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SUMMARY: As part of Industry 4.0 initiatives, the construction industry is increasingly adopting Digital Twin
(DT) to enhance asset lifecycle management, predictive maintenance, and data-driven decision-making. However,
DT implementation remains fragmented and uneven across lifecycle phases, application domains, and
organisational contexts. This study aims to address these gaps through a comprehensive review of current DT
practices in construction. 4 two-stage systematic literature review, following PRISMA guidelines, was conducted.
The first stage analysed 122 DT review articles to map thematic trends, research focuses, and overlooked areas.
The second stage synthesised 297 empirical studies to examine practical application distribution, technology
integration frameworks, deployment barriers, and mitigation strategies. Current DT research is heavily
concentrated on the operation and maintenance phase, with limited attention to early design or end-of-life
activities. Key challenges include data fragmentation, interoperability issues, high initial costs, limited stakeholder
engagement, and insufficient regulatory and organisational support. A range of technical and institutional
strategies has been identified to address these barriers. Crucially, the study translates these findings into
actionable roadmaps for key stakeholders, offering role-specific strategies to bridge the gap between theory and
practice. This study presents a comprehensive synthesis of over 400 publications from 2019 to 2024, systematically
mapping DT applications across lifecycle stages, categorising key barriers, and evaluating targeted strategies for
each. By identifying critical knowledge gaps and limitations within the current body of DT research, it offers
valuable insights to inform future investigations and support more scalable and integrated implementation in
practice.

KEYWORDS: digital twin (DT), construction industry, life cycle, built environment, systematic review, barriers
and strategies.
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1. INTRODUCTION

Industries are increasingly adopting digital and intelligent technologies to address their complexities with the
advent of Industry 4.0 (Adu-Amankwa et al., 2023). The construction industry is trending towards leveraging the
approach of DTs to manage, plan, predict, and present buildings and infrastructure (Lu et al., 2020). The concept
of Digital Twin (DT), originating from Michael Grieves' presentation on Product Lifecycle Management in 2002,
outlined the basic elements of it: the physical entity, the virtual equivalent, and the bi-directional flow of data
between the two (Grieves and Vickers, 2017). It has evolved and proliferated in a variety of domains, flourishing
not only in product manufacturing and aerospace, but more recently gaining attraction in construction and smart
cities (Boje et al., 2020). Since there is no universally accepted definition of DT, many studies and organisations
have attempted to define it in terms of its characteristics and functions. Schluse and Rossmann (2016) defined DT
as a virtual representation of a real-world subject or object including data, functionality and communication
interfaces, while Madni et al. (2019) described DT as consisting of connected products and a digital thread which
collects data from the physical twin to update the virtual models. In civil engineering, Jiang et al. (2021) defined
DT as an integration of Building Information Modelling (BIM) and the Internet of Things (IoT). Unlike the static,
one-way data flow of BIM, DTs facilitate dynamic, real-time interaction through continuous, bidirectional data
exchange (Tao et al., 2019). Specifically in the built environment, the Centre for Digital Built Britain defined DTs
as “a realistic digital representation of assets, processes or systems in the built or natural environment” (Bolton et
al., 2018) while Opoku ef al. (2022) describe it as a real-time representation of a building or structure that reflects
the state and features of its physical counterpart. Despite field-specific variations, most definitions focus on three
key components: the physical entity, the virtual model, and the data flow between them (Tao et al., 2019).

Given the increasing digitalisation needs of industry, it is evident that DT, with its advanced digital features, offers
significant advantages and application potential (Jiang et al., 2021). Although DT has proven to be a valuable
contributor in construction projects and throughout the lifecycle, the application of DTs in construction is still
underexplored, particularly in the early lifecycle phases (Long et al., 2024). Current research focuses more on
theoretical frameworks than practical deployment (Zhao et al., 2022b, Madubuike et al., 2022) with studies often
limited to specific areas such as heritage facilities (Hou et al., 2024), bridges (Jiménez Rios et al., 2023),
construction safety (Hou et al., 2021), etc. or discussing the relationship between DT and other concepts such as
BIM (Radzi et al., 2024) and blockchain (Adu-Amankwa et al., 2023).

However, despite this rapid growth, the synthesis of existing knowledge remains fragmented. Most existing
reviews focus on specific technologies, application domains or isolated lifecycle phases, often neglecting a holistic
analysis across technical, operational, and strategic dimensions and lack an integrated perspective on how enabling
technologies are effectively operationalised within construction DTs. Furthermore, because existing studies focus
primarily on original research rather than evaluating the review literature itself, their limitations and research gaps
are often unrecognised. This absence of a systematic “review-of-reviews” obscures the broader research landscape,
making it difficult to define targeted directions for future study. To address these gaps, this study introduces a two-
stage research design that distinguishes it from previous single-layer reviews. First, it utilises a “review-of-
reviews” to identify how the field has been framed and to assess what has been well explored or insufficiently
addressed. Second, it synthesises empirical studies to explore the application of DTs in different domains, examine
key barriers, and assess technology integration. Crucially, this synthesis is translated into actionable, stakeholder-
specific strategies aimed at overcoming challenges of DT deployment. This dual approach is essential to move
beyond broad overviews and construct a solid, multi-dimensional roadmap for future research and implementation.

Accordingly, this paper aims to systematically assess the current practice and emerging trends in the development
and implementation of DTs in construction, identify key knowledge gaps, and address the following research
questions (RQs):

RQ1: What key thematic trends emerge from existing DT research in construction?
RQ2: What are the main barriers to the DT implementation and what strategies have been proposed?
RQ3: What enabling technologies are used and how are they integrated into the construction DT ecosystem?

This paper begins with an introduction to the DT concept and the rationale for the study, followed by a two-stage
systematic literature review methodology. The findings are presented in three parts: an overview of the literature
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distribution and keyword co-occurrence networks; an analysis of review articles to identify thematic trends and
research gaps; and a synthesis of empirical studies focusing on application areas, technology integration,
implementation barriers, and mitigation strategies. This is followed by a discussion of key findings, directions for
future research and limitations. The paper concludes with a summary of the research process and results. By
highlighting best practices, challenges, and future trends, this review provides valuable insights for stakeholders
and supports strategic decision-making for the effective adoption of DT in the construction industry.

2. METHODOLOGY AND DATA COLLECTION

This study employed a systematic literature review (SLR) method, conducting comprehensive searches and
reviews of relevant literature within the defined research scope. The SLR method typically follows a rigorous and
explicit procedure (Su et al., 2023) , applying clearly defined search and selection criteria (Hou et al., 2024). The
review was conducted in three main phases: planning, implementation and literature synthesis.

2.1 Stagel: Planning

The process began with the formulation of clear research questions and objectives, aligned with the PRISMA
(Preferred Reporting Items for Systematic Reviews and Meta-Analyses) framework. As outlined in the
introduction, this study aims to evaluate the current status and future trends of DTs in the construction industry.
Specifically, the review addresses three core research objectives:

(1) to identify thematic trends in existing DT research in construction.

(2) to explore a comprehensive framework and roadmap for enabling DT technologies and their integration,
and

(3) to examine the main barriers to DT implementation and related solutions.

These objectives informed the design of the review protocol, inclusion and exclusion criteria, and synthesis
framework. The databases Scopus, the Web of Science and ScienceDirect were chosen for the initial search of the
literature due to their extensive coverage of construction research (Naderi and Shojaei, 2023, Opoku et al., 2021,
Deng et al., 2021). To ensure a broad and inclusive search, keywords were extended to cover related terms such as
“built environment”, “AEC”, “building” and “infrastructure”. The final search string was:

(“digital twin”) AND (“construction” OR “AEC” OR “built environment” OR “building” OR “infrastructure”).

The search was limited to English-language journal articles published up to the end of 2024, to ensure quality,
consistency, and relevance for comparative analysis.

Inclusion criteria were applied to studies that: Explicitly focused on DTs within the construction industry;
Presented empirical findings, theoretical frameworks, or structured reviews.

Exclusion criteria included studies that: Did not engage directly with DTs; Were outside the construction or built
environment domains; Mentioned DTs only as a future research direction without substantial focus.

2.2 Stage 2: Implementation

The defined search strategy was applied to the three databases. The initial search retrieved 3292 articles from
Scopus, 2892 from Web of Science, and 994 from ScienceDirect. After removing 3076 duplicates, 4102 articles
remained for screening.

The initial screening of titles, abstracts, and keywords reduced the corpus to 859 articles for full-text assessment.
Subsequently, a detailed full-text review against the inclusion and exclusion criteria yielded a final dataset of 419
articles for synthesis. The full review workflow is illustrated in Figure 1.

2.3 Stage 3: Synthesis

The final pool of articles underwent a qualitative content analysis. Key bibliographic and thematic data were
extracted and coded to facilitate thematic clustering. This process enabled a structured synthesis of research trends,
application areas, technology integration pathways, implementation challenges, and proposed solutions. The
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findings directly address the research objectives and provide a critical knowledge base to inform future research
directions and practical DT deployment in construction.
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Figure 1: The systematic literature review process workflow.
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3. RESULTS AND FINDINGS

3.1 Overview of selected samples

A total of 419 relevant articles from 135 international journals were included in the final dataset. Table 1 presents
the distribution of articles among journals with five or more publications, distinguishing between research and
review articles. Although these 22 journals represent only 16.3% of all sources, they account for 278 articles
(66.3% of the total dataset), highlighting their centrality in shaping the DT research landscape in construction.

The most prolific outlets were Buildings and Automation in Construction, contributing 10.7% and 10.5% of the
total publications respectively. Together, they make up over one-fifth of the entire dataset, highlighting their
dominant influence. A second tier includes Sustainability (5.0%), Journal of Building Engineering (4.3%), and
Applied Sciences (4.1%), reflecting the interdisciplinary scope and applicability of DT. Notably, journals such as
Buildings and Automation in Construction show a balanced mix of research and review articles, supporting both
empirical inquiry and knowledge synthesis. Others, including Engineering, Construction and Architectural
Management and Journal of Information Technology in Construction, lean more towards review articles, indicating
a focus on conceptual exploration. In contrast, technically oriented journals such as Tunnelling and Underground
Space Technology and Building and Environment predominantly published original research, highlighting their
emphasis on applied studies and implementation

Figure 2 shows the annual distribution of reviewed articles from 2019 to 2024, segmented into original research
and review articles. The total number of publications has increased significantly over the past six years, reflecting
the rapidly growing interest in research on DTs in the field of construction. In 2019-2020, at an early stage of
concept development, a limited number of publications were published, mainly research articles. In 2021-2022,
the number of publications increased significantly, both articles and reviews. The growth rate slowed slightly in
2023, but the largest increase was in 2024, with a total of 179 articles (114 research articles and 65 reviews). This
trend points to both sustained interest in empirical research and an increasing demand for integrative reviews that
consolidate existing knowledge and guide future developments.

(<o), ITeon Vol. 31 (2026), Wang et al., pg. 152



Table 1: Journal source and type distribution.

Rank Journal Name Count Proportion Article Review
1 Buildings 45 10.7% 26 19
2 Automation in Construction 44 10.5% 30 14
3 Sustainability 21 5.0% 13 8
4 Journal of Building Engineering 18 4.3% 12 6
5 Applied Sciences 17 4.1% 14 3
6 Sensors 13 3.1% 12 1
7 Frontiers in Built Environment 10 2.4% 9 1
8 Advanced Engineering Informatics 10 2.4% 7 3
9 Energies 9 2.1% 6 3
10 Energy and Buildings 9 2.1% 8 1
11 IEEE Access 9 2.1% 7 2
12 Engineering, Construction and Architectural Management 9 2.1% 4 5
13 Advances in Civil Engineering 8 1.9% 7 1
14 Smart and Sustainable Built Environment 8 1.9% 4 4
15 Journal of Information Technology in Construction 7 1.7% 2 5
16 Tunnelling and Underground Space Technology 7 1.7% 7 0
17 Building and Environment 6 1.4% 6 0
18 Journal of Computing in Civil Engineering 6 1.4% 6 0
19 Structure and Infrastructure Engineering 6 1.4% 6 0
20 International Journal of Construction Management 6 1.4% 5 1
21 Developments in the Built Environment 5 1.2% 4 1
22 Sustainable Cities and Society 5 1.2% 3 2
Total 278 66.3% 198 80

3.1.1 Keywords Co-occurrence Network

To explore the thematic structure of DT research in construction, a keyword co-occurrence analysis was conducted
using VOSviewer. Author keywords were selected over index terms as they better capture the core focus of the
articles (Opoku et al., 2021). Synonyms such as “digital twin”, “DT”, and “digital twins”, as well as variations of
“BIM” and “IoT”, were merged for analytical consistency.

Finally, out of a total of 1159 keywords, 42 keywords with a frequency of five or more occurrences were identified
and formed eight clusters. Figure 3 presents the co-occurrence network, with node size indicating keyword
frequency and proximity reflecting thematic correlation (Hosamo et al., 2022).

Figure 4 shows the corresponding cluster dendrogram. Cluster 1 illustrates the DT lifecycle, with a focus on
infrastructure applications such as bridges. It includes sensor-based data acquisition, point cloud modelling,
simulation, and structural health monitoring (SHM). This cluster overlaps with Cluster 2, which incorporates
machine learning (ML), reflecting the integration of real-time data with predictive analytics for intelligent asset
management. Clusters 2, 3, and 7 centre on core DT functions, including construction management, facility
management, smart buildings, and intelligent construction. Cluster 4 highlights advanced digital integrations such
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as deep learning, Al, and blockchain, indicating an increasing emphasis on automation, diagnostics, and data
security. Cluster 6 reflects the link between DT and sustainability, including operational carbon reduction and
energy efficiency, where simulation tools are used to enhance building performance and support low-carbon
transitions. Clusters 5 and 3 capture conceptual development and implementation challenges, including theory
building, framework development, and assessments of industry readiness.
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Figure 2: Annual distribution of the reviewed articles.
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Figure 3: Keyword co-occurrence network.

