mortar/buffer to 10% 

- two persons less 

- Productivity to 100% 

80k-100k 

Hardware 6 Rebar Upgrade 

- Printing Halts to 50% 

- one person less 

- Productivity to 80% 
100k-150k 

Software 

Software 1 Print Speed - Productivity 50% higher 25k 

Software 2 Software Library - Pre-production twice faster 200k 
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3.2.5 Benefits of Using SimDec for Uncertainty Considerations in Cost-Benefit Analysis 

Traditional valuation methods with profitability indicators (including all those considered above) are deterministic 

and overlook uncertainty. The binary decision rule of NPV (invest only if positive) restricts strategic design 

freedom (Trigeorgis 1996). To overcome the determinism of financial modeling, real option valuation methods 

have been introduced to capture uncertainty and recognize the value of flexibility (Mun 2006). However, real 

options still rely on a deterministic threshold, rendering them a binary decision-making framework, also.  

SimDec generates much richer information and actionable decision-making insights in cost-benefit analysis by 

integrating uncertainty analysis directly into global sensitivity analysis (Kozlova et al. 2024c). Manually 

investigating the impact of single development opportunities would require thousands of iterations and result in a 

disorganized process with lost insights. Conversely, SimDec computes importance indices for all possible 

combinations of development opportunities and can guide decision-makers towards the most critical developments 

by effectively visualizing the system relationships. 

4. RESULTS 

This section describes the outcomes of the three-stage analysis approach used to evaluate the unit cost model of 

the case company. The first stage determines which sources of uncertainty or variation most significantly impact 

the unit cost. By employing SimDec on the existing deterministic unit-cost model, we translate the variation of 

input parameters into the variability of the output. This analysis highlights the key drivers of unit cost variability. 

The second stage assesses various development opportunities by updating the model with an on/off checkbox for 

Hardware and Software and a selection list for Materials that codes these effects with specified constraints (see 

Table 2 for constraints). SimDec is utilized to evaluate how these opportunities impact the output. This enables us 

to identify which combinations of upgrades provide the most significant cost reductions and performance 

improvements. The third stage focuses on determining which development opportunities should be implemented 

first based on short-term economic viability. This involves updating the Stage 2 model by incorporating investment 

costs into a cost-benefit analysis. The analysis prioritizes development options and balances long-term benefits 

against initial investment costs in order to identify feasible short-term improvements. 

4.1 Stage 1: Assessing drivers behind the unit cost 

Table 3 presents the variation ranges for the model input variables identified by Hyperion together with their 

corresponding sensitivity indices computed by the simple binning algorithm. 

 

Table 3: Variation in the input variables and their respective effect on the model output. 

Input variable 
Uniform distribution 

Sensitivity index 
min max 

Idle time, h/day 2 5 1% 

Printing productivity of 1 robot, tons/h 2 4 1% 

Productivity of the robotic system 60% 100% 2% 

Material savings - design optimization 25% 75% 75% 

Percentage of printed mortar of total volume 20% 70% 0% 

Material price, €/ton Discrete from Table 2 8% 

Chemical admix, €/pack 25 50 1% 

Waste mortar/buffer 10% 100% 8% 

Self-compacting concrete, €/m3 300 1000 5% 

Steel reinforcement, €/kg 2 5 1% 
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Although, a priori, several model inputs were presumed influential by Hyperion, only Material savings provided 

a significant contribution to the output variability (explaining 75% of the unit cost variation). Material price, Waste 

mortar/buffer, and Self-compacting concrete appear somewhat influential. All of the remaining input variables 

exhibit only negligible influence on the unit cost. Consequently, the visualization is constructed by decomposing 

only on the most significant input, Material savings (Figure 3). The Figure exposes a monotonic relationship in 

which higher material savings naturally produce less expensive units. 

 

 

Color Material savings 

Unit cost, €/unit 

min mean max 

  Low 25-42% 1 349 4 588 8 069 

 Medium 42-58% 1 443 3 444 6 383 

  High 58-75% 975 2 316 6 810 
 

Figure 3: The Decomposition of Unit cost [€/unit] by Material savings explains 75% of the variation and is based 

on the existing unit cost model. 

