www.itcon.org - Journal of Information Technology in Construction - ISSN 1874-4753

HOW TO SCALE A 3D CONCRETE PRINTING FACILITY? A
STOCHASTIC DECISION-SUPPORT FRAMEWORK FOR
PRODUCTION INVESTMENT

SUBMITTED: August 2025
PUBLISHED: February 2026
EDITOR: Robert Amor

DOI: 10.36680/j.itcon.2026.008

Alexander N. Walzer, Dr.

Department of Architecture, Design and Civil Engineering, ZHAW Zurich University of Applied Sciences and
Department of Civil, Environmental and Geomatic Engineering, ETH Zurich

walz@zhaw.ch

Mariia Kozlova, Prof. Dr.
Business School, LUT University
mariia.kozlova@lut.fi

Ashish Mohite, Dr.
Hyperion Robotics
ashish@hyperionrobotics.com

Julian S. Yeomans, Prof. Dr.
Schulich School of Business, York University, Toronto
syeomans@schulich.yorku.ca

Daniel M. Hall, Prof. Dr.
Department of Architecture and the Built Environment, TU Delft
d.m.hall@tudelft.nl

SUMMARY: The construction sector faces persistent challenges in scaling emerging technologies such as 3D
Concrete Printing (3DCP), despite their potential to reduce material waste and accelerate build times. This paper
addresses a key barrier to adoption: economic uncertainty in the development and deployment of 3DCP production
systems. Drawing on a case study of a commercial 3DCP facility, we develop a three-stage stochastic decision-
support framework to guide scaling efforts. The first stage quantifies cost uncertainties in hardware, software, and
material systems. The second stage evaluates strategic development pathways under multiple future scenarios.
The third stage integrates investment costs to support full cost-benefit assessments. Anchored in the Resource-
Based View (RBV), our approach identifies how firms can mobilize technological, financial, and human resources
in uncertain environments. Methodologically, we combine Monte Carlo simulations with Simulation
Decomposition (SimDec) to enable multivariate cost-benefit analysis. The result is a practical toolkit for managers
navigating early-stage innovation in construction production. This research contributes to scholarship on
technology adoption, strategic investment under uncertainty, and sustainability transitions in construction.

KEYWORDS: probability distribution, global sensitivity analysis, uncertainty, industrial economics.

REFERENCE: Walzer, A. N., Kozlova, M., Mohite, A., Yeomans, J. S., & Hall D. M. (2026). How to scale a 3D
concrete printing facility? A stochastic decision-support framework for production investment. Journal of
Information Technology in Construction (ITcon), 31, 180-200. https.//doi.org/10.36680/].itcon.2026.008

COPYRIGHT: © 2026 The author(s). This is an open access article distributed under the terms of the Creative
Commons Attribution 4.0 International (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

ITeon Vol. 31 (2026), Walzer et al., pg. 180
BY


https://dx.doi.org/10.36680/j.itcon.2026.008
https://dx.doi.org/10.36680/j.itcon.2026.008
mailto:walz@zhaw.ch
mailto:mariia.kozlova@lut.fi
mailto:ashish@hyperionrobotics.com
mailto:syeomans@schulich.yorku.ca
mailto:d.m.hall@tudelft.nl
https://creativecommons.org/licenses/by/4.0/

1. INTRODUCTION

Three-dimensional concrete printing (3DCP) is rapidly emerging as a potentially green-technology for the
construction sector (Hassan et al. 2024). By depositing cementitious material layer-by-layer, 3DCP can drastically
reduce material waste, shorten build times, and enable highly customised geometries (Hager etal.2016;
De Wolf, Pomponi & Moncaster 2017; Bos et al. 2016). However, both established and early-stage (Startup) firms
have multiple barriers to efficient technology development. They often operate in high-uncertainty environments
(Tan et al. 2025), have limited historical production and project data (Ayyagari, Chen & Garcia de Soto 2023), and
lack structured decision-support tools for such large investment (Taylor & Levitt 2004; Myers 2003; Myers 2016).
In addition to this, varying stakeholder misalignments further hinder industry adoption (Walzer et al. 2024b).

Existing literature has extensively covered the technical and environmental advantages of 3DCP, but has often
overlooked the economic implications and long-term viability (De Schutter et al. 2018). This oversight extends to
integrating 3DCP with advanced construction planning technologies such as Building Information Modeling
(BIM), where decision-support tools that address multi-criteria requirements are established (Tan et al. 2021).
However, specific studies linking these tools with 3DCP practices are sparse, leaving a gap in holistic decision-
support methodologies that accommodate the unique aspects of 3DCP. Previous studies have explored general unit
production costs predominantly from the demand side (Cheng 1991), yet comprehensive cost estimation
frameworks specifically tailored for 3DCP supply remain underdeveloped (Nagatoishi & Fruchter 2023). While
frameworks exist for cost estimation in industrial design products involving economies of scale (Park & Simpson
2005), their applicability to 3DCP has not been empirically validated (Walzer et al. 2024a). Furthermore, existing
models either (i) treat cost deterministically, ignoring the stochastic nature of material prices, labour rates, and
hardware performance, or (ii) lack a strategic lens that connects resource-based capabilities to investment
decisions. Vast literature on uncertainty analysis and strategic decision support provides comprehensive
frameworks for risk analysis, but lacks capability of factoring in a multitude of interlinked decisions due to growing
combinatorial complexity (Hubbard 2020; Savage & Markowitz 2009; Trigeorgis & Reuer 2017). Without such a
framework, firms cannot reliably construct portfolios of development opportunities under said uncertainty.

The pressing question for this study remains: How can emerging firms navigate uncertainties to adopt 3DCP and
enhance their innovative competitiveness in a resource-constrained environment? What type of modeling and
simulation is suitable for this task? And how could these results be effectively communicated so that a 3DCP firm
can make decisions based on them?