(cc) W ITeon Vol. 31 (2026), Wang et al., pg. 154

BY



Q)
&
@ .
% o |2 2° a\““"“a
S “2'. \ﬂe“‘
Vi % O St
°! 23 = e
% @
Framg, ® & -
Wo,.k (@) se\'\S
Constryes:
Uction j, g jon
N industr, l ©® Cluste simulatio
Barriers/ challenges . & ‘ Structutal health mointor
'~
5
~
it ~
smart cities "g ' Asset ""a"agemem
o 8
nos . ity
g ot W %, "omey,;
(e %, Tic g,
\nte S 5 alysis
4 0,
a(“‘“g I @ ‘ s,
e@‘e g ”’egr
M 0.,
o O Yo,
o ® i,
\o¥ %
@ " . % @
<~ %
< @ e, ™
@ o %, Yoy,
N S %, (N
O RS % e
S S o % %
(g o o 2 "
¥ & $ g Z % %,
& s 3 S ) 2%
) v 5 @» 0, -3 Sy,
¢ g K A e %
$ 5 S £ Z ©
& g S 2 £ . %,
& Q? T 13 = >, £
£ & @ K o
IS %
o ] ] 2
S 5 3] 3
2 3 3 e
£
a
<
@
2
>
(8]

juswabeuew uoRONIISUOD

Figure 4: Keyword cluster dendrogram.

Overall, the co-occurrence analysis reveals a technically robust and thematically expanding research landscape.

DT research in construction is evolving beyond foundational technologies such as BIM and IoT, toward intelligent
systems, data-driven decision-making, and sustainable asset development.

3.2 Synthesis of rview papers

Table 2 presents a summary of review papers on DTs according to both lifecycle phases and application domains.
The lifecycle phases are categorised into Construction, Operation and Maintenance (O&M), and Cross lifecycle.

The application domains include Facilities management (FM), Building, Cultural heritage, Infrastructure, Urban
Digital Twins (UDTs)/Smart cities, and Broad conceptual and industry-wide studies.

From a lifecycle perspective, most review studies (90 out of 122) take a cross-lifecycle approach, highlighting
overarching frameworks and integrated DT applications that span multiple phases. The O&M phase is the next

most frequently addressed, while construction-focused reviews are comparatively fewer, and the design phase
remains substantially underexplored. Despite advancements

in lifecycle integration, current reviews
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predominantly emphasise theoretical contributions rather than phase-specific implementation strategies. In terms
of domains, the most substantial group of reviews was broad conceptual studies. This is followed by reviews
focusing on infrastructure and buildings, reflecting current DT adoption trends. Conversely, domains such as
cultural heritage, FM, and UDTs remain relatively underrepresented in the literature.

Table 2: Research domains and life cycle distribution for review papers.

Phase
Domain Construction Oo&M Cross lifecycle Total
FM 0 0 2 2
Building 1 12 8 21
Cultural heritage 0 2 2 4
Infrastructure 1 5 22 28
UDTs / smart cities 0 0 5 5
Broad conceptual and industry-wide studies* 6 5 51 62
Total 8 24 90 122

* This category includes studies that address DTs at a broad or conceptual level within the domain such as the
Construction Industry; Civil Engineering; Built Environment; Architecture, Engineering and Construction (AEC),
and Architecture, Engineering, Construction, and Operations (AECO).

Lifecycle-oriented

Construction

Oo&M

Cross lifecycle
The entire lifecycle

Domain-specific

Buildings
Infrastructure

Cultural heritage

Urban systems

Digital Twin

Reviews
DT applications

loT, BIM

Modelling technologies
Emerging technologies

Technology-driven

Figure 5: Dimension matrix for review papers.

Enabling technologies
Conceptual frameworks
Barriers and drivers

Thematic

Combining both dimensions, cross-lifecycle research dominates, particularly in infrastructure and conceptual
studies, highlighting a system-level focus over phase-specific detail. In contrast, building-related reviews
emphasise O&M, aligning with asset management needs. Construction-phase reviews remain limited, likely due

to the ongoing challenges in DT integration during early project stages.
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Overall, existing review literature can be grouped into four main categories, as illustrated in Figure 5:
(1) Life-cycle oriented studies that examine DT across construction, O&M, or the entire asset lifecycle.

(2) Domain specific reviews that target particular sectors such as buildings (Lauria and Azzalin, 2024b),
infrastructure (Lampropoulos et al., 2024) or urban systems (Therias and Rafiee, 2023);

(3) Technology driven studies that focus on the enabling technologies (Tuhaise et al., 2023, Yan et al., 2025) and
frameworks (Mousavi et al., 2024) that support DT development; and

(4) Thematic studies that span applications, enabling technologies, conceptual frameworks, barriers and drivers,
and emerging research trends.

Technological analyses in the literature primarily emphasise BIM (Nguyen and Adhikari, 2023) and IoT (Siccardi
and Villa, 2023), with significantly less attention given to AI, ML, blockchain, and other digital technologies,
despite their increasing importance in recent DT systems.

Despite the growing literature, key gaps remain. There is limited systematic analysis of barriers to DT adoption
and few strategies for overcoming them. While emerging technologies are acknowledged, in-depth studies on their
deployment and integration, particularly Al, blockchain, and the semantic web are scarce. Additionally, there is no
comprehensive review on evaluating DT success. Performance metrics and validation methods are either missing
or fragmented. This highlights a maturing but still fragmented field, where conceptual clarity is improving, but
practical and evaluative research is lacking. Bridging these gaps is crucial for moving DTs toward scalable
implementation in construction.

3.3 Synthesis of research articles

Current DT research in construction is highly multidimensional, with broad, intersecting topics. To address core
research questions, this section provides a critical analysis along four dimensions: (1) distribution of DT
applications across lifecycle phases and domains; (2) integrated technology frameworks from data collection to
decision-making; (3) key barriers to industry adoption; and (4) a multidimensional strategy matrix for response.

3.3.1 DT applications distribution across domains and lifecycle
Table 3 classifies 297 DT-related articles by lifecycle phases and domains.

Among all domains, infrastructure has attracted the widest academic attention (n = 94) with a strong focus on the
O&M phase (n = 59) where DTs enable risk management and decision support. Given the great importance of
infrastructure safety, the DT function in existing studies focuses on two core activities: (1) inspection and
monitoring, which significantly reduces operational costs and safety risks by improving safety management
effectiveness and automating inspections to replace high-risk manual work; and (2) decision response, through the
fusion and analysis of data from multiple sources, to provide data-driven support for decision-making, predictive
maintenance and performance optimisation. DTs integrate emerging wireless communication technologies,
predictive maintenance approaches, 10T, structural reliability analysis, and other advanced tools to enhance the
understanding of structural behaviour and integrity, thereby enabling real-time monitoring of the behavioural
evolution of infrastructure assets (Futai et al., 2022). Feng et al. (2024a) developed an integrated DT model
including both the physical components and operational processes of a pump station, achieving a 100% automatic
detection rate in case studies and realising cost savings of 2.25 million RMB (approximately US$310,000). Hagen
and Andersen (2024) proposed the integration of DT with ML to improve the detection and diagnosis of bridge
damage, while Heng et al. (2024) incorporated predictive models, monitoring data, and detection outcomes into
DTs to support proactive and sustainable maintenance of ageing infrastructure and to optimise resource allocation.
In the construction phase, DT is mainly applied to dynamic control of construction quality, process optimisation
and real-time risk monitoring. The DT model delivers real-time feedback on over-excavation and under-excavation
data during tunnel construction, facilitating accurate assessment of geotechnical conditions and enabling dual
control of construction quality and cost (Fang et al., 2024). DT has demonstrated considerable value in the safety
management of tunnel construction. It was confirmed that DT systems can detect tunnel deformation and generate
early warnings alongside responsive action plans (Feng et al., 2024b). Zhao et al. (2022a) reported that the
prediction accuracy of settlement values using DT meets the requirements for dynamic safety assessment. Building
on this, He et al. (2024) enhanced the accuracy and reliability of water inrush disaster simulations by integrating
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ML with finite element analysis. In a case study, Ye et al. (2023) developed an intelligent early warning platform
based on multi-source information, which successfully predicted a collapse at the tunnel excavation face and
safeguarded construction personnel through timely emergency intervention. However, research in the planning and
design phases is still limited, with existing results focusing on improving design efficiency and accuracy. By
creating highly detailed 3D models, DTs can provide stakeholders with a comprehensive visual representation,
which can contribute to better understanding and communication between stakeholders (Li et al., 2023). While
technologies like BIM already support these capabilities, DTs go further by integrating real-time data and advanced
analytics, making them powerful decision-making tools. DT provides effective decision support for the design
process of complex infrastructure engineering systems by quantitatively and conveniently predicting and managing

design changes (Chen and Whyte, 2022).

Table 3: Research domains and lifecycle distribution of research articles.

Phase Design &  Construction Oo&M The entire
. Planning lifecycle/not
Field limited
Building 2 8 60 15
(n=285)
Building  energy  Decision analysis. FM: sensing and monitoring; fault Sustainability
efficiency analysis. . detection and diagnosis; damage assessment.
Site safety management. detection; early warning; SHM. o
Energy . . Building
consumption. Construction project Energy: energy consumption  environment
performance. monitoring, predictions and efficiency  monitoring.
; ; optimisation.
Construction site management. P Energy
Information pipelines. Occupancy: monitoring, visualising, performance.
assessment; human-building
interactions; space management. FM.
Emergency and safety: fire protection Embodied
or emergency; danger warning and car'bon.
positioning; seismic behaviour ~ Cstimation.
monitoring and post-earthquake safety g buildings.
prediction.
Smart buildings.
Predictive maintenance.
Carbon emissions control & reduction.
Building performance.
Renovation:  renovation  strategies
assessment.
Model upgrade: in situ model fusion;
enriching geometric digital twins.
Building collapse accident
investigation.
Construction 0 15 0 5
project )
Construction management: Accountable
(n=20) optimise the process; safety information
management. sharing in
. projects.
Automated construction. Progress
monitoring. Decision
. . support.
Moldqlar 1ntegratef1 cc_)nstructlon. Maturity
real-time monitoring and measurement.

dynamic control; supply chain
management.

e
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Phase Design &  Construction O&M The entire
Planning lifecycle/not
Field .
limited
Prefabricated construction: Optimal
intelligent safety risk prediction. construction
. project
Smart construction. management:
Robotic construction. performance
management;
project data
categorisation.
Construction 0 20 0 0
site (n = 20)
Tower cranes: Predicting
degraded lifting capacity;
Stability analysis.
On-site  assembly: real-time
synchronisation for planning,
scheduling, and execution
Quality assessment/error control.
Safety  risk  analysis/threat
assessment.
Construction efficiency: cable
structure demolition
optimisation.
Collaborative human-robot.
Construction management.
Structure & 1 5 2 0
materials
n=8) Quality control  Construction material:  Crack monitoring (concrete).
(precast concrete  construction material provenance
elements). tracing and tracking. Structural performance and damage
prediction (earthquake-affected
Construction element: remote  pinched structures).
real-time concrete compressive
strength monitoring.
Continuous monitoring of
temperature & humidity in
construction elements.
Structural safety analysis:
intelligent  safety  assessment
method of prestressed steel
structures.
Cultural 0 0 19 0
heritage
(n=19) Predictive maintenance.
Preventive maintenance.
SHM: structural stress analysis;
structural integrity after earthquake
(cracks).
Indoor environment: IAQ; humidity;
temperature.
Risk/threat detection.
3 14 59 18

e
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Phase Design &  Construction O&M The entire
. Planning lifecycle/not
Field limited
Infrastructure (n To predict and Safety management & hazard SHM & predictive maintenance. Enhancing
=94) manage design  prevention: health, safety, and decision-
changes. real-time monitoring. Energy and carbon management. making and
management.
Clearance  check Quality assurance & process Safety and emergency management. €
for underpass roads  optimisation: quality control and A ;tomated inspections and asset Sustainability
in road widening precision construction. management. assessment and

design.

Structural performance & risk

risk

o . puet h Data integration and decision support.  management.
Just-in-time design  mitigation: deformation
of rock tunnel: predictionand structural integrity. ~ Performance optimisation. Maintaining
improve efficiency . . . structural
and accuracy. Data integration & operational sustainability.
efficiency: data-driven decision
support. Comprehensive
lifecycle
monitoring and
management.
UDT (n=98) 1 1 4 2
Urban road Urban excavation safety: to Environmental monitoring  Theory
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Similarly, studies related to buildings (n = 85) also exhibit strong attention to the O&M phase (n = 60), with DTs
enhancing facility management, energy efficiency, comfort, and disaster response. By deeply integrating Al and
big data analytics, DT achieves high-precision modelling and real-time mapping of a building's physical state and
drives a fundamental shift from static management to dynamic prediction and intelligent decision-making (Tan et
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al., 2022). Research shows that DT demonstrates significant advantages in thermal comfort control (ElArwady et
al., 2024), energy consumption prediction (Henzel et al., 2022), carbon emissions monitoring (Arsiwala et al.,
2023), predictive maintenance (Hosamo et al., 2023b), structural health assessment (Longman et al., 2023), and
disaster response (Lauria and Azzalin, 2024a). Some case studies have successfully applied it to complex scenarios
like healthcare facilities, using multi-objective optimisation algorithms, ML models, and model predictive control
to effectively enhance the response efficiency and energy performance of building systems (Hosamo et al., 2023a,
Harode et al., 2023). Fewer studies focus explicitly on construction and design phases, indicating that building-
oriented DT research predominantly targets post-construction operational efficiencies and occupant-centred
applications. However, recent research indicates that DT is gradually emerging as one of the key technologies for
intelligent construction of buildings, enabling real-time monitoring and dynamic response to construction progress,
site safety, equipment utilisation, and performance and quality management (Chacon et al., 2024, Posada et al.,
2024, Torres et al., 2024). Lifecycle-spanning studies highlight emerging interests in sustainability assessment
(Boje etal., 2023), embodied carbon estimation (Chen et al., 2021), and integrated smart building systems (Eneyew
et al., 2022).