The SimDec visualization in Figure 3 and the sensitivity indices in Table 3 reveal the fairly simple mechanics 

underlying the model, in which it can be observed that the Unit cost output is monotonically dependent on only 

the single most influential input. 

4.2 Stage 2: Evaluation of development opportunities 

Unit cost cannot be reduced directly by any of the identified input variables, but only through the concurrent 

implementation of certain specific developments. To make this analysis actionable, the set of available 

development opportunities and their corresponding effects on the unit cost drivers (Table 2) have to be integrated 

into the model. However, embedding development opportunities into the model considerably modifies the entire 

logic of the model mechanics. Consequently, a selection tool was built to enable switching different development 

opportunities on-and-off and for selecting a desired material, Figure 4. 

 

  

Figure 4: The selection tool in the spreadsheet environment. 
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The numeric inputs in the model then became functions of these newly-introduced switches. To incorporate these 

changes, several constraints need to be implemented, including: (i) space constraints of printing a maximum of 2 

units per day, which can be lifted by Hardware 3 and Hardware 5; (ii) a constraint on the group of Materials 6 that 

only becomes available with Hardware 5; and (iii) a constraint on cheaper versions of materials, Materials 6.3 and 

Materials 1.3, enabled only by Hardware 1. The total number of unique combinations of the 8 development options 

and 11 materials is 2^8*11 = 2,816 (neglecting constraints). A separate indicator is introduced into the model to 

signify whether each random combination of development options fulfills all of the constraints. The model was 

simulated 10^5 times. Infeasible simulation runs that do not satisfy the constraints (about a quarter of the dataset) 

were filtered from further analysis. The resulting data was used in the SimDec procedure for computing the global 

variance-based sensitivity indices in Table 4 and the follow-up visual decomposition in Figure 5. 

Table 4: Global sensitivity indices computed from the simulation of the upgraded model. 

Input variable Sensitivity index 

Material (all, as aggregate) 21 % 

Hardware 1 3 % 

Hardware 2 1 % 

Hardware 3 17 % 

Hardware 4 1 % 

Hardware 5 54 % 

Hardware 6 3 % 

Software 1 2 % 

Software 2 0 % 

Table 4 shows that only three inputs significantly influence the global solution space when everything changes: 

Hardware 5, Hardware 3, and Material. Figure 5 presents the decomposition of the unit cost by the presence or 

absence of Hardware 3 and Hardware 5 and by Material in Figure 6. 

  

Color 
Hardware 

5 

Hardware 

3 

Unit cost, €/unit 

min mean max 

 
No 

No  1 914   3 106   4 413  

 Yes  1 411   2 247   3 254  

 
Yes 

No  1 133   1 893   2 845  

 Yes  1 133   1 757   2 499  
 

Figure 5: The unit cost is divided between Hardware 5 (54% importance) and Hardware 3 (17% importance) and 

is based on the unit cost model that includes the effects of development opportunities. 

An implementation with Hardware 5 provides the most significant development as it drives the unit cost down 

noticeably under any circumstances (compare cyan color versus magenta in Figure 5). Hardware 3 reveals a more 

heterogeneous effect in that it improves the unit cost noticeably when Hardware 5 is not implemented (light 

magenta subdistribution is shifted to the left compared to dark magenta) but has a less pronounced effect if 

Hardware 5 is already in place (light and dark cyan subdistribution are on top of each other). This outcome can be 

explained by the partially overlapping effects of the two development options. The same distribution of unit cost 
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is then decomposed by Material (Figure 6). Due to the larger number of subdivisions (eleven materials), the 

decomposition is easier to read in boxplot form in comparison to a histogram. The same data, with the same 

decomposition along the same X axis, is presented, with the only difference being that the scenarios (Material 

types) are visualized not as series in a stacked histogram, but as boxes in the boxplot. 