This study explores the intersection of 3DCP and strategic construction management to develop a non-
deterministic framework. This framework aims to help firms navigate technological and economic risks while
identifying potential opportunities for growth (Eisenhardt & Martin, 2000; Teece et al., 1997). Consequently, in
this paper, we propose a three-stage stochastic decision-support framework:

e Stage 1: Quantify cost uncertainties in hardware, software, and material subsystems using Monte Carlo
simulation.

e Stage 2: Evaluate development pathways by embedding “on/off” switches for each resource upgrade and
analysing their joint impact with SimDec.

e Stage 3: Conduct a cost-benefit analysis that incorporates investment costs and calculates the breakeven
production volume.

The framework is validated with a real world case study of Hyperion Robotics, a Finnish Startup that manufactures
water-tanks, foundations, and wall elements via 3DCP. The results deliver a practical toolkit for managers to (i)
identify the most influential cost drivers, (ii) prioritize resource upgrades, and (iii) assess economic viability under
uncertainty. We adopt a Resource-Based View (RBV) perspective (Barney 1991; Wernerfelt 1984). The rather
seminal RBV stresses that a firm’s competitive advantage is derived from the value, rarity, inimitability, and
non-substitutability (VRIN) of its tangible and intangible assets. When applied to 3DCP, the RBV suggests that
strategic deployment of hardware, software, and material resources can turn a technologically promising process
into a financially viable production system.
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2. BACKGROUND

2.1 Cost-estimation for emerging construction technologies

Traditional construction cost estimation focuses on whole-project budgets and relies heavily on deterministic
spreadsheets (Akintoye 2000; Ranasinghe 1996). Recent literature shows that such approaches under-represent
uncertainty in component-level costs, especially for novel processes where historical data are scarce
(Dmitrenko et al. 2018). Stochastic methods (Monte Carlo simulation, Bayesian networks, and scenario analysis)
have been proposed for prefabrication and modular construction (Gibb & Isack 2003; Eastman et al. 2011) but have
not yet been applied in the context of 3DCP. Therefore, previous work developed a probabilistic unit-cost modeling
framework for emerging technologies that combined Monte Carlo simulation with Simulation Decomposition
(SimDec) to make cost uncertainty, economies of scale, and key cost drivers transparent (Walzer, Kozlova &
Yeomans 2024, Walzer et al. 2024a). That work focused on clarifying the unit economics of additive
manufacturing in construction on the technology level to help stakeholders understand when and why 3DCP may
become cost-competitive. In contrast, this paper builds on the same analytical foundations to support strategic
decision-making on a firm level: rather than asking “What does this technology cost?”, this study instead assesses
“Which strategic choices matter most, under uncertainty, and through which mechanisms do they shape
outcomes?” The resulting toolkit shifts the emphasis from technology cost assessment to actionable strategy design
under uncertainty.

2.2 Monte Carlo simulation, global sensitivity analysis, and simulation decomposition

Monte Carlo (MC) simulation is a standard approach for analyzing uncertainty in complex models by propagating
probabilistic input assumptions to output distributions (Robert & Casella 2004). It allows decision-makers to move
beyond point estimates and reason about risks, ranges, and likelihoods of outcomes (Mantha et al. 2025). In most
applications, MC analysis focuses primarily on external uncertainty sources, while decision variables are held
fixed to reflect factors outside managerial control that nonetheless shape outcomes (Hubbard 2020; Saltelli et al.
2020; Savage & Markowitz 2009). Global Sensitivity Analysis (GSA) complements MC simulation by quantifying
how much individual inputs and their interactions contribute to the variance of the model output (Saltelli et al.
2008). By decomposing output uncertainty into attributable sources, GSA identifies the dominant drivers of a
model behavior which makes the impacts of uncertainty more transparent. This variance-based perspective enables
prioritization by distinguishing influential uncertainties from those with negligible impact. In this context, the
recently-developed SimDec procedure combines global sensitivity analysis with a visual decomposition of output
distributions (Kozlova & Yeomans 2022) that allows decision-makers to see how groups of inputs jointly shape
outcomes. SimDec extends MC and GSA by decomposing simulated output distributions into interpretable sub-
distributions associated with combinations of influential input states (Kozlova etal.2024c). Through visual
decomposition, SimDec reveals interaction effects, structurally distinct scenarios, and non-obvious dependencies
that are difficult to detect using summary statistics alone. This approach already demonstrated tangible value to
applications in multiple business, environmental, and engineering contexts (Kozlova & Yeomans 2024).
Open-source implementations in Python, R, Matlab, and Julia, together with a no-code web dashboard, make
SimDec readily accessible for practitioners (Roy & Kozlova 2024). Furthermore, uncertainty analysis has
traditionally avoided shifting attention from uncertain parameters to decision variables due to combinatorial
complexity. However, such a shift is essential for strategic analysis when driven by the needs of a case company.
SimDec enables this transition by structuring high-dimensional decision spaces in an interpretable way, making it
possible to analyze how alternative strategic choices perform under uncertainty. This a perspective has rarely been,
if ever, operationalized in prior work on 3DCP.