The domains of construction projects (n = 20) and construction sites (n = 20) mainly target the construction phase,
where DTs' real-time data transmission capabilities shine. Research on construction projects focuses largely on
optimising management processes, modular construction, automated progress monitoring, and intelligent risk
prediction. Similarly, construction-site studies emphasise safety management, equipment monitoring, on-site
assembly optimisation, and collaborative human—robot systems. DTs enable real-time site monitoring, which
supports efficient site management by providing dynamic updates on construction progress (Deng et al., 2021).
Automated site monitoring with DTs improves logistics, progress control, site safety, quality assessment and
management, ultimately reducing long-term costs (Boje et al., 2020). From a management perspective, Jiang et al.
(2022b) utilised the real-time resource status and construction progress information obtained from DT to facilitate
planning, scheduling and execution of construction projects, thereby improving efficiency and productivity. DTs
accurately predict worker behaviours in risky situations (Jiao et al., 2024) and analyse the information collected
through ML, thus effectively contributing to the improvement of construction safety and risk control (Zhao et al.,
2022b). Moreover, some experiments have confirmed that DTs enable human-robot collaboration by integrating
visualisation and supervision of the planning and execution of tasks as well as bi-directional communication, which
greatly improves efficiency (Wang et al., 2021). In contrast, studies focusing on cultural heritage (n = 19) are
entirely oriented towards the O&M, emphasising condition monitoring (Vila-Cha et al., 2023), structural integrity
(Sivori et al., 2023), preventive maintenance (Galiano-Garrigds et al., 2024) and indoor environment control
(Zhang et al., 2023). The exclusive focus on O&M in this domain aligns with the distinctive preservation and risk
mitigation needs associated with heritage assets.

Structures and materials domain (n = 8) displays research activity across multiple lifecycle phases, which typically
address real-time monitoring of the conditions of structures(Liu and Bao, 2023) and materials like concrete (Igbal
etal., 2024), structural safety analysis (Liu et al., 2022), and material tracing (Xu et al., 2023), reflecting an interest
in lifecycle-integrated material and structural performance monitoring. Also, the emerging area of UDTs (n = 8)
shows a relatively balanced distribution across lifecycle phases. Research in this domain addresses diverse issues,
from urban planning and excavation safety to environmental monitoring and stakeholder participation,
demonstrating an integrated and systemic approach at the urban scale (la Riccia et al., 2024, Afif Supianto et al.,
2024).

Finally, extensive conceptual and industry-specific studies (n = 41) mostly adopted a full lifecycle or non-specific
phase perspective (n = 28), covering foundational theoretical issues such as theoretical framework building,
technology readiness assessment (Alnaser et al., 2024), workforce capability development (Hazrat et al., 2023),
and the integration of DT with sustainability strategies like circular economy (Meng et al., 2023). These studies
reflect scholars' shared focus on integrating fragmented knowledge, overcoming adoption barriers, and advancing
the maturity of DT technology.

Overall, current DT research exhibits significant phase-based imbalances: the O&M phase dominates (53%),
construction phase research is relatively scarce (22%), and research on the design and planning phase is severely
lacking (2%). Additionally, Long et al. (2024) highlighted the insufficient research on DT applications in the
demolition phase. DT has the potential to enhance demolition operations by enabling precise planning and
simulation of demolition activities through detailed virtual models, improving safety by identifying and mitigating
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hazards (Borjigin, 2022). It can also assess environmental impacts, promote effective waste management and
resource recovery, and optimise cost and time schedules. In contrast, the number of studies on the entire life cycle
(23%) is relatively substantial, indicating that academia is deepening its understanding of DT from a lifecycle
perspective and in terms of integration. However, future research should focus on DT application in the early and
late phases of the lifecycle to drive the construction sector toward achieving true lifecycle digital asset
management.
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Figure 6: Framework of DT technologies.
3.3.2 DT technology framework

As an evolving concept, DTs face notable technical challenges (Rasheed et al., 2020) with insufficient research on
enabling technologies. Core technologies for data acquisition, modelling, and processing are essential to achieving
DTs' key features. However, supporting technologies that enhance DT performance, such as data integration,
security, and automation, remain underexplored and fragmented.

Therefore, a structured DT technology framework was developed (Figure 6) and organised into six primary
categories: Data Acquisition, Data Integration and Management, Data Security, Simulations and Analytics,
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Modelling and Visualisation, and Automation and Robotics. These categories collectively support the
comprehensive lifecycle management and functionalities of DT systems. The framework differentiates between
two fundamental layers: the Physical layer, comprising real-world assets and environments, and the Digital and
Functional layer, involving digital replicas and analytical functionalities. The Physical layer includes real-time
data acquisition through advanced sensing technologies such as IoT sensors, LIDAR, drones, and Radio Frequency
Identification (RFID) tags (Shi et al., 2024, Chen et al., 2021) as well as other system sources such as BIM and
Building management system (Hosamo et al., 2023b). These instruments facilitate the accurate collection of
geospatial data, environmental parameters, asset information, and operational metrics crucial for maintaining the
fidelity of digital twins.

The Digital Layer begins with data integration and management. Network and hardware infrastructure employing
protocols such as Representational State Transfer Application Programming Interface (RESTful APIs) and
Message Queuing Telemetry Transport (MQTT) ensure seamless data transfer and interoperability across diverse
platforms (Banfi et al., 2022, Gao et al., 2023). Additionally, edge computing and cloud-based integration
platforms (e.g., Azure and Bentley Systems) support real-time processing and storage, maintaining continuous and
effective DT operation (Harode et al., 2023) . Central to the DT framework's security strategy is blockchain
technology, which provides enhanced integrity, transparency, and traceability of the data streams (Figueiredo et
al., 2024, Naderi and Shojaei, 2024). Cybersecurity protocols further ensure secure interactions and compliance
with international standards for authentication and authorisation (Liu et al., 2024).

Simulations and analytics form the analytical core of the Digital layer, where tools such as ANSYS, EnergyPlus,
and SAP2000 (Galiano-Garrigés et al., 2024, Dang et al., 2022), coupled with ML libraries such as TensorFlow
and PyTorch (Tan et al., 2022, Peng et al., 2020), enable predictive analysis, scenario testing, and informed
decision-making. These computational tools offer extensive analytical capacity, underpinning proactive asset
management and operational optimisation. Furthermore, modelling and visualisation technologies including BIM
and 3D Finite element models, augmented reality (Microsoft HoloLens), virtual reality platforms (Unity 3D,
Unreal Engine), and business intelligence dashboards (Power BI, Tableau), facilitate intuitive user interactions
(Futai et al., 2022, Asare et al., 2024, El Mokhtari et al., 2022, Harode et al., 2023). They provide visually rich and
interactive environments, enabling stakeholders to explore, interpret, and manage the physical assets effectively.

Lastly, the Automation and Robotics category addresses the integration of Al-driven autonomous systems, such as
robotic inspection platforms, remote-controlled machinery, and collaborative human-robot operations (Gao et al.,
2023, Ye et al., 2022). These technologies enhance operational efficiency, precision, and safety across construction,
maintenance, and facility management tasks.

In sum, the framework provides a holistic and layered view of DT technologies, linking physical assets to digital
intelligence and enabling data-driven decision-making across the built environment lifecycle.

3.3.3 Barriers and challenges for DT implementation

Despite the transformative potential of DT in construction, adoption remains limited due to a complex set of
barriers. Table 4 categorises 26 identified barriers into four key domains: technological, organisational, industry
and market, and regulatory. Ranked by frequency in the literature, these barriers reveal the multi-dimensional
challenges constraining DT implementation.

Technological challenges were the most frequently cited category across the reviewed articles. A recurring issue
involves sensor installations and the volume of data generated by advanced sensing networks, which place
significant strain on existing digital infrastructures (Adeagbo et al., 2024). Massive data processing reduces system
agility and operational efficiency, triggering huge computing demands (Piras et al., 2024). Agostinelli et al. (2021)
reported that network capacity, device battery life, and maintenance costs often make real-time monitoring systems
impractical, particularly in projects with complex site conditions. Moreover, the potential heterogeneity of DT
architectures due to a lack of unified design, tools, approaches and platforms introduces further complexity
(Adeagbo et al., 2024). This heterogencity, combined with disparate information systems, results in data
fragmentation which remains a critical challenge. Without a shared framework and detailed maintenance procedure
for ensuring data integrity and synchronisation, the value and quality of data updated in DTs is compromised
(Mahmoodian et al., 2022). Additionally, data privacy and security concerns persist, especially in critical
infrastructure or sensitive information (Piras et al., 2024, Xiao et al., 2024).
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Organisational barriers primarily originate from cultures and strategies resistant to change and a lack of strategic
vision among practitioners and decision-makers (Agrawal et al., 2022). Literature highlights the difficulty many
organisations face in making suitable decisions and investments regarding enabling technologies, particularly
where the benefits of DTs are not well understood. In several studies, lack of structured project pathways was
identified as a critical barrier, leading to uncertainty around how to initiate or scale DT implementations (Agrawal
et al., 2022, Yang and Ng, 2024). The absence of clear value propositions also featured prominently in findings.
Without demonstrable application cases or benchmarks, stakeholders are hesitant to commit resources to DT
systems perceived as experimental (Vieira et al., 2024). Skill and knowledge gaps further hinder progress. For
instance, Asare et al. (2024) reported low levels of knowledge on the design and implementation of DT-based
projects, making it difficult to select appropriate platforms and benchmarks.

Table 4: Barriers for DT implementation.

Barrier category Code Sub-barriers Barrier description Frequency
Technological T1 Data integration and Disparate data sources leading to processing and 32
barriers processing complexity integration challenges.
T2 Interoperability issues Incompatibility between DT platforms, legacy systems, or 29
tools.
T3 Technical challenges Practical issues with sensors or IoT devices, platforms, 23
models and hardware deployments.
T4 Difficulty in  real-time Real-time communication is difficult due to lack of 14
communication performance.
TS Computational demand High resource requirements for real-time processing or 8
large-scale simulations.
T6 Cybersecurity, data security —Risks of data breaches, unauthorised access, and 8
and privacy concerns uncertainty over privacy policies. Data security and
privacy issues raise concerns in the areas of intellectual
property, privacy and asset security.
T7 Data  management and Large volumes of data are difficult to collect, store, 5
governance process, and analyse.
T8 Lack of standards and Lack of unified DT development standards, models or 5
frameworks interoperability protocols.
Organisational Ol Resistance to change Cultural inertia or scepticism toward adopting DT 12
factors workflows.
02 Lack of skilled workforce Shortage of personnel trained in DT technologies. 11
03 Cultural barriers and The difficulty for effective collaboration and teamwork 9
collaboration issues among DT practitioners to addressing the variety,
complexity, and scale.
04 Knowledge and awareness  The lack of knowledge and awareness of DT capabilities 5
gaps or implementation among owners and contractors.
05 Resource constraints Limited budget for pilot studies, training and other 3
resources input.
06 Unclear value proposition The absence of clear value propositions for DTs results in 2
weak stakeholder engagement.
o7 Trust and reliability concerns ~ Low confidence in the fidelity of DT outputs and decision 2
support.
Industry and 11 Return uncertainty The return on investment of DT projects and the benefits 8
market are unclear and uncertain.
environment
12 High initial investment and  Significant upfront costs for DT projects. 7
cost concerns
13 Risk aversion and innovation ~ The industry is more cautious about taking risks and 5

resistance

adopting innovation.
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Barrier category Code Sub-barriers Barrier description Frequency

14 Economic pressures Competitive pressures, tight schedules, and minimal 3
profitability hinder investment and changes in
conventional workflows.

15 Fragmentation and structural ~ The sector’s fragmented nature (transient subcontracting 3

rigidity networks) poses a barrier to process innovation.

16 Lack of scalability or Most DT applications are specific-use cases and lack 3

implementation scale scalability, resulting in high costs.

17 Market confusion Software vendors' promotion simplifies the concept of DT 1
into a mere technology or product, which confuses the
market.

Regulatory Rl Policy and government Absence of relevant policies, standards and government 7
constraints support gaps incentives.

R2 Lack of standards and Lack of standards and regulations leads to inconsistencies 5

regulations for DT in implementations.

R3 Data privacy and ethical Ownership, ethical and copyright concerns arise when 3

concerns dealing with the vast amount of data, especially personal
data.

R4 Regulatory and compliance  Uncertainty around approvals, data governance rules, IP 2

issues

ownership and legal processes.

Structural characteristics of the industry increase the challenges above. The sector is widely described as
fragmented, with a generally conservative approach to innovation (Sacks et al., 2020). These conditions create an
ecosystem that is digitally hesitant and often lacks clarity on return on investment, discouraging experimentation
with novel technologies (Pregnolato et al., 2022). High initial costs and uncertainties surrounding long-term
financial benefits remain dominant deterrents (Torres et al., 2024). Moreover, the lack of consistent
communication from technology vendors has resulted in conceptual ambiguity, where terms like DT are interpreted
inconsistently across stakeholders (Camposano et al., 2021). This conceptual misalignment, combined with
practical challenges in procurement, hinders the scaling of DT applications beyond demonstration-level initiatives.
As a result, industry adoption remains slow, often limited to large, innovation-led projects or university-affiliated
demonstrators.

Although less frequently reported, regulatory issues pose long-term risks. Issues of data ownership, ethics, and
intellectual property are particularly problematic in multi-stakeholder, high-volume data environments (Adeagbo
etal., 2024). The absence of supportive policies and legal clarity contributes to compliance uncertainty (Pregnolato
etal., 2022). Additionally, limited government incentives restrict adoption, especially given the substantial initial
investment required (Yang and Ng, 2024).