The effect of Material on unit cost is dictated mainly by its price. The cheapest, Material 4, has the lowest unit cost 

(most-left box). This Material also has the lowest emissions, which makes it an attractive option. The group of 

Materials 6.1-6.3 results in lower and narrower subdistributions of unit costs. This happens because they only 

become available with Hardware 5, which drives the unit cost down due to its compound effect. The choice of 

Material, however, also depends on the construction project's and element’s specifications. Thus, choosing which 

Materials to develop depends upon the perceived market for the respective structures. Although SimDec highlights 

the two best development opportunities, observing deterministic scenarios might also prove beneficial for planning 

the order of development projects with resource constraints. Table 5 contrasts the individual effect of each 

development opportunity to the base case where no developments are implemented. 

Table 5: The deterministic effect of development opportunities on unit costs and space use for the base case. 

Development opportunities Unit cost, €/unit Space use, units/day 

Material 1.1, no developments, space constraint two units/day 4277 1.01 

Single development opportunities 

Hardware 1 3845 1.01 

Hardware 2 4087 1.01 

Hardware 3 3179 1.08 

Hardware 4 4277 1.01 

Hardware 5 2295 2.00 

Hardware 6 3665 1.44 

Software 1 3716 1.52 

Software 2 4206 1.06 

Hardware combinations  

Hardware 5 + Hardware 3 1949 4.00 

Hardware 5 + Hardware 4 1851 5.59 

Hardware 5 + Hardware 3 + Hardware 4 1851 5.59 

Compounding with cheaper material 

Hardware 5 + Hardware 3 + Hardware 1 1840 4.00 

Hardware 5 + Hardware 3 + Hardware 1 + Material 1.3 1456 4.00 

Hardware 5 + Hardware 3 + Material 4 1353 4.00 

Compounding with other developments 

Hardware 5 + Hardware 3 + Material 4 + Hardware 6 1353 4.00 

Hardware 5 + Hardware 3 + Material 4 + Software 1 1353 4.00 

Hardware 5 + Hardware 3 + Material 4 + Software 2 1353 4.00 
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Table 5 illustrates the distinctive effect of Hardware 5, which almost halves the unit cost. Moreover, that is the 

only option with a binding space constraint. Thus, implementing development options that enable more space is 

especially relevant to boost the effect of Hardware 5. Only two developments expand the space, Hardware 3 and 

Hardware 4. The combination of Hardware 5 and Hardware 4 provides results that are not as good as those of 

Hardware 5 and Hardware 4 alone. All three together, however, give the same result as [Hardware 5 + Hardware 

4], so implementing both space enlargement developments is not economically viable. The choice between 

Hardware 3 and 4 would depend on how many resources their implementation requires; Hyperion’s preliminary 

estimation suggests that Hardware 4 might be too expensive, thereby favoring the combination [Hardware 5 + 

Hardware 3]. A cheaper Material 1.3 can be enabled with Hardware 1, which brings the unit cost further down, but 

the cheapest Material 4 without any new hardware required improves the unit cost even more. Further, 

compounding the combination of these development options [Hardware 5 + Hardware 3 + Material 4] does not 

affect the unit cost due to the binding space limit. To marginally improve the situation, software developments 

should only be selected if either Hardware 5 development is impossible (or substantially delayed) or if some other 

developments to extend space are available. The possible path of development is illustrated in Figure 7. 

 

Color Material 
Unit cost, €/unit 

min mean max 

  Material 1.1 1 729  2 440  4 277  

  Material 1.2 1 497  2 162  3 855  

  Material 1.3 1 345  1 895  3 147  

  Material 2.1 1 447  2 095  3 764  

  Material 2.2 1 378  2 034  3 639  

  Material 3 1 707  2 410  4 237  

  Material 4 1 133  1 729  3 193  

  Material 5 1 804  2 534  4 413  

  Material 6.1 2 279  2 441  2 845  

  Material 6.2 2 047  2 209  2 613  

  Material 6.3 1 895  2 003  2 243  
 

Figure 6: Decomposition of the unit cost by Material (21% importance). 