2.3 Empirical application in 3DCP

In recent years, 3DCP has emerged as a technology stack in both research and practice (Gardan, Hedjazi & Attajer
2025; Lim et al. 2012). Yet, empirical case studies on the unit economics of 3DCP are still limited (Bischof 2022).
Most studies in this nascent field have focused on either technical feasibility (Bos etal. 2016; Le etal. 2012) or
environmental impact (Hager et al. 2016), while only a handful have addressed economic decision-making under
uncertainty (Graseretal. 2023; Walzer 2025). Consequently, a gap exists for a structured, stochastic
decision-support framework that integrates RBV insights with SimDec-based sensitivity analysis for
production-investment planning as described above.
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3. METHODOLOGY

3.1 Case-study design

The integration and development of 3DCP technologies within a construction firm are examined through a single-
case study approach that provides deep, context-rich insights into the complex processes of adopting and adapting
new technologies in a unique organizational setting (Yin 2018; Eisenhardt 1989; Eisenhardt and Graebner 2007).
This methodology focuses on understanding the organizational adaptability and contextual awareness required for
effective technology integration (Hargadon and Douglas 2001; Siggelkow 2007). Case studies are particularly
useful in construction-management research because they comprehensively capture real-world phenomena
operating within their natural context (Taylor et al. 2010). Cases allow researchers to explore the intricacies of
implementation by incorporating both qualitative and quantitative data (Cheng 1991) into robust theoretical
models (Yin 2018). This study adheres to these principles by employing a structured data-collection and analysis
protocol to ensure the robustness of the findings. Through the study of Hyperion Robotics, a Finnish Startup that
manufactures water-tanks, foundations, trenches and wall elements via 3DCP (Figure 2), the research aims to (i)
identify critical factors influencing the integration of 3DCP technologies, and (ii) develop actionable insights that
can inform broader industry practice. Thus, we propose a multi-staged analytical framework (Figure 1).

Unit cost model Il ‘ Resource-Based | | ] | Cost-benefit
oF ode L View = analysis

Hybrid uncertainty-sensitivity analysis method
SimDec

| Strategy Tactics i
| (long-term horizon) | (mid-term horizon) |

Figure 1: The proposed multi-stage analytical framework.

3.2 Empirical context and case description

Hyperion Robotics (Hyperion 2024) was founded in 2019 and has grown rapidly due to public funding and
venture-capital investments that recognise the potential of its sustainable-construction approach. The firm operates
a micro-factory in Espoo, Finland (Figure 2, left) that produces water-tanks, foundations, trenches and wall
elements through 3DCP (Figure 2, right).

Table 1: The three stages of the analysis.

Inputs to hybrid uncertainty-

Stage Question Model sensitivity analysis method
SimDec
1 Which sources of uncertainty/variation Existing deterministic spreadsheet model of Numerical properties of the
drive the unit cost? the case company that computes unit cost. process

. . Updating the existing model by embedding
Which development opportunities . .
2 the effects of the development opportunities Selection tool elements
produce the most benefit? . .
via a selection tool.

Which development opportunities make  Updating the Stage 2 unit cost model with .
. . Investment cost, selection tool
3 sense to implement first from the short- investment costs to conduct a cost-benefit ) .
elements
term economic viability viewpoint? analysis.
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Figure 2: 3DCP Workspace in Espoo, Finland (left) and Infrastructure Foundation Products (right). Image
courtesy of Hyperion Robotics (2022, 2025).

The studied firm presents a compelling case for exploring the development of decision-support mechanisms to
customize 3DCP offerings, aligning them with organizational goals and operational constraints. The decision
problem faced by the company is approached in the three stages outlined in Table 1.

3.2.1 Unit-Cost Modelling

The accurate estimation of component costs is a complex task influenced by a multitude of external and internal
factors, making heuristic methods insufficient (Horngren et al. 2010). External factors such as supply chain
dynamics, commodity price fluctuations, and market demand, along with internal factors including process
stability, prototype testing, and human considerations, contribute to the uncertainty and variability in unit cost
estimates (Chopra and Meindl 2001; Curran et al. 2004). Given this complexity, the model's level of detail needs
to align with the company's stage, processes, and decision-making context. Consequently, we present an empirical
model incorporating actual values from a real-world production project within the case firm. This model includes
basic equations, such as the one depicted below, which outlines the structure of the initial unit cost model.

labor cost+materials cost+consumables cost+equipment cost (1)

Unit cost [€] =

units produced

Equation (1) demonstrates fundamental costing principles. By breaking down the unit cost into its constituent
components, this equation provides a clear initial framework for understanding and managing the various cost
drivers involved in the production process. It also ensures that the model's granularity accurately reflects both
current operational realities and strategic needs.

3.2.2 Modelling of development opportunities

Table 2 categorizes the innovation into three distinct areas: materials, software, and hardware. Each developmental
opportunity is evaluated against a standard baseline consisting of Material 1.1 and the current 3DCP process
baseline to determine outputs such as unit cost. The table presents several prospective opportunities for material
development, including various material combinations that may require specific hardware enhancements. It is
important to note that Environmental Product Declarations for these materials are currently unavailable, as they
have not yet been fully developed or tested. Additionally, the table outlines potential advancements in hardware,
highlighting expected benefits such as increased deposition speeds and reduced interruptions during the printing
process. Finally, the table discusses two software enhancement opportunities and their anticipated effects.

3.2.3 Monte Carlo-based Simulation Decomposition

The method for the model analysis chosen in this study is a hybrid sensitivity-uncertainty approach called
Simulation Decomposition or SimDec (Kozlova et al. 2024¢). SimDec consists of the computation of sensitivity
indices (the global sensitivity analysis component) and a visualization based on a novel decomposition procedure
(the uncertainty analysis element). The rationale behind both components and their algorithmic procedures are
described in this section. Models are only useful for decision-making when their solution space is properly
explored because only then can the combined effect of uncertainties and managerial actions be elucidated upon
(Saltelli et al. 2019). The estimation of the importance of different factors when all the moving parts of the model
are altered simultaneously is the pinnacle of the global sensitivity analysis field. Various families of global
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sensitivity analysis methods have been under active development and evaluation (Pianosi et al. 2016). One of the
most straightforward global sensitivity analysis methods created for computing sensitivity indices is the “simple
binning approach” of Kozlova et al. (2025). Binning methods are computationally efficient and extremely accurate
(Marzban & Lahmer 2016; Kucherenko et al. 2017), and also capable of capturing the impacts from inherent’
dependencies in the input variables, an important feature for the analysis of complex models (Kucherenko et al.
2017; Kozlova et al. 2025). The simple binning approach for sensitivity indices is a variance-based sensitivity
analysis, which estimates the contribution of (groups of) input variables to the variability of the output. In practice,
it involves the estimation of conditional variance in accordance with the classic formulation of Sobol’ indices. In
the simple binning approach, the estimation of indices is implemented by binning the X;, computing the averages
of Y in each bin of X, taking the variance of those averages, and scaling this conditional variance by dividing by
the overall variance of the output.