In sum, DT implementation is hindered by a highly interdependent web of constraints. Technological readiness
alone cannot ensure success without organisational capacity, regulatory clarity, and market confidence. A
coordinated, cross-sectoral response is essential to overcoming these multifaceted challenges.

3.3.4 Multidimensional Strategies for DT Implementation

Table 5 maps the categorised barriers to DT implementation against a comprehensive set of strategies proposed in
the reviewed literature. The strategies fall into four interdependent domains: Technical solutions, Organisational
measures, Industry collaboration, and Policy support. The table offers an integrated framework for overcoming
adoption challenges.

Technical strategies focus on modular and decentralised DT architectures to enhance interoperability and
scalability (Adeagbo et al., 2024, Niccolucci et al., 2022), which mitigates scalability challenges and allows
systems to evolve incrementally across stakeholders and project phases which directly responds to interoperability
concerns (T2) and the heterogeneity of digital platforms (T7). The increasing reliance on real-time data from
distributed environments introduces vulnerabilities in communication architecture. In this context, AI-enhanced
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IoT (AloT) and edge computing architectures (Gao et al., 2023) offer improved resilience by reducing dependency
on centralised processing and enabling real-time decision-making at the network edge, particularly relevant for
barriers related to communication stability and performance (T4, T5). Data governance and privacy, central to
regulatory and technical concerns, are addressed through secure data-sharing mechanisms such as blockchain and
multilevel access control systems (Figueiredo et al., 2024). These solutions enhance trust across DT ecosystem by
establishing clear protocols for ownership, protection, and role-based access, tackling barriers T6 and R3. Efforts
to simplify sensing and modelling technologies are gaining traction as a response to the high complexity and cost
of current DT systems (Kang and Mo, 2024). Lightweight solutions enable real-time data handling without
compromising performance, thus targeting barriers related to hardware complexity (T1), system modelling (T3),
and overall integration difficulty (T7). Simultaneously, the development of user-friendly interfaces (Banfi et al.,
2022) is emerging to reduce technical entry barriers for non-specialist users (02, O4), which often impede wider
adoption.

Table 5: Strategies for DT implementation.

Strategy Strategy Description Addressed  References
category barriers
Technical Modularisation and Breaking down DT systems into modular, TI1,T2,T7 (Adeagbo etal., 2024,
solutions decentralisation of  decentralised units improves scalability, resilience, Niccolucci et al.,
DT systems and adaptability across different project phases and 2022, Teisserenc and
stakeholders. Sepasgozar, 2021)
Development of Utilising blockchain or trusted data-sharing T6,R3 (Figueiredo et al.,
secure data-sharing  frameworks to ensure the secure exchange, 2024, Naderi and
mechanisms ownership control, and privacy of DT data across Shojaei, 2024, Xiao et
multiple systems and stakeholders. al., 2024)
AloT and edge Deploying Al-enhanced IoT and edge computing T4,TS5,T7 (Gao et al, 2023,
computing for architectures minimises reliance on centralised Armijo and Zamora-
communication systems, enabling real-time decision-making even Sanchez, 2024)
resilience under network disruptions.
Lightweight sensing,  Utilizing lightweight sensors and simplified T1,T3,T7 (Kang and Mo, 2024,
modelling and modelling approaches to minimise data complexity, Shlash Mohammad et
analysing optimise system performance, and facilitate real- al.,, 2024, Dan et al.,
time data integration and analysis. 2022)
Multilevel security Implementing hierarchical security protocols T6,R3 (Piras et al., 2024,
and access control ensures that only authorised users can access Shahzad et al., 2022,
specific DT datasets, protecting sensitive data. Ellul et al., 2024)
Development of Developing intuitive DT interfaces that lower the T3,02,04 (Naderi and Shojaei,
user-friendly technical barrier for users, facilitating broader 2024, Banfi et al.,
interfaces adoption among non-specialist stakeholders. 2022)
Organisational Internal training Providing training and skill development O2 (Piras et al., 2024,
measures program for digital opportunities to close digital skill gaps and prepare Broo and Schooling,
skills employees for DT-related tasks and workflows. 2023, Naderi and
Shojaei, 2024)
Fostering a cultureof ~ Promoting an organisational culture of openness, Ol, O3 (Broo and Schooling,
openness and knowledge sharing, and digital innovation that 2023, Piras et al.,
innovation encourages the workforce to learn and experiment 2024)
with DT tasks.
Development and Developing prototypes of alternative DT solutions 03, 04, (Asare etal., 2024)
comparative and presenting detailed comparisons of their 06,07
evaluation of DT advantages and limitations to stakeholders,
prototypes facilitating  informed  decision-making  and

stakeholder confidence in DT implementation.
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Strategy Strategy Description Addressed References
category barriers
Promoting Setting clear and measurable objectives, 03, 04 (Broo and Schooling,
collaborative emphasising transparency and accountability, and 2023, Haraguchi et al.,
governance fostering cooperation between stakeholders during 2024)
DT project.
Industry Establishment of  Establishing industry-wide standards and common T2, T8, I5, (Adeagbo et al., 2024,
collaboration industry-wide protocols for DT implementation. Defining open, 16, R2 Callcut et al., 2021,
standards non-proprietary  standards for data formats, Camposano et al.,
communication protocols, and system interfaces to 2021, Shahzad et al.,
facilitate integration. 2022, Vieira et al.,
2024)
Promotion of non- Encouraging the development and adoption of tools  T1, T2, (Casillo et al., 2024)
proprietary tools and that work across platforms to improve 04,17
ecosystem interoperability and  promote  cross-sector
cooperation cooperation.
Development of DT  Launching pilot DT projects to validate concepts, O1,04,11, (Karatzas et al., 2024,
pilot projects refine designs, and reduce concerns. Documenting 16, 17 Yang and Ng, 2024)
and publishing open DT case studies to provide
relatable, evidence-based examples.
Mapping the  Assessing the expected business value and returnsof 06, 07,11,  (Torres et al., 2024,
business value of DT DT projects early to support strategic decision- 12 Vieira et al., 2024,
making and resource allocation. Yang and Ng, 2024,
Mahmoodian et al.,
2022)
Policy and Development of Developing legal guidelines to address data R2,R3,R4 (Camposano et al.,
regulatory support  regulatory ownership, protection, and sharing issues specific to 2021, Naderi and
frameworks DT deployments. Shojaei, 2024, Ohueri
et al., 2025)
Government support  Providing support, financial incentives and 12, R1 (Yang and Ng, 2024,

Xiao et al., 2024,
Ohueri et al., 2025)

and incentives subsidies for early DT projects to lower adoption

risks and subsidies costs.

A core theme across the organisational domain is the gap between technological readiness and institutional
capacity. Internal training programs (Broo and Schooling, 2023) are essential for closing digital skill gaps, directly
addressing the frequent lack of DT knowledge reported among project teams and managers (O2). However,
training alone may not be sufficient without structural support. Studies emphasise the importance of fostering a
culture of openness and innovation (Piras et al., 2024). Another promising strategy is the development and
comparative evaluation of DT prototypes (Asare et al., 2024). By assessing multiple DT implementation options,
stakeholders can better understand trade-offs in performance, cost, and integration, thereby addressing value
ambiguity (06), technical trust (O7), and cross-stakeholder collaboration (O3, O4). Closely related is the notion
of collaborative governance, which frames DT adoption not just as a technological upgrade but as an inter-
organisational process requiring shared objectives, transparency, and accountability (Haraguchi et al., 2024). It
helps overcome relational and procedural barriers that often appear as fragmented knowledge flows or stakeholder
disengagement (O3, O4).

Barriers associated with market structure and fragmented supply chains can be addressed through collaborative
initiatives. The establishment of industry-wide standards (Shahzad et al., 2022) has emerged as a foundational
enabler for DT implementation, targeting systemic issues like data format inconsistency (T2), integration across
project phases (IS, 16), and regulatory uncertainty (R2). In parallel, efforts to promote non-proprietary tools and
ecosystem cooperation (Casillo et al., 2024) counteract vendor lock-in and platform incompatibility (T1, 17).
Cross-sector cooperation enables DTs to remain adaptable and interoperable across application cases, thus
supporting long-term scalability. Pilot projects have also proven to be an effective means of reducing adoption
risk. These small-scale experiments allow organisations to demonstrate feasibility, resolve technical barriers
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incrementally, and generate stakeholder confidence through case-based learning (Yang and Ng, 2024). Mapping
DT business value can justify investment and align implementation with corporate objectives (Torres et al., 2024).

Although underrepresented, policy support is vital. Regulatory frameworks are essential for managing legal
ambiguity and supporting ethical data practices (Camposano et al., 2021), directly targeting barriers related to data
ownership, security, and ethical governance (R2, R3, R4). Government support and financial incentives were
identified as a catalyst for early adoption (Ohueri et al., 2025). By offsetting high upfront costs (12) and reducing
perceived investment risk, such support mechanisms can trigger adoption among smaller firms and encourage
broader diffusion.

These integrated strategies provide a practical roadmap to overcome the multifaceted barriers to DT
implementation, enabling sustainable and scalable adoption in the construction industry.

4. DISCUSSION, FUTURE DIRECTIONS AND LIMITATIONS

DTs offer stakeholders a unique opportunity to smoothly integrate the physical world with the digital domain,
significantly enhancing the construction industry’s capacity to address long-term challenges (Su et al., 2023).
While notable progress has been made, the effective application and widespread adoption of digital technologies
remain limited, requiring further strategic, technical, and institutional efforts (Opoku et al., 2023).

4.1 Lifecycle

Recent research increasingly underscores the importance of viewing Digital Twins (DTs) through a whole-lifecycle
lens, particularly for enhancing cross-phase coordination and improving asset management. However, current DT
implementations tend to remain siloed within individual project stages. Cross-phase data continuity, particularly
from construction to O&M, is essential to enable proactive decision-making and enhance downstream efficiencies
(Long et al., 2024).

A major impediment is the heterogeneity of data formats and schemas used across lifecycle phases, which often
lack standardisation and semantic consistency (Piras et al., 2024, Mahmoodian et al., 2022). This challenge is
exacerbated by stakeholder fragmentation, disparities in digital maturity, and ongoing concerns regarding data
security, ownership, and interoperability (Sacks et al., 2020). The increasing volume of data (Adeagbo et al., 2024),
the incompatibility between proprietary technology platforms (Banfi et al., 2022), and persistent concerns around
data security and privacy (Piras et al., 2024) also hinder efforts to establish seamless lifecycle integration.

Additionally, there is a tendency in existing literature to focus on transitions between adjacent phases while
neglecting incorporating early-stage (design) and end-of-life (demolition) stages (Long et al., 2024), despite their
relevance to project traceability, feedback loops, and cross-project knowledge transfer. Future research should
focus on unlocking the latent potential of DTs in underrepresented lifecycle phases. For instance, studies could
explore deploying IoT and material tagging technologies during early phases to support long-term component
tracking and reuse at end-of-life (Igbal et al., 2024). Furthermore, there is a critical need to design interoperable
DT platforms capable of evolving across lifecycle stages while preserving data integrity, and to investigate
feedback mechanisms from late-stage demolition to inform future design standards and material choices.

4.2 Technology integration and Human-AlI interactions

Despite growing interest, the construction industry continues to face substantial technological barriers in adopting
DTs, particularly due to its traditionally low digital maturity and the complexity of project environments (Rasheed
et al., 2020, Naderi and Shojaei, 2022). Construction projects generate vast and highly heterogeneous datasets
drawn from diverse sources, ranging from BIM and IoT sensors to maintenance records and BMS systems
(Adeagbo et al., 2024). However, a significant portion of this data remains unstructured, limiting its utility. For
instance, quality assurance processes often rely on text-based inspection logs, which traditional geometric DTs fail
to capture. Recent efforts, such as the development of semantic datasets for fire door defects (Wang et al., 2025),
demonstrate how converting unstructured construction records into structured data through automatic methods is
essential for maintaining a seamless digital thread from construction into operations. These data are frequently
stored in isolated, incompatible formats. The resulting lack of interoperability not only hinders data processing and
integrated analytics but also undermines the accuracy and reliability of Al-driven insights (Banfi et al., 2022). As
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such, the development of standardised data protocols and integration frameworks remains an urgent research
priority.

In recent years, the role of Al, including ML and DL, in DT applications for the built environment has gained
substantial traction. However, the successful deployment of these data-driven models is frequently hampered by
the lack of high-quality training data. To address this, a growing body of research has focused on bridging the gap
between theoretical algorithms and real-world data availability. For instance, Wang (2025b) established
comprehensive labelled operational datasets for Air Handling Units across diverse facilities, including offices,
auditoriums, and hospitals, offering essential benchmarks for model training. Further research has tackled the
challenge of class imbalance, where fault data is inherently rare. Hybrid generative models, such as SMOTE and
Trans-CWGAN, have been successfully employed to synthesise realistic fault patterns (Wang, 2025a). Beyond
data limitations, the progress of Al has also raised concerns about the trustworthiness of Al-enabled decision-
making (Callcut et al., 2021). Due to the non-transparent nature of many Al algorithms, particularly in DL, human
users often struggle to interpret or verify the internal logic of such systems. This "black box" characteristic poses
a serious barrier to trust (Zhang et al., 2024), especially among construction professionals such as site managers
and facility managers, who are hesitant to rely on decisions that lack transparency or verifiability. To address this,
studies proposed a shift of human roles from passive task executors to active supervisors of autonomous systems
(Wang et al., 2021). Through targeted training and task reallocation, users can be empowered to participate in
collaborative decision-making processes, thereby improving both trust and the effectiveness of human—robot
collaboration, especially on construction sites (Wang et al., 2021, Lee et al., 2023). Moreover, the advancement of
explainable Al (XAI) techniques offers a promising path forward. By enabling the reasoning processes behind
automated decisions to be more transparent and interpretable, X Al bridges the trust gap between human users and
Al systems (Riggio and Nasir, 2024). Such developments are vital not only for enhancing the accountability of Al
systems in safety-critical environments, but also for enabling more effective human—AlI collaboration in the
construction DT projects.