 

 

Figure 7: Unit cost under one possible development strategy. 
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4.3 Stage 3: Cost-benefit analysis 

While the unit cost alone provides a good strategic evaluation of the development opportunities, it neglects the 

project’s shorter-term tactical considerations involving the different investment costs. The inclusion of investment 

costs is key to embracing the resource-based view.  The analysis includes the investment cost (Table 3) by 

computing the breakeven quantity of units to be manufactured before the investment cost pays off (see equation 

3). This calculation is added to the model and is repeatedly simulated 105 times with the same input assumptions 

as before. In addition to filtering out the simulation runs that were not fulfilling the constraints, the outliers 

resulting from too low a denominator for equation (1) were also removed. The resulting sensitivity indices show a 

different importance profile in comparison to that of the unit cost (Table 6). 

Table 6: Global sensitivity indices show the importance of development options for the breakeven quantity of units 

(the third column) contrasted with the earlier computed sensitivity indices for the unit cost (the second column). 

Input variable  Sensitivity index for the unit cost (Table 4) Sensitivity index for the breakeven quantity of units 

Material (all, as aggregate) 21 % 12 % 

Hardware 1 3 % 1 % 

Hardware 2 1 % 0 % 

Hardware 3 17 % 9 % 

Hardware 4 1 % 15 % 

Hardware 5 54 % 23 % 

Hardware 6 3 % 2 % 

Software 1 2 % 1 % 

Software 2 0 % 11 % 

Investment cost - 17 % 

Investment costs (essentially the denominator in the computation) play a role in the variability of the breakeven 

quantity (17% importance). Hardware 5 retains its dominant position of influence, although diminished to 23% 

from 54%. Considering its relatively low investment cost (Table 1), this finding can be attributed to its critical 

positive effect in reducing unit costs. Hardware 4 and Software 2 transform their previous negligible indices into 

more influential values for the breakeven quantity of the unit cost (15% and 11%, respectively). This is clearly due 

to the high investment costs that drive the negative effect. The decomposition of these three development 

opportunities is presented in Figure 8. 

 

 

Color 
Hardware 

5 

Hardware 

4 

Software 

2 

Breakeven quantity, 

units 

min mean max 

  

No 

No 
No  -     162   742  

  Yes  151   301   990  

  
Yes 

No  158   339   1000  

  Yes  246   452   1000  

  

Yes 

No 
No  41   141   282  

  Yes  120   228   383  

  
Yes 

No  105   229   410  

  Yes  171   308   519  
 

Figure 8: The breakeven quantity of units needed to pay off the investment costs is decomposed by Hardware 5 

(23% importance), Hardware 4 (15% importance), and Software 2 (11% importance). 
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Figure 8 confirms the positive effect of the Hardware 5 implementation on the breakeven quantity (if implemented, 

fewer units need be produced to pay off the investment, blue scenarios) and the negative effects of Hardware 4 

and Software 2 (with their implementation, the breakeven quantity grows; the lighter shades are shifted to the 

right). These results favor the implementation of Hardware 5 as soon as possible. They also suggest delaying the 

implementation of Hardware 4 and Software 3 until higher production volumes can be achieved to pay off these 

investments faster. Another decomposition can be constructed using only the positively affecting unit costs 

development options. These specific development options are Hardware 5 and Hardware 3, even though the latter 

did not yield a high sensitivity index for the breakeven costs (Figure 9). 

 

 

Color Hardware 5 Hardware 3 
Breakeven quantity, units 

min mean max 

 
No 

No 0  371   1 000  

 Yes 70  256   621  

 
Yes 

No 41  212   458  

 Yes 72  242   519  
 

Figure 9: The breakeven quantity of units to pay off the investment costs decomposed by only the positively 

affecting unit cost development options, Hardware 5 (23% importance) and Hardware 3 (9% importance). 

As with the unit cost, the implementation of Hardware 3 only significantly affects the breakeven quantity if 

implemented when the Hardware 5 is not in place (compare dark red and light red scenarios). If Hardware 5 has 

already been implemented, however, then Hardware 3 does not produce noticeable differences to the breakeven 

quantity (compare dark blue and light blue shades).  The same decomposition logic in Figures 5 and 9 enables a 

contrasting of these two outputs via a scatterplot on a single visualization, Figure 10. 