_ Var(E(Y|X;)) 2
SXi - Var(Y) ( )

Furthermore, in the subsequent analysis, the individual (first-order) and pair-wise (second-order) effects of input
variables are amalgamated to produce a combined, or closed, sensitivity index for each variable. The detailed
procedure and tests of its performance are presented in Kozlova et al. (2025). However, identifying which specific
variables are important represents only a partial exposition of the underlying impacts. It has been shown that input
variables, and most especially interactions from their combinations, can produce intricate effects of different
shapes on the output variable. The nature of the shapes of these relationships critically influences the insights for
decision-making (Kozlova et al. 2024c). A rare visualization pattern can reveal clear insights from
multidimensional data and SimDec has proven uniquely capable for uncovering such revelations (Kozlova, Lo
Piano and Yeomans 2024a). SimDec partitions the data into scenarios comprised of combinations of the ranges of
the most important input variables and then visualizes the decomposed distribution of the output variables as
stacked histograms, box plots or scatter plots. The input variables for decomposition are ordered by the magnitudes
of their corresponding sensitivity indices. The most important input variable goes first and its ranges partition the
output distribution into the most distinct subdistributions. This visualization is further enhanced by the coloring
procedure, which assigns distinct primary colors to the subdistributions produced from the most important input
variable, with shadings of these main colors applied to any further variable partitions. The specific scenario
ordering and coloring procedures in a decomposition are structured to ensure the most meaningful visual outcomes
(Alam et al. 2023). Initially introduced as a visualization-only procedure (Kozlova, Collan & Luukka 2016;
Kozlova & Yeomans 2022), SimDec was later transformed into a global sensitivity analysis-based procedure for
the automatic detection and selection of the most important input variablesComplete details on all algorithms, their
usage, and resulting interpretation can be found in Kozlova et al. (2024b).

3.2.4 Cost-Benefit Analysis and Choice of Profitability Indicator

Multiple methods, including payback period, net present value (NPV), and breakeven production volume, were
considered for evaluating the investment options of the Hyperion case. The payback period method calculates the
time required for unit cost savings to recoup the investment. Despite its relative simplicity, this approach hinges
on assumptions about annual production volume, which can vary across development options and be technically
constrained. Furthermore, it risks double-counting production volumes already included in unit costs. The major
drawback is its disregard for the time value of money and any cash flows beyond the breakeven point, thereby
providing a somewhat incomplete picture of investment profitability (Akintoye 2000; Myers 2003). Conversely,
Net Present Value (NPV) lays out future cash flows for each development scenario, providing a comprehensive
assessment by accounting for varying production volumes. Although detailed and robust, NPV requires extensive
data and effort, which may be challenging given the current dataset's limitations. NPV's strength lies in its ability
to incorporate the time value of money by discounting future cash flows to their present value. However, its
reliability depends heavily on the complex task of accurately estimating the discount rate (Brealey et al. 2011;
Hager et al. 2016). Although the first two methods possess numerous unique strengths and limitations, the
breakeven production volume was deemed most appropriate to represent the complex context of the case and the
level of knowledge regarding its financial assumptions. In contrast to NPV (which requires assumptions on the
discount rate, the production volumes for several years ahead, and the time horizon), breakeven analysis requires
no additional assumptions (Needles et al. 2011). The breakeven quantity of units simply shows how many units
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need to be manufactured before the savings from unit cost reduction pay off the initial investment (3) (Garrison et
al. 2021).

investment cost [€] 3
unit cost reduction [€] ( )

Breakeven quantity [units] =

This calculation assumes a single product type and presumes that its market price remains unchanged, regardless
of the material or production method applied. If either the product mix or the selling price shifts because of the
investment, the breakeven quantity becomes less meaningful as a basis for decision-making.

Table 2: Development opportunities of the case company. Source: Hyperion Robotics.

Anticipated Effect

Innovation Development

Category opportunity Description Price, CO», Comment Implementation
€/ton kg/ton cost
Material 1.1 VBlaselme material 40 173 0
Material 1.2 Zasehne material g0, o 20k
Material 1.3 %‘“hn" material 350, 34 - only available with Hardware 1 40k
Material 2.1 Alternative -23% -61% 30k
Material 2.2 Alternative -29% -117% 120k
Material Material 3 Alternative -2% -70% 30k
Material 4 Alternative -49% -95% 30k
Material 5 Alternative +6% -154% 80k
Material 6.1 Alternative +45%  N.A. - only available with Hardware 5 40k
Material 6.2 Alternative +26%  N.A. - only available with Hardware 5 40k
- only available with Hardware 5
Material 6.3 Alternative +14%  N.A. 40k
- only available with Hardware 1
. - Self-compacting concrete to minimum
Hardware 1 Mixer Upgrade - enables cheaper versions of Material 1.3 and 6.3 70-90k
Hardware 2 End-Effector v1 - minus one robot operator person 50k
- Waste mortar/buffer reduced to 10%
Hardware 3 End-Effector v2 - Halts during the print reduced to 50% 100k
- Space constraint to 4 units per day
i Hardware 4 Robot Upgrade - Space constraint to 6 units per day 200-300k
ardware
- Pre-print time to 0
- Printing Halts to 25%
Hardware 5 Pump Upgrade - Waste mortar/buffer to 10% 80k-100k
- two persons less
- Productivity to 100%
- Printing Halts to 50%
Hardware 6 Rebar Upgrade - one person less 100k-150k
- Productivity to 80%
Software 1 Print Speed - Productivity 50% higher 25k
Software .
Software 2 Software Library - Pre-production twice faster 200k
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3.2.5 Benefits of Using SimDec for Uncertainty Considerations in Cost-Benefit Analysis

Traditional valuation methods with profitability indicators (including all those considered above) are deterministic
and overlook uncertainty. The binary decision rule of NPV (invest only if positive) restricts strategic design
freedom (Trigeorgis 1996). To overcome the determinism of financial modeling, real option valuation methods
have been introduced to capture uncertainty and recognize the value of flexibility (Mun 2006). However, real
options still rely on a deterministic threshold, rendering them a binary decision-making framework, also.