4.3 Cost, value, and maturity considerations in DT adoption

While many DT case studies have demonstrated compelling benefits, these successes are often context-specific
and difficult to replicate across varying project types and scales(Camposano et al., 2021). The lack of systematic
frameworks for evaluating the DT value in a standardised, consistent, evidence-based manner limits both the
comparability of outcomes and the strategic confidence of stakeholders, particularly in early decision-making
stages (Pregnolato et al., 2022).

The adoption of DT typically requires substantial upfront investment, including hardware acquisition (e.g., LIDAR
scanners, high-fidelity sensors), software development, integration platforms, and workforce training (Sacks et al.,
2020, Broo and Schooling, 2023). These costs present significant barriers to adoption, especially for small and
medium-sized enterprises, which often lack the capital and technical capacity to support the resources required for
DT deployment (Piras et al., 2024). To address this, there is a growing need for comprehensive cost and benefit
analyses that assess the economic viability of DTs across diverse project scales and lifecycle phases. Such
evaluations should consider both direct financial outcomes such as reductions in operational costs and time savings
and indirect or intangible benefits (e.g., risk mitigation, enhanced decision-making and sustainability). In parallel,
research should explore strategies to reduce implementation costs, including the adoption of modular DT
architectures, the use of open-source platforms, the deployment of cloud-based solutions and crowdsourcing
(Casillo et al., 2024) to lower technical entry barriers. Furthermore, when evaluating the value proposition of DTs
in the construction industry, a recurring concern in the literature is the limited involvement of key stakeholders
and organisations in both the development and assessment processes (Agrawal et al., 2022). Existing studies tend
to underrepresent the perspectives of those directly responsible for project delivery, asset operation, and long-term
strategic planning. It is therefore crucial to investigate DT value from a stakeholder-centric viewpoint,
encompassing not only cost-saving efficiencies but also broader opportunities for revenue creation and competitive
advantage (Zhu et al., 2024). This includes exploring how DTs can support new business models, enhance service
offerings, and improve client satisfaction, thereby positioning their adoption as a strategic investment rather than
a purely technical or operational upgrade.

Additionally, the maturity of DTs is increasingly recognised as a critical factor influencing both adoption and value
realisation. Maturity models help assess the organisational, technical, and operational readiness for DT
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deployment. Chen et al. (2024) introduced an expert-driven evaluation framework to assess DT maturity in
building projects, offering a useful foundation but lacking sufficient granularity and differentiation for diverse DT
applications. Similarly, Li et al. (2024) proposed a five-level hierarchical maturity model for infrastructure DT
adoption. However, it lacks quantitative indicators such as data volume thresholds and system response latency
that would affect precision in evaluating specific DT implementations. Further, the model missed collaborative
and systemic dimensions, such as cross-disciplinary coordination or stakeholder integration, which are essential
for lifecycle-wide deployment. Thus, establishing a more comprehensive and adaptable DT maturity model which
incorporates both qualitative and quantitative metrics and aligns with distinct characteristics could be a promising
future research direction. Such a maturity framework would enable practitioners to benchmark progress, identify
capability gaps, and prioritise adoption strategies in line with organisational goals.

Overall, these efforts can contribute to a more inclusive, economically sustainable, and scalable DT ecosystem,
which can operate beyond isolated case success and support widespread, long-term value creation in the
construction industry.

4.4 Practical implications for stakeholders

Building on the previously identified barriers and strategies, this section converts the findings into concrete actions
for key stakeholder groups, thereby bridging the gap between theoretical potential and practical deployment.

For asset owners, the priority is to recognise the strategic value of the digital twin and to articulate a digital vision
aligned with organisational key performance indicators (Callcut et al., 2021). DTs should not be understood as
static deliverables but rather as evolving systems whose long-term utility depends on robust data governance
frameworks and standardised information structures. Moreover, asset owners must invest in comprehensive
internal training to improve staff awareness, technical competency, and acceptance of DT, thereby bridging the
divide between organisational IT capabilities and operational requirements (Piras et al., 2024, Broo and Schooling,
2023).

For designers, considering the principle of "digital twin readiness” is essential for the subsequent construction,
integration, and operational performance of the DT system. Design activities should account for sensor deployment
strategies, data acquisition pathways, and the scalability of information models, while also conforming to
established modelling specifications and semantic standards to minimise downstream integration costs (Chen and
Whyte, 2022). The adoption of parametric and modular modelling methodologies further enhances the efficiency,
reproducibility, and analytical value of simulation processes and DT construction (Adeagbo et al., 2024). Given
that DTs span the full lifecycle of an asset, version traceability and cross-phase interoperability of design models
are crucial.

Contractors continue to face a fundamental challenge arising from the disparity between static design BIM models
and the dynamic conditions of construction sites. This discrepancy frequently results in scheduling and resource
decisions being based on outdated or incomplete information, thereby constraining construction efficiency
(Esmaeili and Simeone, 2023). Continuous capture of the “as-built” environment through a construction digital
twin provides a mechanism for generating real-time semantic updates, reducing dependency on static models.
From an implementation perspective, it is necessary to prioritise high-value scenarios such as progress monitoring,
equipment utilisation analytics, and safety risk detection, rather than attempting to create a comprehensive twin of
the entire project at the outset. Furthermore, by adopting standardised business process models and integrating
service-oriented interfaces, contractors can embed DTs directly into operational workflows, alleviating cost
pressures while enhancing progress visibility, resource optimisation, and overall site productivity (Torres et al.,
2024).

Technology vendors typically undertake the critical tasks of constructing the technical framework for DT systems
and enabling cross-system integration. As industry expectations shift towards enhanced real-time analytics and
predictive intelligence, providers must reinforce interoperable system architectures (Naderi and Shojaei, 2024).
Sustainable operation of DTs further requires providers to establish long-term support mechanisms, including
model updating, sensor calibration, and periodic algorithmic retraining to ensure continuous synchronisation
between the digital and physical systems.

Given that DT systems involve cross-departmental and cross-system data flows, their effective application heavily
relies on unified standards. For policymakers and regulators, establishing industry-level standards and clarifying
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data security requirements can mitigate interoperability risks stemming from system fragmentation while ensuring
data security and privacy compliance (Camposano et al., 2021, Naderi and Shojaei, 2024, Ohueri et al., 2025).
Additionally, policy interventions such as fiscal incentives, targeted R&D funding, and performance-based
subsidies can significantly reduce organisational barriers to adoption and stimulate innovation within the wider
ecosystem (Ohueri et al., 2025).

Facility managers and O&M teams are most closely engaged with physical assets throughout the DT lifecycle,
having direct influence over the fidelity and validity of twin models. To unlock the long-term value of DTs, these
systems must be integrated into daily operational routines. Continuous calibration, achieved through real-time data
feeds, equipment health diagnostics, and systematic annotation of anomalies, enables the DT to maintain an
accurate representation of the physical system (Hosamo et al., 2022). Cross-phase collaboration between O&M
teams, designers, and contractors further strengthens data continuity and lifecycle coherence. With the growing
adoption of predictive maintenance and risk-informed decision-making, operations personnel must increasingly
cultivate digital literacy, analytical capability, and interpretive skills, supporting a transition from reactive
operational behaviour to proactive, data-driven asset management (Almatared et al., 2024).

Regarding end users, while DTs offer technical advantages such as visualisation, real-time feedback, and intelligent
decision support, their practical value is often influenced by user experience and operational complexity. System
design must therefore prioritise usability and interpretability, ensuring users can comprehend state changes
reflected by the twin model through intuitive interfaces and receive clear decision support prompts when necessary
(Lee et al., 2023). Furthermore, user participation plays a vital role in the continuous optimisation of twin systems.
Feedback data not only assists developers in refining interfaces and interaction logic but also serves as a crucial
data source for training models, enabling dynamic optimisation of DT systems (Asare et al., 2024).

4.5 Limitations

This study provides a macro-level synthesis of recent developments in DT research, offering a clear and systematic
overview of current trends and future directions, particularly for readers less familiar with the concept. While this
broad perspective improves accessibility, it involves certain trade-offs. Due to space constraints, areas such as
technological frameworks and domain-specific applications are not explored in depth and require focused attention
in future research. The methodology, centred on a systematic literature review, is inherently influenced by the
selection bias. Specifically, the search string prioritised the full term “Digital Twin” to ensure high relevance.
While this decision was necessary to avoid significant noise, as the abbreviation “DT” is widely used for unrelated
concepts such as “Decision Trees” or “Data Transmission”, it may have inadvertently excluded studies that rely
solely on the abbreviation or alternative terminologies in their metadata. Although the snowballing technique was
used to expand the literature base during the discussion, the overall scope may remain limited. In addition, the
review emphasises conceptual and thematic synthesis rather than empirical validation. Future research would
benefit from more in-depth studies, case analyses, and comparative evaluations to build on the foundations
established here.

S. CONCLUSIONS

This study has conducted a comprehensive two-stage systematic literature review to assess the development,
implementation, and integration of Digital Twins (DTs) in the construction industry. The review first synthesised
122 existing review articles to map thematic trends and lifecycle focus areas, followed by an in-depth analysis of
297 original research articles to identify domain applications, enabling technologies, barriers, and response
strategies. This dual approach enabled a multidimensional understanding of both the conceptual evolution and
practical realities of DT adoption in construction.

Findings indicate that despite the growing research volume, the DT landscape remains fragmented and thematically
skewed. A substantial majority of studies are clustered around the operation and maintenance (O&M) phase, while
early-stage design and end-of-life phases remain critically underexplored. This gap not only limits the strategic
potential of DTs but also hinders the development of circular and data-driven asset management practices. The
review also identifies technological, organisational, industrial, and regulatory barriers that hinder DT
implementation. These include data heterogeneity, platform incompatibility, unclear value propositions, limited
stakeholder participation, and a lack of policy guidance. A range of multidimensional strategies, such as modular
architecture, blockchain integration, and collaborative governance, have been proposed and mapped with barriers.
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To address these challenges, the study formulates actionable strategies for key stakeholders. Asset owners are
urged to shift from passive procurement to active data governance and internal competency building. For
contractors and designers, the adoption of hybrid human-digital workflows and “Twin-Ready” design standards is
essential to ensure verifiable “as-built” data. Furthermore, policymakers and regulators need to collaborate to
establish applicable standards and fiscal incentives to de-risk adoption.

Additionally, the study highlights limitations in trust in Al systems and value realisation. The lack of standardised
data protocols and the limited use of explainable Al hinder effective integration and stakeholder trust. Moreover,
high implementation costs and the absence of consistent, stakeholder-informed value assessment frameworks
restrict broader adoption. Existing maturity models often lack practical metrics and overlook collaborative
dimensions, limiting their applicability.

Overall, this review contributes to a more integrated understanding of DT research in construction, clarifying its
current limitations and identifying actionable directions. Addressing the gaps identified, particularly in lifecycle
coverage, value definition, stakeholder engagement, and maturity evaluation, will be essential to transforming DTs
from isolated technological pilots into scalable, trustworthy, and strategic systems in the construction sector.

REFERENCES

Adeagbo, M. O., Wang, S. M. and Ni, Y. Q. (2024.), Revamping structural health monitoring of advanced rail
transit systems: A paradigmatic shift from digital shadows to digital twins, Advanced Engineering
Informatics, Vol. 61.http://dx.doi.org/10.1016/j.ae1.2024.102450.

Adu-Amankwa, N. A. N., Pour Rahimian, F., Dawood, N. and Park, C. (2023.), Digital Twins and Blockchain
technologies  for  building lifecycle management, Automation in  Construction, Vol.
155.http://dx.doi.org/10.1016/j.autcon.2023.105064.

Afif Supianto, A., Nasar, W., Margrethe Aspen, D., Hasan, A., Karlsen, A. S. T. and Torres, R. D. S. (2024.), An
Urban Digital Twin Framework for Reference and Planning, IEEE Access, Vol. 12, pp. 152444-
152465 http://dx.doi.org/10.1109/ACCESS.2024.3478379.

Agostinelli, S., Cumo, F., Guidi, G. and Tomazzoli, C. (2021.), Cyber-physical systems improving building energy
management:  Digital twin and  artificial  intelligence, = Energies, = Vol. 14  No.
8.http://dx.doi.org/10.3390/en14082338.

Agrawal, A., Fischer, M. and Singh, V. (2022.), Digital Twin: From Concept to Practice, Journal of Management
in Engineering, Vol. 38 No. 3.http://dx.doi.org/10.1061/(ASCE)ME.1943-5479.0001034.

Almatared, M., Liu, H., Abudayyeh, O., Hakim, O. and Sulaiman, M. (2024.), Digital-Twin-Based Fire Safety
Management Framework for Smart Buildings, Buildings, Vol. 14 No.
L.http://dx.doi.org/10.3390/buildings 14010004.

Alnaser, A. A., Hassan Ali, A., Elmousalami, H. H., Elyamany, A. and Gouda Mohamed, A. (2024.), Assessment
Framework for BIM-Digital Twin Readiness in the Construction Industry, Buildings, Vol. 14 No.
L.http://dx.doi.org/10.3390/buildings 14010268.

Armijo, A. and Zamora-Sanchez, D. (2024.), Integration of Railway Bridge Structural Health Monitoring into the
Internet of Things with a Digital Twin: A Case Study, Sensors, Vol. 24 No.
7.http://dx.doi.org/10.3390/s24072115.