 

Figure 10: The relationship between the breakeven quantity of units and the unit cost while decomposed by the 

implementation of Hardware 5 and 3. 



 

 

 
ITcon Vol. 31 (2026), Walzer et al., pg. 194 

Figure 10 exposes a clear monotonic relationship between unit cost and breakeven quantity. The scatter plot shows 

only every 100th simulation run to avoid overcrowding. The histograms correspond to the earlier Figures 5 and 9. 

The unique visualization provided by the scatterplot makes the decision-making exercise straightforward, since 

the strategic and tactical indicators do not conflict with each other. Namely, implementing Hardware 5 and 

Hardware 3 provides benefits from both lower unit cost and fast payoff.  The breakeven quantity's Material also 

contributes a smaller, but distinctly visible, role (12% importance). Its decomposition is presented in boxplot form 

in Figure 11.   

 

Color Material 
Breakeven quantity, units 

min mean max 

  Material 1.1  0     276   990  

  Material 1.2  45   244   997  

  Material 1.3  75   229   527  

  Material 2.1  49   237   904  

  Material 2.2  86   268   870  

  Material 3  55   292   997  

  Material 4  28   193   451  

  Material 5  84   338   1 000  

  Material 6.1  84   293   519  

  Material 6.2  73   261   460  

  Material 6.3  95   254   430  
 

Figure 11: Decomposition of the breakeven quantity of units by Material (12% importance). 

When the unit cost of materials is combined with their investment cost to arrive at the breakeven quantity of units, 

much less difference occurs between material types, since the majority of data in each scenario overlaps (boxes 

occupy similar ranges), which also manifests in the lower sensitivity index (12% importance compared to previous 

21%). The exception is Material 4, which combines a moderately low investment cost and the lowest unit cost, 

resulting in the lowest breakeven quantity of units, with the lowest average, below 200 units, compared to other 

materials. Once again, the strategic and tactic advice material-wise is not conflicting, favoring Material 4 for the 

most pronounced unit cost reduction and fast payoff. 

4.4 Key findings 

Material‑saving potential explains 75 % of the variance in unit cost, while the most impactful hardware upgrade 

(Hardware 5) accounts for 54 % (Table 4). From an RBV perspective, the ability to secure cheaper binders is a rare 

and inimitable resource that directly lowers production cost. Hardware 5 halves the mean unit cost and reduces the 

breakeven quantity by 60 % (Figure 10). However, additional upgrades show diminishing returns because their 

effects overlap. 

5. DISCUSSION 

The central phenomenon of this study is the uncertain economic scalability of 3D concrete‑printing (3DCP) 

facilities. Companies that plan to move from a pilot plant to commercial‑scale production must decide which 

hardware, software, or material upgrades to finance while confronting large uncertainties in input costs, labour 

rates, and market demand. The existing literature either presents deterministic unit‑cost models (e.g., 

De Schutter et al. 2018) or focuses on technical performance (Hassan et al. 2024). Consequently, thus far, 

decision‑makers have lacked a tool that (i) quantifies uncertainty, (ii) highlights the most influential levers, and 

(iii) translates these insights into a clear investment‑payoff metric. We address the gap with a three‑stage stochastic 

decision‑support framework that is explicitly linked to the seminal RBV (Barney 1991) and its VRIN extension 

(Wernerfelt 1984). The stages are to: 
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• Identify Sources of Uncertainty in Unit Cost (Stage 1): The existing deterministic spreadsheet model 

was used to identify numerical properties and sources of uncertainty. 

• Determine Beneficial Development Opportunities (Stage 2): The model was updated by embedding 

development opportunities via a selection tool, introducing dynamic elements reflecting potential 

changes. 

• Assess Short-term Economic Viability (Stage 3): Investment costs were integrated into the updated 

model from Stage 2 to conduct a cost-benefit analysis. 

The methodological core, which is a Monte‑Carlo simulation coupled with SimDec (Kozlova et al., 2024), extends 

the prescriptive‑analytics work of Bertsimas & Kallus (2020) and provides a transparent attribution of cost 

reductions to individual levers present in the case study firm.  