SimDec generates much richer information and actionable decision-making insights in cost-benefit analysis by
integrating uncertainty analysis directly into global sensitivity analysis (Kozlova et al. 2024c). Manually
investigating the impact of single development opportunities would require thousands of iterations and result in a
disorganized process with lost insights. Conversely, SimDec computes importance indices for all possible
combinations of development opportunities and can guide decision-makers towards the most critical developments
by effectively visualizing the system relationships.

4. RESULTS

This section describes the outcomes of the three-stage analysis approach used to evaluate the unit cost model of
the case company. The first stage determines which sources of uncertainty or variation most significantly impact
the unit cost. By employing SimDec on the existing deterministic unit-cost model, we translate the variation of
input parameters into the variability of the output. This analysis highlights the key drivers of unit cost variability.
The second stage assesses various development opportunities by updating the model with an on/off checkbox for
Hardware and Software and a selection list for Materials that codes these effects with specified constraints (see
Table 2 for constraints). SimDec is utilized to evaluate how these opportunities impact the output. This enables us
to identify which combinations of upgrades provide the most significant cost reductions and performance
improvements. The third stage focuses on determining which development opportunities should be implemented
first based on short-term economic viability. This involves updating the Stage 2 model by incorporating investment
costs into a cost-benefit analysis. The analysis prioritizes development options and balances long-term benefits
against initial investment costs in order to identify feasible short-term improvements.

4.1 Stage 1: Assessing drivers behind the unit cost

Table 3 presents the variation ranges for the model input variables identified by Hyperion together with their
corresponding sensitivity indices computed by the simple binning algorithm.

Table 3: Variation in the input variables and their respective effect on the model output.

Uniform distribution

Input variable ] Sensitivity index
min max

Idle time, h/day 2 5 1%
Printing productivity of 1 robot, tons’h 2 4 1%
Productivity of the robotic system 60% 100% 2%
Material savings - design optimization 25% 75% 75%
Percentage of printed mortar of total volume 20% 70% 0%
Material price, €/ton Discrete from Table 2 8%
Chemical admix, €/pack 25 50 1%
‘Waste mortar/buffer 10% 100% 8%
Self-compacting concrete, €/m? 300 1000 5%
Steel reinforcement, €/kg 2 5 1%
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Although, a priori, several model inputs were presumed influential by Hyperion, only Material savings provided
a significant contribution to the output variability (explaining 75% of the unit cost variation). Material price, Waste
mortar/buffer, and Self-compacting concrete appear somewhat influential. All of the remaining input variables
exhibit only negligible influence on the unit cost. Consequently, the visualization is constructed by decomposing
only on the most significant input, Material savings (Figure 3). The Figure exposes a monotonic relationship in
which higher material savings naturally produce less expensive units.

2.5% T T T T T T T T
Unit cost, €/unit
Color Material savings
2% r 1 min mean max
- -Low 25-42% 1349 4588 8069
= 1.5% r b
% Medium 42-58% 1443 3444 6383
Q
<)
0‘: 1% High 58-75% 975 2316 6810
0.5% “
0% ...|I||”
Q Q Q Q Q Q Q Q Q
\) \) Q \) Q \) Q Q Q
SR PSSP

Unit cost, €/unit

Figure 3: The Decomposition of Unit cost [€/unit] by Material savings explains 75% of the variation and is based
on the existing unit cost model.

The SimDec visualization in Figure 3 and the sensitivity indices in Table 3 reveal the fairly simple mechanics
underlying the model, in which it can be observed that the Unit cost output is monotonically dependent on only
the single most influential input.

4.2 Stage 2: Evaluation of development opportunities

Unit cost cannot be reduced directly by any of the identified input variables, but only through the concurrent
implementation of certain specific developments. To make this analysis actionable, the set of available
development opportunities and their corresponding effects on the unit cost drivers (Table 2) have to be integrated
into the model. However, embedding development opportunities into the model considerably modifies the entire
logic of the model mechanics. Consequently, a selection tool was built to enable switching different development
opportunities on-and-off and for selecting a desired material, Figure 4.

(potential)

Material Material 4 *

Hardware Hardware 1
Hardware 2
Hardware 3
Hardware 4
Hardware 5
Hardware 6

Software Software 1
Software 2

OO00/’0800

Figure 4: The selection tool in the spreadsheet environment.
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The numeric inputs in the model then became functions of these newly-introduced switches. To incorporate these
changes, several constraints need to be implemented, including: (i) space constraints of printing a maximum of 2
units per day, which can be lifted by Hardware 3 and Hardware 5; (ii) a constraint on the group of Materials 6 that
only becomes available with Hardware 5; and (iii) a constraint on cheaper versions of materials, Materials 6.3 and
Materials 1.3, enabled only by Hardware 1. The total number of unique combinations of the 8 development options
and 11 materials is 278*11 = 2,816 (neglecting constraints). A separate indicator is introduced into the model to
signify whether each random combination of development options fulfills all of the constraints. The model was
simulated 105 times. Infeasible simulation runs that do not satisfy the constraints (about a quarter of the dataset)
were filtered from further analysis. The resulting data was used in the SimDec procedure for computing the global
variance-based sensitivity indices in Table 4 and the follow-up visual decomposition in Figure 5.

Table 4: Global sensitivity indices computed from the simulation of the upgraded model.