Arsiwala, A., Elghaish, F. and Zoher, M. (2023.), Digital twin with Machine learning for predictive monitoring of
CO2 equivalent from existing buildings, Energy and Buildings, Vol.
284 http://dx.doi.org/10.1016/j.enbuild.2023.112851.

Asare, K. A. B., Liu, R., Anumba, C. J. and Issa, R. R. A. (2024.), Real-world prototyping and evaluation of digital
twins for predictive facility —maintenance, Journal of Building Engineering, Vol.
97 http://dx.doi.org/10.1016/j.jobe.2024.110890.

Banfi, F., Brumana, R., Salvalai, G. and Previtali, M. (2022.), Digital Twin and Cloud BIM-XR Platform
Development: From Scan-to-BIM-to-DT Process to a 4D Multi-User Live App to Improve Building
Comfort, Efficiency and Costs, Energies, Vol. 15 No. 12.http://dx.doi.org/10.3390/en15124497.

(<o), ITeon Vol. 31 (2026), Wang et al., pg. 172


http://dx.doi.org/10.1016/j.aei.2024.102450
http://dx.doi.org/10.1016/j.autcon.2023.105064
http://dx.doi.org/10.1109/ACCESS.2024.3478379
http://dx.doi.org/10.3390/en14082338
http://dx.doi.org/10.1061/(ASCE)ME.1943-5479.0001034
http://dx.doi.org/10.3390/buildings14010004
http://dx.doi.org/10.3390/buildings14010268
http://dx.doi.org/10.3390/s24072115
http://dx.doi.org/10.1016/j.enbuild.2023.112851
http://dx.doi.org/10.1016/j.jobe.2024.110890
http://dx.doi.org/10.3390/en15124497

Boje, C., Guerriero, A., Kubicki, S. and Rezgui, Y. (2020.), Towards a semantic Construction Digital Twin:
Directions for future research, Automation in Construction, Vol.
114.http://dx.doi.org/10.1016/j.autcon.2020.103179.

Boje, C., Hahn Menacho, AT, Marvuglia, A., Benetto, E., Kubicki, S., Schaubroeck, T. and Navarrete Gutiérrez,
T. (2023.), A framework using BIM and digital twins in facilitating LCSA for buildings, Journal of Building
Engineering, Vol. 76.http://dx.doi.org/10.1016/j.jobe.2023.107232.

Bolton, A., Butler, L., Dabson, 1., Enzer, M., Evans, M., Fenemore, T., Harradence, F., Keaney, E., Kemp, A., Luck,
A., Pawsey, N., Saville, S., Schooling, J., Sharp, M., Smith, T., Tennison, J., Whyte, J., Wilson, A. and
Makri, C. (2018.), "Gemini Principles".

Broo, D. G. and Schooling, J. (2023.), Digital twins in infrastructure: definitions, current practices, challenges and
strategies, International Journal of Construction Management, Vol. 23 No. 7, pp. 1254-
1263 .http://dx.doi.org/10.1080/15623599.2021.1966980.

Callcut, M., Cerceau Agliozzo, J. P, Varga, L. and McMillan, L. (2021.), Digital twins in civil infrastructure
systems, Sustainability (Switzerland), Vol. 13 No. 20.http://dx.doi.org/10.3390/su132011549.

Camposano, J. C., Smolander, K. and Ruippo, T. (2021.), Seven Metaphors to Understand Digital Twins of Built
Assets, IEEE Access, Vol. 9, pp. 27167-27181.http://dx.doi.org/10.1109/ACCESS.2021.3058009.

Casillo, M., Colace, F., Gaeta, R., Lorusso, A., Santaniello, D. and Valentino, C. (2024.), Revolutionizing cultural
heritage preservation: an innovative loT-based framework for protecting historical buildings, Evolutionary
Intelligence, Vol. 17 No. 5-6, pp. 3815-3831.http://dx.doi.org/10.1007/s12065-024-00959-y.

Chacén, R., Posada, H., Ramonell, C., Jungmann, M., Hartmann, T., Khan, R. and Tomar, R. (2024.), Digital
twinning of building construction processes. Case study: A reinforced concrete cast-in structure, Journal of
Building Engineering, Vol. 84.http://dx.doi.org/10.1016/j.jobe.2024.108522.

Chen, C., Zhao, Z., Xiao, J. and Tiong, R. (2021.), A conceptual framework for estimating building embodied
carbon based on digital twin technology and life cycle assessment, Sustainability (Switzerland), Vol. 13 No.
24 http://dx.doi.org/10.3390/sul132413875.

Chen, L. and Whyte, J. (2022.), Understanding design change propagation in complex engineering systems using
a digital twin and design structure matrix, Engineering, Construction and Architectural Management, Vol.
29 No. &, pp. 2950-2975.http://dx.doi.org/10.1108/ECAM-08-2020-0615.

Chen, Z. S., Chen, K. D., Xu, Y. Q., Pedrycz, W. and Skibniewski, M. J. (2024.), Multiobjective optimization-
based decision support for building digital twin maturity measurement, Advanced Engineering Informatics,
Vol. 59.http://dx.doi.org/10.1016/j.ae1.2023.102245.

Dan, D., Ying, Y. and Ge, L. (2022.), Digital Twin System of Bridges Group Based on Machine Vision Fusion
Monitoring of Bridge Traffic Load, IEEE Transactions on Intelligent Transportation Systems, Vol. 23 No.
11, pp. 22190-22205 .http://dx.doi.org/10.1109/TITS.2021.3130025.

Dang, H., Tatipamula, M. and Nguyen, H. X. (2022.), Cloud-Based Digital Twinning for Structural Health
Monitoring Using Deep Learning, IEEE Transactions on Industrial Informatics, Vol. 18 No. 6, pp. 3820-
3830.http://dx.doi.org/10.1109/T11.2021.3115119.

Deng, M., Menassa, C. C. and Kamat, V. R. (2021.), From BIM to digital twins: A systematic review of the
evolution of intelligent building representations in the AEC-FM industry, Journal of Information
Technology in Construction, Vol. 26, pp. 58-83.http://dx.doi.org/10.36680/J.ITCON.2021.005.

El Mokhtari, K., Panushev, I. and McArthur, J. J. (2022.), Development of a Cognitive Digital Twin for Building
Management and Operations, Frontiers in Built Environment, Vol.
8.http://dx.doi.org/10.3389/fbuil.2022.856873.

ElArwady, Z., Kandil, A., Afiffy, M. and Marzouk, M. (2024.), Modeling indoor thermal comfort in buildings
using digital twin and machine learning, Developments in the Built Environment, Vol.
19.http://dx.doi.org/10.1016/j.dibe.2024.100480.

(<o), ITeon Vol. 31 (2026), Wang et al., pg. 173


http://dx.doi.org/10.1016/j.autcon.2020.103179
http://dx.doi.org/10.1016/j.jobe.2023.107232
http://dx.doi.org/10.1080/15623599.2021.1966980
http://dx.doi.org/10.3390/su132011549
http://dx.doi.org/10.1109/ACCESS.2021.3058009
http://dx.doi.org/10.1007/s12065-024-00959-y
http://dx.doi.org/10.1016/j.jobe.2024.108522
http://dx.doi.org/10.3390/su132413875
http://dx.doi.org/10.1108/ECAM-08-2020-0615
http://dx.doi.org/10.1016/j.aei.2023.102245
http://dx.doi.org/10.1109/TITS.2021.3130025
http://dx.doi.org/10.1109/TII.2021.3115119
http://dx.doi.org/10.36680/J.ITCON.2021.005
http://dx.doi.org/10.3389/fbuil.2022.856873
http://dx.doi.org/10.1016/j.dibe.2024.100480

Ellul, C., Hamilton, N., Pieri, A. and Floros, G. (2024.), Exploring Data for Construction Digital Twins: Building
Health and Safety and Progress Monitoring Twins Using the Unreal Gaming Engine, Buildings, Vol. 14 No.
7.http://dx.doi.org/10.3390/buildings14072216.

Eneyew, D. D., Capretz, M. A. M. and Bitsuamlak, G. T. (2022.), Toward Smart-Building Digital Twins: BIM and
IoT Data Integration, IEEE Access, Vol. 10, pp- 130487-
130506.http://dx.doi.org/10.1109/ACCESS.2022.3229370.

Esmaeili, I. and Simeone, D. (2023.), A General Contractor’s Perspective on Construction Digital Twin:
Implementation, Impacts and Challenges, Buildings, Vol. 13 No.
4.http://dx.doi.org/10.3390/buildings13040978.

Fang, W., Chen, W., Love, P. E. D., Luo, H., Zhu, H. and Liu, J. (2024.), A status digital twin approach for
physically monitoring over-and-under excavation in large tunnels, Advanced Engineering Informatics, Vol.
62.http://dx.doi.org/10.1016/j.2e1.2024.102648.

Feng, F., Liu, Z., Shi, G. and Mo, Y. (2024a.), An Effective Digital Twin Modeling Method for Infrastructure:
Application to Smart Pumping Stations, Buildings, Vol. 14 No.
4 http://dx.doi.org/10.3390/buildings 14040863.

Feng, Z., Wang, J., Liu, W., Li, T., Wu, X. and Zhao, P. (2024b.), Data-driven deformation prediction and control
for existing tunnels below shield tunneling, Engineering Applications of Artificial Intelligence, Vol.
138.http://dx.doi.org/10.1016/j.engappai.2024.109379.

Figueiredo, K., Hammad, A. W. A., Pierott, R., Tam, V. W. Y. and Haddad, A. (2024.), Integrating Digital Twin
and Blockchain for dynamic building Life Cycle Sustainability Assessment, Journal of Building
Engineering, Vol. 97.http://dx.doi.org/10.1016/j.jobe.2024.111018.

Futai, M. M., Bittencourt, T. N., Carvalho, H. and Ribeiro, D. M. (2022.), Challenges in the application of digital
transformation to inspection and maintenance of bridges, Structure and Infrastructure Engineering, Vol. 18
No. 10-11, pp. 1581-1600.http://dx.doi.org/10.1080/15732479.2022.2063908.

Galiano-Garrigos, A., Lopez-Gonzalez, C., Garcia-Valldecabres, J., Pérez-Carramifiana, C. and Emmitt, S. (2024.),
The Influence of Visitors on Heritage Conservation: The Case of the Church of San Juan del Hospital,
Valencia, Spain, Applied Sciences (Switzerland), Vol. 14 No. 5.http://dx.doi.org/10.3390/app14052065.

Gao, Y., Li, H., Xiong, G. and Song, H. (2023.), AloT-informed digital twin communication for bridge
maintenance, Automation in Construction, Vol. 150.http://dx.doi.org/10.1016/j.autcon.2023.104835.

Grieves, M. and Vickers, J. (2017.), Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in
Complex Systems, in Kahlen, F.-J., Flumerfelt, S. and Alves, A. (Eds.) Transdisciplinary Perspectives on
Complex Systems: New Findings and Approaches, Springer International Publishing, Cham, pp. 85-113.

Hagen, A. and Andersen, T. M. (2024.), Asset management, condition monitoring and Digital Twins: damage
detection and virtual inspection on a reinforced concrete bridge, Structure and Infrastructure Engineering,
Vol. 20 No. 7-8, pp. 1242-1273 http://dx.doi.org/10.1080/15732479.2024.2311911.

Haraguchi, M., Funahashi, T. and Biljecki, F. (2024.), Assessing governance implications of city digital twin
technology: A maturity model approach, Technological Forecasting and Social Change, WVol.
204 .http://dx.doi.org/10.1016/j.techfore.2024.123409.

Harode, A., Thabet, W., Jamerson, W. E. and Dongre, P. (2023.), A TOOL-BASED SYSTEM ARCHITECTURE
FOR A DIGITAL TWIN: A CASE STUDY IN A HEALTHCARE FACILITY, Journal of Information
Technology in Construction, Vol. 28, pp. 107-137.http://dx.doi.org/10.36680/J.ITCON.2023.006.

Hazrat, M. A., Hassan, N. M. S., Chowdhury, A. A., Rasul, M. G. and Taylor, B. A. (2023.), Developing a Skilled
Workforce for Future Industry Demand: The Potential of Digital Twin-Based Teaching and Learning
Practices in  Engineering  Education,  Sustainability = (Switzerland),  Vol. 15  No.
23 http://dx.doi.org/10.3390/sul152316433.

(<o) ITeon Vol. 31 (2026), Wang et al., pg. 174


http://dx.doi.org/10.3390/buildings14072216
http://dx.doi.org/10.1109/ACCESS.2022.3229370
http://dx.doi.org/10.3390/buildings13040978
http://dx.doi.org/10.1016/j.aei.2024.102648
http://dx.doi.org/10.3390/buildings14040863
http://dx.doi.org/10.1016/j.engappai.2024.109379
http://dx.doi.org/10.1016/j.jobe.2024.111018
http://dx.doi.org/10.1080/15732479.2022.2063908
http://dx.doi.org/10.3390/app14052065
http://dx.doi.org/10.1016/j.autcon.2023.104835
http://dx.doi.org/10.1080/15732479.2024.2311911
http://dx.doi.org/10.1016/j.techfore.2024.123409
http://dx.doi.org/10.36680/J.ITCON.2023.006
http://dx.doi.org/10.3390/su152316433

He, Y., Ding, Y., Zhu, Q., Wu, H., Guo, Y., Wang, Q. and Zhou, R. (2024.), Reliable simulation analysis for high-
temperature inrush water hazard based on the digital twin model of tunnel geological environment,
Tunnelling and Underground Space Technology, Vol. 154.http://dx.doi.org/10.1016/j.tust.2024.106110.

Heng, J., Dong, Y., Lai, L., Zhou, Z. and Frangopol, D. M. (2024.), Digital twins-boosted intelligent maintenance
of ageing bridge hangers exposed to coupled corrosion—fatigue deterioration, Automation in Construction,
Vol. 167 http://dx.doi.org/10.1016/j.autcon.2024.105697.