5.1 Limitations and future work 

We employed the breakeven production volume method as it is most appropriate for the current level of 

understanding and empirical context. While methods such as NPV and payback period are valid, they would not 

likely provide additional insights to this setting. The selection of the breakeven method reflects the company's size, 

level of development, and personnel expertise rather. Additionally, this study analyzed a single component, which 

does not fully represent the range of variability found in construction or infrastructure projects. Several important 

extensions such as the level of prefabrication, inventory management, and logistics were not included in this study. 

Future research can fine-tune our newly established framework to other case companies to extend its general 

applicability and overall robustness. In future research, there is also a need for increased collaboration between 

academia and industry to ensure that theoretical advancements can be effectively translated into practical tools and 

techniques that can be readily adopted by construction professionals. Furthermore, action research studies could 

potentially close the feedback loop by nurturing theory development in the areas of decision-making and 

knowledge management. Yet, the presented study highlights the synergies that can be achieved by integrating a 

real-world company-dictated problem into state-of-the-art academic developments rooted in simulation 

techniques.  

Since 3DCP technologies promise substantial reductions in waste and carbon emissions (Bos et al. 2016; Le et al. 

2012), integrating environmental considerations into economic analyses is vital for sustainable development. 

However, the current state of CO2 data highlights a gap in our understanding of the full environmental impact of 

3DCP, which must be addressed to fully validate its sustainability claims. Although our study data lacked 

comprehensive Environmental Product Declarations for all materials, recognizing this gap could provoke future 

research. While we assumed informed choices about existing valuation methods, future research could incorporate 

the additional implications of CO2 emissions and circular business models. Understanding the effects of carbon 

taxation and carbon offsets into circular business models could contribute additional valuable insights for 

sustainable development (Geissdoerfer et al. 2018). Such future work would align with the broader environmental 

goals discussed earlier in the paper. Lastly, to increase industry adoption, further considerations of varying 

stakeholder perspectives (see Walzer et al. 2024; Walzer 2025; Wu et al. 2024) and should be integrated into such 

decision-making processes. 

6. CONCLUSIONS 

We demonstrate that a rigorously quantified, resource‑based framework can steer the scaling of 3DCP facilities 

when cost and performance parameters are highly uncertain. Embedding binary development‑opportunity switches 

into a Monte‑Carlo engine and applying variance‑based SimDec reveals that material‑saving strategies explain 

75 % of the output variance, while the hardware upgrade “Hardware 5” accounts for 54 %. When investment costs 

are introduced, Hardware 5 cuts the breakeven production volume by about 60 %, which transforms a costly capital 

outlay into a manageble pay‑back that creates immediate value for the firm. According to the resource‑based view, 

low‑cost, high‑performance binders constitute a valuable, rare, and hard‑to‑imitate resource (Barney 1991) that 

delivers a clear cost advantage. Hardware 5 enlarges the printable footprint and raises deposition speed, thereby 

enhancing the firm’s dynamic capabilities, the ability to reconfigure resources swiftly in response to market signals 

(Teece 1997). Because the stochastic framework quantifies uncertainty, it removes the opacity inherent in 

deterministic spreadsheet models that often leads to sub‑optimal investment choices (De Schutter et al. 2018). 
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We contribute three advances that fill notable gaps in construction‑management research: (i) a methodological 

bridge that links RBV theory with stochastic simulation that addresses the paucity of uncertainty‑aware strategic 

tools; (ii) empirical evidence that quantifying uncertainty reshapes technology‑adoption priorities, responds to 

calls for data‑driven decision support (Tan et al. 2025); and (iii) a lightweight decision‑support prototype that can 

be deployed with modest data to meet industry demand for scalable, low‑cost analytics. 

Future research will (i) test the framework across multiple 3DCP firms to assess external validity, (ii) integrate 

life‑cycle‑assessment data for a combined economic‑environmental perspective, and (iii) connect the model to 

open‑innovation platforms so that firms can share anonymised cost and performance datasets for increased 

generalisation, beyond the scope of a single case company and product.  
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