Input variable Sensitivity index
Material (all, as aggregate) 21 %

Hardware 1 3%

Hardware 2 1%

Hardware 3 17 %

Hardware 4 1%

Hardware 5 54 %

Hardware 6 3%

Software 1 2%

Software 2 0%

Table 4 shows that only three inputs significantly influence the global solution space when everything changes:
Hardware 5, Hardware 3, and Material. Figure 5 presents the decomposition of the unit cost by the presence or
absence of Hardware 3 and Hardware 5 and by Material in Figure 6.

3.1%
2.5% 1 Hardware Hardware UPitcost, €/unit
Color
3 min mean max
>
= 19% r
re) ° No 1914 3106 4413
g No
S 13% Yes 1411 2247 3254
- No 1133 1893 2845
0.6% r Ves
Yes 1133 1757 2499

0%
1000 1500 2000 2500 3000 3500 4000 4500
Unit cost, €/unit

Figure 5: The unit cost is divided between Hardware 5 (54% importance) and Hardware 3 (17% importance) and
is based on the unit cost model that includes the effects of development opportunities.

An implementation with Hardware 5 provides the most significant development as it drives the unit cost down
noticeably under any circumstances (compare cyan color versus magenta in Figure 5). Hardware 3 reveals a more
heterogeneous effect in that it improves the unit cost noticeably when Hardware 5 is not implemented (light
magenta subdistribution is shifted to the left compared to dark magenta) but has a less pronounced effect if
Hardware 5 is already in place (light and dark cyan subdistribution are on top of each other). This outcome can be
explained by the partially overlapping effects of the two development options. The same distribution of unit cost
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is then decomposed by Material (Figure 6). Due to the larger number of subdivisions (eleven materials), the
decomposition is easier to read in boxplot form in comparison to a histogram. The same data, with the same
decomposition along the same X axis, is presented, with the only difference being that the scenarios (Material
types) are visualized not as series in a stacked histogram, but as boxes in the boxplot.

The effect of Material on unit cost is dictated mainly by its price. The cheapest, Material 4, has the lowest unit cost
(most-left box). This Material also has the lowest emissions, which makes it an attractive option. The group of
Materials 6.1-6.3 results in lower and narrower subdistributions of unit costs. This happens because they only
become available with Hardware 5, which drives the unit cost down due to its compound effect. The choice of
Material, however, also depends on the construction project's and element’s specifications. Thus, choosing which
Materials to develop depends upon the perceived market for the respective structures. Although SimDec highlights
the two best development opportunities, observing deterministic scenarios might also prove beneficial for planning
the order of development projects with resource constraints. Table 5 contrasts the individual effect of each
development opportunity to the base case where no developments are implemented.

Table 5: The deterministic effect of development opportunities on unit costs and space use for the base case.

Development opportunities Unit cost, €/unit Space use, units/day

Material 1.1, no developments, space constraint two units/day 4277 1.01

Single development opportunities

Hardware 1 3845 1.01
Hardware 2 4087 1.01
Hardware 3 3179 1.08
Hardware 4 4277 1.01
Hardware 5 2295 2.00
Hardware 6 3665 1.44
Software 1 3716 1.52
Software 2 4206 1.06

Hardware combinations

+ Hardware 3 1949 4.00
+ Hardware 4 1851 5.59
+ Hardware 3 + Hardware 4 1851 5.59

Compounding with cheaper material

+ Hardware 1 1840 4.00
+ Hardware 1 + Material 1.3 1456 4.00
+ Material 4 1353 4.00

Compounding with other developments

+ Hardware 6 1353 4.00
+ Software 1 1353 4.00
+ Software 2 1353 4.00
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Table 5 illustrates the distinctive effect of Hardware 5, which almost halves the unit cost. Moreover, that is the
only option with a binding space constraint. Thus, implementing development options that enable more space is
especially relevant to boost the effect of Hardware 5. Only two developments expand the space, Hardware 3 and
Hardware 4. The combination of Hardware 5 and Hardware 4 provides results that are not as good as those of
Hardware 5 and Hardware 4 alone. All three together, however, give the same result as [Hardware 5 + Hardware
4], so implementing both space enlargement developments is not economically viable. The choice between
Hardware 3 and 4 would depend on how many resources their implementation requires; Hyperion’s preliminary
estimation suggests that Hardware 4 might be too expensive, thereby favoring the combination [Hardware 5 +
Hardware 3]. A cheaper Material 1.3 can be enabled with Hardware 1, which brings the unit cost further down, but
the cheapest Material 4 without any new hardware required improves the unit cost even more. Further,
compounding the combination of these development options [Hardware 5 + Hardware 3 + Material 4] does not
affect the unit cost due to the binding space limit. To marginally improve the situation, software developments
should only be selected if either Hardware 5 development is impossible (or substantially delayed) or if some other
developments to extend space are available. The possible path of development is illustrated in Figure 7.

Unit cost, €/unit

Color Material
min mean max

Material 1.1 1729 2 440 4277

—_——
e
-

Material 1.2 1497 2162 3855

§ e

s ]
]

Material 1.3 1345 1 895 3147

Material 2.1 1447 2 095 3764

Material 2.2 1378 2034 3639

Tl

..._< . Material 3 1707 2410 4237

B - Material 4 1133 1729 3193

{B ' Material 5 1804 2534 4413

1000 2000 3000 4000 Material 6.1 2279 2441 2845
Unit cost, €/unit Material 6.2 2047 2209 2613

Material 6.3 1895 2003 2243

Figure 6: Decomposition of the unit cost by Material (21% importance).
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Figure 7: Unit cost under one possible development strategy.
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4.3 Stage 3: Cost-benefit analysis

While the unit cost alone provides a good strategic evaluation of the development opportunities, it neglects the
project’s shorter-term tactical considerations involving the different investment costs. The inclusion of investment
costs is key to embracing the resource-based view. The analysis includes the investment cost (Table 3) by
computing the breakeven quantity of units to be manufactured before the investment cost pays off (see equation
3). This calculation is added to the model and is repeatedly simulated 10° times with the same input assumptions
as before. In addition to filtering out the simulation runs that were not fulfilling the constraints, the outliers
resulting from too low a denominator for equation (1) were also removed. The resulting sensitivity indices show a
different importance profile in comparison to that of the unit cost (Table 6).