Henzel, J., Wrébel, L., Fice, M. and Sikora, M. (2022.), Energy Consumption Forecasting for the Digital-Twin
Model of the Building, Energies, Vol. 15 No. 12.http://dx.doi.org/10.3390/en15124318.

Hosamo, H. H., Imran, A., Cardenas-Cartagena, J., Svennevig, P. R., Svidt, K. and Nielsen, H. K. (2022.), A
Review of the Digital Twin Technology in the AEC-FM Industry, Advances in Civil Engineering, Vol.
2022.http://dx.doi.org/10.1155/2022/2185170.

Hosamo, H. H., Nielsen, H. K., Kraniotis, D., Svennevig, P. R. and Svidt, K. (2023a.), Digital Twin framework for
automated fault source detection and prediction for comfort performance evaluation of existing non-
residential Norwegian buildings, Energy and Buildings, Vol.
281.http://dx.doi.org/10.1016/j.enbuild.2022.112732.

Hosamo, H. H., Nielsen, H. K., Kraniotis, D., Svennevig, P. R. and Svidt, K. (2023b.), Improving building occupant
comfort through a digital twin approach: A Bayesian network model and predictive maintenance method,
Energy and Buildings, Vol. 288.http://dx.doi.org/10.1016/j.enbuild.2023.112992.

Hou, H., Lai, J. H. K., Wu, H. and Wang, T. (2024.), Digital twin application in heritage facilities management:
systematic literature review and future development directions, Engineering, Construction and
Architectural Management, Vol. 31 No. 8, pp. 3193-3221.http://dx.doi.org/10.1108/ECAM-06-2022-0596.

Hou, L., Wu, S., Zhang, G. K., Tan, Y. and Wang, X. (2021.), Literature review of digital twins applications in
constructionworkforce  safety, Applied Sciences (Switzerland), Vol. 11 No. 1, pp. 1-
21.http://dx.doi.org/10.3390/app11010339.

Igbal, F., Ahmed, S., Tariq, M. A. B., Waqas, H. A., Al-Ammar, E. A., Wabaidur, S. M. and Fawad, M. (2024.),
BIM-IoT integration for remote real-time concrete compressive strength monitoring, Ain Shams
Engineering Journal, Vol. 15 No. 7.http://dx.doi.org/10.1016/j.asej.2024.102863.

Jiang, F., Ma, L., Broyd, T. and Chen, K. (2021.), Digital twin and its implementations in the civil engineering
sector, Automation in Construction, Vol. 130.http://dx.doi.org/10.1016/j.autcon.2021.103838.

Jiménez Rios, A., Plevris, V. and Nogal, M. (2023.), Bridge management through digital twin-based anomaly
detection  systems: A systematic review, Frontiers in  Built  Environment, Vol.
9.http://dx.doi.org/10.3389/fbuil.2023.1176621.

Kang, T. W. and Mo, Y. (2024.), A comprehensive digital twin framework for building environment monitoring
with emphasis on real-time data connectivity and predictability, Developments in the Built Environment,
Vol. 17.http://dx.doi.org/10.1016/j.dibe.2023.100309.

Karatzas, S., Lazari, V., Fouseki, K., Pracchi, V. N. and Balaskas, E. (2024.), Digital twins-enabled heritage
buildings management through social dynamics, Journal of Cultural Heritage Management and Sustainable
Development, doi: 10.1108/JCHMSD-08-2023-0136.http://dx.doi.org/10.1108/JCHMSD-08-2023-0136.

la Riccia, L., Scolamiero, V., Yadav, Y. and Eusebio, A. (2024.), TURIN DIGITAL TWINS: INITIATIVES AND
CHALLENGES, Trends in Earth Observation, Vol. 3, pp. 16-20

Lampropoulos, G., Larrucea, X. and Colomo-Palacios, R. (2024.), Digital Twins in Critical Infrastructure,
Information (Switzerland), Vol. 15 No. 8.http://dx.doi.org/10.3390/info15080454.

Lauria, M. and Azzalin, M. (2024a.), Digital Transformation in the Construction Sector: A Digital Twin for Seismic
Safety in the Lifecycle of Buildings, Sustainability (Switzerland), Vol. 16 No.
18.http://dx.doi.org/10.3390/sul6188245.

@ ITcon Vol. 31 (2026), Wang et al., pg. 175


http://dx.doi.org/10.1016/j.tust.2024.106110
http://dx.doi.org/10.1016/j.autcon.2024.105697
http://dx.doi.org/10.3390/en15124318
http://dx.doi.org/10.1155/2022/2185170
http://dx.doi.org/10.1016/j.enbuild.2022.112732
http://dx.doi.org/10.1016/j.enbuild.2023.112992
http://dx.doi.org/10.1108/ECAM-06-2022-0596
http://dx.doi.org/10.3390/app11010339
http://dx.doi.org/10.1016/j.asej.2024.102863
http://dx.doi.org/10.1016/j.autcon.2021.103838
http://dx.doi.org/10.3389/fbuil.2023.1176621
http://dx.doi.org/10.1016/j.dibe.2023.100309
http://dx.doi.org/10.1108/JCHMSD-08-2023-0136
http://dx.doi.org/10.3390/info15080454
http://dx.doi.org/10.3390/su16188245

Lauria, M. and Azzalin, M. (2024b.), Digital Twin Approach in Buildings: Future Challenges via a Critical
Literature Review, Buildings, Vol. 14 No. 2.http://dx.doi.org/10.3390/buildings14020376.

Lee, K. S., Lee, J. J., Aucremanne, C., Shah, I. and Ghahramani, A. (2023.), Towards democratization of digital
twins: Design principles for transformation into a human-building interface, Building and Environment,
Vol. 244 http://dx.doi.org/10.1016/j.buildenv.2023.110771.

Li, T, Rui, Y., Zhao, S., Zhang, Y., Zhu, H. and li, X. (2024.), A quantitative digital twin maturity model for
underground infrastructure based on D-ANP, Tunnelling and Underground Space Technology, Vol.
146.http://dx.doi.org/10.1016/j.tust.2024.105612.

Liu, L., Zeng, N., Liu, Y., Han, D. and K&nig, M. (2024.), Multi-domain data integration and management for
enhancing service-oriented digital twin for infrastructure operation and maintenance, Developments in the
Built Environment, Vol. 18.http://dx.doi.org/10.1016/j.dibe.2024.100475.

Liu, Y. and Bao, Y. (2023.), Automatic interpretation of strain distributions measured from distributed fiber optic
sensors for crack monitoring, Measurement: Journal of the International Measurement Confederation, Vol.
211.http://dx.doi.org/10.1016/j.measurement.2023.112629.

Liu, Z., Shi, G., Meng, X. and Sun, Z. (2022.), Intelligent Control of Building Operation and Maintenance
Processes Based on Global Navigation Satellite System and Digital Twins, Remote Sensing, Vol. 14 No.
6.http://dx.doi.org/10.3390/rs14061387.

Long, W., Bao, Z., Chen, K., Thomas Ng, S. and Yahaya Wuni, . (2024.), Developing an integrative framework
for digital twin applications in the building construction industry: A systematic literature review, Advanced
Engineering Informatics, Vol. 59.http://dx.doi.org/10.1016/j.2ei.2023.102346.

Longman, R. P, Xu, Y., Sun, Q., Turkan, Y. and Riggio, M. (2023.), Digital Twin for Monitoring In-Service
Performance of Post-Tensioned Self-Centering Cross-Laminated Timber Shear Walls, Journal of
Computing in Civil Engineering, Vol. 37 No. 2.http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0001050.

Lu, Q., Parlikad, A. K., Woodall, P., Don Ranasinghe, G., Xie, X., Liang, Z., Konstantinou, E., Heaton, J. and
Schooling, J. (2020.), Developing a Digital Twin at Building and City Levels: Case Study of West
Cambridge = Campus, Journal of Management in  Engineering,  Vol. 36 No.
3.http://dx.doi.org/10.1061/(ASCE)ME.1943-5479.0000763.

Madni, A. M., Madni, C. C. and Lucero, S. D. (2019.), Leveraging Digital Twin Technology in Model-Based
Systems Engineering, Systems, Vol. 7 No. 1, p. 7

Madubuike, O. C., Anumba, C. J. and Khallaf, R. (2022.), A REVIEW OF DIGITAL TWIN APPLICATIONS IN
CONSTRUCTION, Journal of Information Technology in Construction, Vol. 27, pp. 145-
172 .http://dx.doi.org/10.36680/].itcon.2022.008.

Mahmoodian, M., Shahrivar, F., Setunge, S. and Mazaheri, S. (2022.), Development of Digital Twin for Intelligent
Maintenance  of  Civil  Infrastructure, Sustainability ~ (Switzerland),  Vol. 14 No.
14.http://dx.doi.org/10.3390/su14148664.

Meng, X., Das, S. and Meng, J. (2023.), Integration of Digital Twin and Circular Economy in the Construction
Industry, Sustainability (Switzerland), Vol. 15 No. 17.http://dx.doi.org/10.3390/sul51713186.

Mousavi, V., Rashidi, M., Mohammadi, M. and Samali, B. (2024.), Evolution of Digital Twin Frameworks in
Bridge Management: Review and Future Directions, Remote Sensing, Vol. 16 No.
11.http://dx.doi.org/10.3390/rs16111887.

Naderi, H. and Shojaei, A. (2022.), Civil Infrastructure Digital Twins: Multi-Level Knowledge Map, Research
Gaps, and Future Directions, IEEE Access, Vol. 10, pp- 122022-
122037 http://dx.doi.org/10.1109/ACCESS.2022.3223557.

Naderi, H. and Shojaei, A. (2023.), Digital twinning of civil infrastructures: Current state of model architectures,
interoperability  solutions, and future prospects, Automation in  Construction, Vol.
149 .http://dx.doi.org/10.1016/j.autcon.2023.104785.

(<o), ITeon Vol. 31 (2026), Wang et al., pg. 176


http://dx.doi.org/10.3390/buildings14020376
http://dx.doi.org/10.1016/j.buildenv.2023.110771
http://dx.doi.org/10.1016/j.tust.2024.105612
http://dx.doi.org/10.1016/j.dibe.2024.100475
http://dx.doi.org/10.1016/j.measurement.2023.112629
http://dx.doi.org/10.3390/rs14061387
http://dx.doi.org/10.1016/j.aei.2023.102346
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0001050
http://dx.doi.org/10.1061/(ASCE)ME.1943-5479.0000763
http://dx.doi.org/10.36680/j.itcon.2022.008
http://dx.doi.org/10.3390/su14148664
http://dx.doi.org/10.3390/su151713186
http://dx.doi.org/10.3390/rs16111887
http://dx.doi.org/10.1109/ACCESS.2022.3223557
http://dx.doi.org/10.1016/j.autcon.2023.104785

Naderi, H. and Shojaei, A. (2024.), Digital twin non-fungible token (DT-NFT): Enabling data ownership in the
AEC industry, Automation in Construction, Vol. 168, P
105777 .http://dx.doi.org/https://doi.org/10.1016/j.autcon.2024.105777.

Nguyen, T. D. and Adhikari, S. (2023.), The Role of BIM in Integrating Digital Twin in Building Construction: A
Literature Review, Sustainability (Switzerland), Vol. 15 No. 13.http://dx.doi.org/10.3390/sul51310462.

Niccolucci, F., Felicetti, A. and Hermon, S. (2022.), Populating the Data Space for Cultural Heritage with Heritage
Digital Twins, Data, Vol. 7 No. 8.http://dx.doi.org/10.3390/data7080105.

Ohueri, C. C., Masrom, M. A. N., Habil, H. and Ambashe, M. S. (2025.), [oT-based digital twin best practices for
reducing operational carbon in building retrofitting: a mixed-method approach, Engineering, Construction
and Architectural Management, Vol. 32 No. 3, pp. 2044-2065.http://dx.doi.org/10.1108/ECAM-08-2023-
0827.

Opoku, D. G. J, Perera, S., Osei-Kyei, R. and Rashidi, M. (2021.), Digital twin application in the construction
industry: A literature review, Journal of Building Engineering, Vol.
40.http://dx.doi.org/10.1016/j.jobe.2021.102726.

Opoku, D. G. J., Perera, S., Osei-Kyei, R., Rashidi, M., Bamdad, K. and Famakinwa, T. (2023.), Barriers to the
Adoption of Digital Twin in the Construction Industry: A Literature Review, Informatics, Vol. 10 No.
L.http://dx.doi.org/10.3390/informatics10010014.

Peng, Y., Zhang, M., Yu, F., Xu, J. and Gao, S. (2020.), Digital Twin Hospital Buildings: An Exemplary Case Study
through  Continuous  Lifecycle  Integration, Advances in  Civil  Engineering, Vol
2020.http://dx.doi.org/10.1155/2020/8846667.

Piras, G., Muzi, F. and Tiburcio, V. A. (2024.), Enhancing Space Management through Digital Twin: A Case Study
of the Lazio Region Headquarters, Applied Sciences (Switzerland), Vol. 14 No.
17.http://dx.doi.org/10.3390/app14177463.

Posada, H., Chacén, R. and Ramonell, C. (2024.), Job roles for digital twinning building construction processes.
Introducing the digital twin manager position, International Journal of Construction Management, doi:
10.1080/15623599.2024.2417632.http://dx.doi.org/10.1080/15623599.2024.2417632.

Pregnolato, M., Gunner, S., Voyagaki, E., De Risi, R., Carhart, N., Gavriel, G., Tully, P., Tryfonas, T., Macdonald,
J. and Taylor, C. (2022.), Towards Civil Engineering 4.0: Concept, workflow and application of Digital
Twins for existing infrastructure, Automation in Construction, Vol.
141.http://dx.doi.org/10.1016/j.autcon.2022.104421.