Table 6: Global sensitivity indices show the importance of development options for the breakeven quantity of units
(the third column) contrasted with the earlier computed sensitivity indices for the unit cost (the second column).

Input variable Sensitivity index for the unit cost (Table 4)  Sensitivity index for the breakeven quantity of units
Material (all, as aggregate) 21 % 12 %
Hardware 1 3 9% 1%
Hardware 2 1% 0%
Hardware 3 17 % 9%
Hardware 4 1% 15%
Hardware 5 54 % 23 %
Hardware 6 3% 2%
Software 1 2% 1%
Software 2 0% 11 %
Investment cost - 17 %

Investment costs (essentially the denominator in the computation) play a role in the variability of the breakeven
quantity (17% importance). Hardware 5 retains its dominant position of influence, although diminished to 23%
from 54%. Considering its relatively low investment cost (Table 1), this finding can be attributed to its critical
positive effect in reducing unit costs. Hardware 4 and Software 2 transform their previous negligible indices into
more influential values for the breakeven quantity of the unit cost (15% and 11%, respectively). This is clearly due
to the high investment costs that drive the negative effect. The decomposition of these three development
opportunities is presented in Figure 8.

5.1%
44% 1 Breakeven quantity,
Hardware Hardware Software A
3.8% f Color units
5 4 2
o 3.2% min mean  max
% No - 162 742
8 25%r No
o Yes 151 301 990
O 1.9% No
' No 158 339 1000
Yes
1.3% 1 Yes 246 452 1000
0.6% - . No 41 141 282
o
o - o _ Yes 120 228 383
0% | Yes
0 200 400 600 800 1000 No 105 229 410
Breakeven quantity, units . Yes
Yes 171 308 519

Figure 8: The breakeven quantity of units needed to pay off the investment costs is decomposed by Hardware 5
(23% importance), Hardware 4 (15% importance), and Software 2 (11% importance).
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Figure 8 confirms the positive effect of the Hardware 5 implementation on the breakeven quantity (if implemented,
fewer units need be produced to pay off the investment, blue scenarios) and the negative effects of Hardware 4
and Software 2 (with their implementation, the breakeven quantity grows; the lighter shades are shifted to the
right). These results favor the implementation of Hardware 5 as soon as possible. They also suggest delaying the
implementation of Hardware 4 and Software 3 until higher production volumes can be achieved to pay off these
investments faster. Another decomposition can be constructed using only the positively affecting unit costs
development options. These specific development options are Hardware 5 and Hardware 3, even though the latter
did not yield a high sensitivity index for the breakeven costs (Figure 9).

5.1%

4.4% r . .
Breakeven quantity, units

Color Hardware 5 Hardware 3

3.8%

min  mean max
3.2%
2 No 0 371 1000
Qo No
2.5%
g 2o Yes 70 256 621
& 0, |-
1.9% No 41 212 458
o L Yes
1.3% Yes 72 242 519

0.6% [

0%
0 200 400 600 800 1000
Breakeven quantity, units

Figure 9: The breakeven quantity of units to pay off the investment costs decomposed by only the positively
affecting unit cost development options, Hardware 5 (23% importance) and Hardware 3 (9% importance).

As with the unit cost, the implementation of Hardware 3 only significantly affects the breakeven quantity if
implemented when the Hardware 5 is not in place (compare dark red and light red scenarios). If Hardware 5 has
already been implemented, however, then Hardware 3 does not produce noticeable differences to the breakeven
quantity (compare dark blue and light blue shades). The same decomposition logic in Figures 5 and 9 enables a
contrasting of these two outputs via a scatterplot on a single visualization, Figure 10.
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Figure 10: The relationship between the breakeven quantity of units and the unit cost while decomposed by the
implementation of Hardware 5 and 3.

ITcon Vol. 31 (2026), Walzer et al., pg. 193




Figure 10 exposes a clear monotonic relationship between unit cost and breakeven quantity. The scatter plot shows
only every 100th simulation run to avoid overcrowding. The histograms correspond to the earlier Figures 5 and 9.
The unique visualization provided by the scatterplot makes the decision-making exercise straightforward, since
the strategic and tactical indicators do not conflict with each other. Namely, implementing Hardware 5 and
Hardware 3 provides benefits from both lower unit cost and fast payoff. The breakeven quantity's Material also
contributes a smaller, but distinctly visible, role (12% importance). Its decomposition is presented in boxplot form
in Figure 11.

Breakeven quantity, units
Color Material .
| min mean max
fmmsrmememsessmns $ 400 b sosemee &0 smcess o0 -Material 1.1 0 276 990
Material 1.2 45 244 997
’ 2g Material 1.3 75 229 527
-Material 2.1 49 237 904
| o Material 2.2 86 268 870
-Material 3 55 292 997
f -Material 4 28 193 451
i Material 5 84 338 1 000
-Material 6.1 84 293 519
0 500 1000 Material 6.2 73 261 460
Material 6.3 95 254 430

Breakeven quantity, units

Figure 11: Decomposition of the breakeven quantity of units by Material (12% importance).

When the unit cost of materials is combined with their investment cost to arrive at the breakeven quantity of units,
much less difference occurs between material types, since the majority of data in each scenario overlaps (boxes
occupy similar ranges), which also manifests in the lower sensitivity index (12% importance compared to previous
21%). The exception is Material 4, which combines a moderately low investment cost and the lowest unit cost,
resulting in the lowest breakeven quantity of units, with the lowest average, below 200 units, compared to other
materials. Once again, the strategic and tactic advice material-wise is not conflicting, favoring Material 4 for the
most pronounced unit cost reduction and fast payoff.

4.4 Key findings

Material-saving potential explains 75 % of the variance in unit cost, while the most impactful hardware upgrade
(Hardware 5) accounts for 54 % (Table 4). From an RBV perspective, the ability to secure cheaper binders is a rare
and inimitable resource that directly lowers production cost. Hardware 5 halves the mean unit cost and reduces the
breakeven quantity by 60 % (Figure 10). However, additional upgrades show diminishing returns because their
effects overlap.

S. DISCUSSION

The central phenomenon of this study is the uncertain economic scalability of 3D concrete-printing (3DCP)
facilities. Companies that plan to move from a pilot plant to commercial-scale production must decide which
hardware, software, or material upgrades to finance while confronting large uncertainties in input costs, labour
rates, and market demand. The existing literature either presents deterministic unit-cost models (e.g.,
De Schutteretal. 2018) or focuses on technical performance (Hassanetal. 2024). Consequently, thus far,
decision-makers have lacked a tool that (i) quantifies uncertainty, (ii) highlights the most influential levers, and
(ii1) translates these insights into a clear investment-payoff metric. We address the gap with a three-stage stochastic
decision-support framework that is explicitly linked to the seminal RBV (Barney 1991) and its VRIN extension
(Wernerfelt 1984). The stages are to:
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e Identify Sources of Uncertainty in Unit Cost (Stage 1): The existing deterministic spreadsheet model
was used to identify numerical properties and sources of uncertainty.

e Determine Beneficial Development Opportunities (Stage 2): The model was updated by embedding
development opportunities via a selection tool, introducing dynamic elements reflecting potential
changes.

e  Assess Short-term Economic Viability (Stage 3): Investment costs were integrated into the updated
model from Stage 2 to conduct a cost-benefit analysis.

The methodological core, which is a Monte-Carlo simulation coupled with SimDec (Kozlova et al., 2024), extends
the prescriptive-analytics work of Bertsimas & Kallus (2020) and provides a transparent attribution of cost
reductions to individual levers present in the case study firm.

5.1 Limitations and future work

We employed the breakeven production volume method as it is most appropriate for the current level of
understanding and empirical context. While methods such as NPV and payback period are valid, they would not
likely provide additional insights to this setting. The selection of the breakeven method reflects the company's size,
level of development, and personnel expertise rather. Additionally, this study analyzed a single component, which
does not fully represent the range of variability found in construction or infrastructure projects. Several important
extensions such as the level of prefabrication, inventory management, and logistics were not included in this study.
Future research can fine-tune our newly established framework to other case companies to extend its general
applicability and overall robustness. In future research, there is also a need for increased collaboration between
academia and industry to ensure that theoretical advancements can be effectively translated into practical tools and
techniques that can be readily adopted by construction professionals. Furthermore, action research studies could
potentially close the feedback loop by nurturing theory development in the areas of decision-making and
knowledge management. Yet, the presented study highlights the synergies that can be achieved by integrating a
real-world company-dictated problem into state-of-the-art academic developments rooted in simulation
techniques.

Since 3DCP technologies promise substantial reductions in waste and carbon emissions (Bos et al. 2016; Le et al.
2012), integrating environmental considerations into economic analyses is vital for sustainable development.
However, the current state of CO2 data highlights a gap in our understanding of the full environmental impact of
3DCP, which must be addressed to fully validate its sustainability claims. Although our study data lacked
comprehensive Environmental Product Declarations for all materials, recognizing this gap could provoke future
research. While we assumed informed choices about existing valuation methods, future research could incorporate
the additional implications of CO2 emissions and circular business models. Understanding the effects of carbon
taxation and carbon offsets into circular business models could contribute additional valuable insights for
sustainable development (Geissdoerfer et al. 2018). Such future work would align with the broader environmental
goals discussed earlier in the paper. Lastly, to increase industry adoption, further considerations of varying
stakeholder perspectives (see Walzer et al. 2024; Walzer 2025; Wu et al. 2024) and should be integrated into such
decision-making processes.

6. CONCLUSIONS

We demonstrate that a rigorously quantified, resource-based framework can steer the scaling of 3DCP facilities
when cost and performance parameters are highly uncertain. Embedding binary development-opportunity switches
into a Monte-Carlo engine and applying variance-based SimDec reveals that material-saving strategies explain
75 % of the output variance, while the hardware upgrade “Hardware 5 accounts for 54 %. When investment costs
are introduced, Hardware 5 cuts the breakeven production volume by about 60 %, which transforms a costly capital
outlay into a manageble pay-back that creates immediate value for the firm. According to the resource-based view,
low-cost, high-performance binders constitute a valuable, rare, and hard-to-imitate resource (Barney 1991) that
delivers a clear cost advantage. Hardware 5 enlarges the printable footprint and raises deposition speed, thereby
enhancing the firm’s dynamic capabilities, the ability to reconfigure resources swiftly in response to market signals
(Teece 1997). Because the stochastic framework quantifies uncertainty, it removes the opacity inherent in
deterministic spreadsheet models that often leads to sub-optimal investment choices (De Schutter et al. 2018).
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We contribute three advances that fill notable gaps in construction-management research: (i) a methodological
bridge that links RBV theory with stochastic simulation that addresses the paucity of uncertainty-aware strategic
tools; (i) empirical evidence that quantifying uncertainty reshapes technology-adoption priorities, responds to
calls for data-driven decision support (Tan et al. 2025); and (iii) a lightweight decision-support prototype that can
be deployed with modest data to meet industry demand for scalable, low-cost analytics.

Future research will (i) test the framework across multiple 3DCP firms to assess external validity, (ii) integrate
life-cycle-assessment data for a combined economic-environmental perspective, and (iii) connect the model to
open-innovation platforms so that firms can share anonymised cost and performance datasets for increased
generalisation, beyond the scope of a single case company and product.
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