Radzi, A. R., Azmi, N. F., Kamaruzzaman, S. N., Rahman, R. A. and Papadonikolaki, E. (2024.), Relationship
between digital twin and building information modeling: a systematic review and future directions,
Construction Innovation, Vol. 24 No. 3, pp. 811-829.http://dx.doi.org/10.1108/CI-07-2022-0183.

Rasheed, A., San, O. and Kvamsdal, T. (2020.), Digital Twin: Values, Challenges and Enablers From a Modeling
Perspective, IEEE Access, Vol. 8, pp. 21980-22012.http://dx.doi.org/10.1109/access.2020.2970143.

Riggio, M. and Nasir, V. (2024.), Digital Twins in Structural Health Assessment and Monitoring: Applications in
Historical ~Timber Buildings, International Journal of Architectural  Heritage, doi:
10.1080/15583058.2024.2437618.http://dx.doi.org/10.1080/15583058.2024.2437618.

Sacks, R., Brilakis, I., Pikas, E., Xie, H. S. and Girolami, M. (2020.), Construction with digital twin information
systems, Data-Centric Engineering, Vol. 1 No. 6.http://dx.doi.org/10.1017/dce.2020.16.

Schluse, M. and Rossmann, J. (2016.), "From simulation to experimentable digital twins: Simulation-based
development and operation of complex technical systems", in 2016 IEEE International Symposium on
Systems Engineering (ISSE), doi: 10.1109/SysEng.2016.7753162 pp. 1-6.

Shahzad, M., Shafiq, M. T., Douglas, D. and Kassem, M. (2022.), Digital Twins in Built Environments: An
Investigation of the Characteristics, Applications, and Challenges, Buildings, Vol. 12 No.
2.http://dx.doi.org/10.3390/buildings 12020120.

@ ITcon Vol. 31 (2026), Wang et al., pg. 177


http://dx.doi.org/https:/doi.org/10.1016/j.autcon.2024.105777
http://dx.doi.org/10.3390/su151310462
http://dx.doi.org/10.3390/data7080105
http://dx.doi.org/10.1108/ECAM-08-2023-0827
http://dx.doi.org/10.1108/ECAM-08-2023-0827
http://dx.doi.org/10.1016/j.jobe.2021.102726
http://dx.doi.org/10.3390/informatics10010014
http://dx.doi.org/10.1155/2020/8846667
http://dx.doi.org/10.3390/app14177463
http://dx.doi.org/10.1080/15623599.2024.2417632
http://dx.doi.org/10.1016/j.autcon.2022.104421
http://dx.doi.org/10.1108/CI-07-2022-0183
http://dx.doi.org/10.1109/access.2020.2970143
http://dx.doi.org/10.1080/15583058.2024.2437618
http://dx.doi.org/10.1017/dce.2020.16
http://dx.doi.org/10.3390/buildings12020120

Shi, Y., Guo, M., Zhao, J., Liang, X., Shang, X., Huang, M., Guo, S. and Zhao, Y. (2024.), Optimization of
structural reinforcement assessment for architectural heritage digital twins based on LiDAR and multi-
source remote sensing, Heritage Science, Vol. 12 No. 1.http://dx.doi.org/10.1186/s40494-024-01404-0.

Shlash Mohammad, A. A., Al-Daoud, K. L., Al Oraini, B., Shelash Mohammad, S. I., Vasudevan, A., Zhang, J. and
Ahmmad Hunitie, M. F. (2024.), Using Digital Twin Technology to Conduct Dynamic Simulation of
Industry-Education Integration, Data and Metadata, Vol. 3.http://dx.doi.org/10.56294/dm2024422.

Siccardi, S. and Villa, V. (2023.), Trends in Adopting BIM, IoT and DT for Facility Management: A Scientometric
Analysis and Keyword Co-Occurrence Network Review, Buildings, Vol. 13  No.
1.http://dx.doi.org/10.3390/buildings13010015.

Sivori, D., Ierimonti, L., Venanzi, I., Ubertini, F. and Cattari, S. (2023.), An Equivalent Frame Digital Twin for the
Seismic Monitoring of Historic Structures: A Case Study on the Consoli Palace in Gubbio, Italy, Buildings,
Vol. 13 No. 7.http://dx.doi.org/10.3390/buildings13071840.

Su, S., Zhong, R. Y., Jiang, Y., Song, J., Fu, Y. and Cao, H. (2023.), Digital twin and its potential applications in
construction industry: State-of-art review and a conceptual framework, Advanced Engineering Informatics,
Vol. 57.http://dx.doi.org/10.1016/j.2e1.2023.102030.

Tan, Y., Chen, P., Shou, W. and Sadick, A. M. (2022.), Digital Twin-driven approach to improving energy efficiency
of indoor lighting based on computer vision and dynamic BIM, Energy and Buildings, Vol.
270.http://dx.doi.org/10.1016/j.enbuild.2022.112271.

Tao, F., Zhang, H., Liu, A. and Nee, A. Y. C. (2019.), Digital Twin in Industry: State-of-the-Art, IEEE Transactions
on Industrial Informatics, Vol. 15 No. 4, pp. 2405-2415 http://dx.doi.org/10.1109/T11.2018.2873186.

Teisserenc, B. and Sepasgozar, S. (2021.), Project data categorization, adoption factors, and non-functional
requirements for blockchain based digital twins in the construction industry 4.0, Buildings, Vol. 11 No.
12.http://dx.doi.org/10.3390/buildings11120626.

Therias, A. and Rafiee, A. (2023.), City digital twins for urban resilience, International Journal of Digital Earth,
Vol. 16 No. 2, pp. 4164-4190.http://dx.doi.org/10.1080/17538947.2023.2264827.

Torres, J., San-Mateos, R., Lasarte, N., Mediavilla, A., Sagarna, M. and Ledn, 1. (2024.), Building Digital Twins
to Overcome Digitalization Barriers for Automating Construction Site Management, Buildings, Vol. 14 No.
7.http://dx.doi.org/10.3390/buildings 14072238.

Tuhaise, V. V., Tah, J. H. M. and Abanda, F. H. (2023.), Technologies for digital twin applications in construction,
Automation in Construction, Vol. 152 http://dx.doi.org/10.1016/j.autcon.2023.104931.

Vieira, J., Almeida, N. M. D., Pogas Martins, J., Patricio, H. and Morgado, J. G. (2024.), Analysing the Value of
Digital Twinning Opportunities in Infrastructure Asset Management, Infrastructures, Vol. 9 No.
9.http://dx.doi.org/10.3390/infrastructures9090158.

Vila-Cha, E., Barontini, A. and Lourengo, P. B. (2023.), Implementation of a Condition Monitoring Strategy for
the Monastery of Salzedas, Portugal: Challenges and Optimisation, Buildings, Vol. 13 No.
3.http://dx.doi.org/10.3390/buildings 13030719.

Wang, S. (2025a.), A hybrid SMOTE and Trans-CWGAN for data imbalance in real operational AHU AFDD: A
case study of an auditorium building, Energy and Buildings, Vol.
348.http://dx.doi.org/10.1016/j.enbuild.2025.116447.

Wang, S. (2025b.), Real operational labeled data of air handling units from office, auditorium, and hospital
buildings, Sci Data, Vol. 12 No. 1, p. 1481.http://dx.doi.org/10.1038/s41597-025-05825-9.

Wang, S., Moon, S., Eum, 1., Hwang, D. and Kim, J. (2025.), A text dataset of fire door defects for pre-delivery
inspections of apartments during the construction stage, Data Brief, Vol. 60, p.
111536.http://dx.doi.org/10.1016/j.dib.2025.111536.

(<o), ITeon Vol. 31 (2026), Wang et al., pg. 178


http://dx.doi.org/10.1186/s40494-024-01404-0
http://dx.doi.org/10.56294/dm2024422
http://dx.doi.org/10.3390/buildings13010015
http://dx.doi.org/10.3390/buildings13071840
http://dx.doi.org/10.1016/j.aei.2023.102030
http://dx.doi.org/10.1016/j.enbuild.2022.112271
http://dx.doi.org/10.1109/TII.2018.2873186
http://dx.doi.org/10.3390/buildings11120626
http://dx.doi.org/10.1080/17538947.2023.2264827
http://dx.doi.org/10.3390/buildings14072238
http://dx.doi.org/10.1016/j.autcon.2023.104931
http://dx.doi.org/10.3390/infrastructures9090158
http://dx.doi.org/10.3390/buildings13030719
http://dx.doi.org/10.1016/j.enbuild.2025.116447
http://dx.doi.org/10.1038/s41597-025-05825-9
http://dx.doi.org/10.1016/j.dib.2025.111536

Wang, X., Liang, C. J., Menassa, C. C. and Kamat, V. R. (2021.), Interactive and Immersive Process-Level Digital
Twin for Collaborative Human-Robot Construction Work, Journal of Computing in Civil Engineering, Vol.
35 No. 6.http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000988.

Xiao, J., Ma, S., Wang, S. and Huang, G. Q. (2024.), Fine-grained digital twin sharing framework for smart
construction through an incentive mechanism, International Journal of Production Economics, Vol.
276.http://dx.doi.org/10.1016/j.ijpe.2024.109382.

Xu, J., Lou, J., Lu, W., Wu, L. and Chen, C. (2023.), Ensuring construction material provenance using Internet of
Things and blockchain: Learning from the food industry, Journal of Industrial Information Integration, Vol.
33.http://dx.doi.org/10.1016/j.jii.2023.100455.

Yan, Y., Ni, L., Sun, L., Wang, Y. and Zhou, J. (2025.), Digital Twin Enabling Technologies for Advancing Road
Engineering and Lifecycle Applications, Engineering, Vol. 44, pp- 184-
206.http://dx.doi.org/10.1016/j.eng.2024.12.017.

Yang, J. and Ng, S. T. (2024.), Prospects for digital twin technology in the building modular construction and
operation phases: A game theory-based analysis, Journal of Cleaner Production, Vol.
470.http://dx.doi.org/10.1016/j.jclepro.2024.143344.

Ye, Z., Jingyu, L. and Hongwei, Y. (2022.), A digital twin-based human-robot collaborative system for the
assembly of complex-shaped architectures, Proceedings of the Institution of Mechanical Engineers, Part B:
Journal of Engineering Manufacture, doi:
10.1177/09544054221110960.http://dx.doi.org/10.1177/09544054221110960.

Ye, Z., Ye, Y., Zhang, C., Zhang, Z., Li, W., Wang, X., Wang, L. and Wang, L. (2023.), A digital twin approach for
tunnel construction safety early warning and management, Computers in Industry, Vol.
144 http://dx.doi.org/10.1016/j.compind.2022.103783.

Zhang, J., Chan, C. C. C., Kwok, H. H. L. and Cheng, J. C. P. (2023.), Multi-indicator adaptive HVAC control
system for low-energy indoor air quality management of heritage building preservation, Building and
Environment, Vol. 246.http://dx.doi.org/10.1016/j.buildenv.2023.110910.

Zhang, Z., Wei, Z., Court, S., Yang, L., Wang, S., Thirunavukarasu, A. and Zhao, Y. (2024.), A Review of Digital
Twin Technologies for Enhanced Sustainability in the Construction Industry, Buildings, Vol. 14 No.
4.http://dx.doi.org/10.3390/buildings14041113.

Zhao, Y., Wang, N. and Liu, Z. (2022a.), An Established Theory of Digital Twin Model for Tunnel Construction
Safety Assessment, Applied Sciences (Switzerland), Vol. 12 No.
23 http://dx.doi.org/10.3390/app122312256.

Zhao, Y., Wang, N., Liu, Z. and Mu, E. (2022b.), Construction Theory for a Building Intelligent Operation and
Maintenance System Based on Digital Twins and Machine Learning, Buildings, Vol. 12 No.
2.http://dx.doi.org/10.3390/buildings 12020087.

Zhu, H., Hwang, B. G., Tan, Y. Z. and Wei, F. (2024.), Building on Digital Twin: Overcoming Barriers and
Unlocking Success in the Construction Industry, Journal of Construction Engineering and Management,
Vol. 150 No. 10.http://dx.doi.org/10.1061/JCEMD4.COENG-13991.

(<o), ITeon Vol. 31 (2026), Wang et al., pg. 179


http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000988
http://dx.doi.org/10.1016/j.ijpe.2024.109382
http://dx.doi.org/10.1016/j.jii.2023.100455
http://dx.doi.org/10.1016/j.eng.2024.12.017
http://dx.doi.org/10.1016/j.jclepro.2024.143344
http://dx.doi.org/10.1177/09544054221110960
http://dx.doi.org/10.1016/j.compind.2022.103783
http://dx.doi.org/10.1016/j.buildenv.2023.110910
http://dx.doi.org/10.3390/buildings14041113
http://dx.doi.org/10.3390/app122312256
http://dx.doi.org/10.3390/buildings12020087
http://dx.doi.org/10.1061/JCEMD4.COENG-13991

	Digital twins in the construction industry: A systematic review of current practices and future directions
	1. Introduction
	2. Methodology and data collection
	2.1 Stage1: Planning
	2.2 Stage 2: Implementation
	2.3 Stage 3: Synthesis

	3. Results and findings
	3.1 Overview of selected samples
	3.1.1 Keywords Co-occurrence Network

	3.2 Synthesis of rview papers
	3.3 Synthesis of research articles
	3.3.1 DT applications distribution across domains and lifecycle
	3.3.2 DT technology framework
	3.3.3 Barriers and challenges for DT implementation
	3.3.4 Multidimensional Strategies for DT Implementation


	4. Discussion, future directions and limitations
	4.1 Lifecycle
	4.2 Technology integration and Human-AI interactions
	4.3 Cost, value, and maturity considerations in DT adoption
	4.4 Practical implications for stakeholders
	4.5 Limitations

	5. Conclusions
	References


