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SUMMARY: As part of Industry 4.0 initiatives, the construction industry is increasingly adopting Digital Twin 

(DT) to enhance asset lifecycle management, predictive maintenance, and data-driven decision-making. However, 

DT implementation remains fragmented and uneven across lifecycle phases, application domains, and 

organisational contexts. This study aims to address these gaps through a comprehensive review of current DT 

practices in construction. A two-stage systematic literature review, following PRISMA guidelines, was conducted. 

The first stage analysed 122 DT review articles to map thematic trends, research focuses, and overlooked areas. 

The second stage synthesised 297 empirical studies to examine practical application distribution, technology 

integration frameworks, deployment barriers, and mitigation strategies. Current DT research is heavily 

concentrated on the operation and maintenance phase, with limited attention to early design or end-of-life 

activities. Key challenges include data fragmentation, interoperability issues, high initial costs, limited stakeholder 

engagement, and insufficient regulatory and organisational support. A range of technical and institutional 

strategies has been identified to address these barriers. Crucially, the study translates these findings into 

actionable roadmaps for key stakeholders, offering role-specific strategies to bridge the gap between theory and 

practice. This study presents a comprehensive synthesis of over 400 publications from 2019 to 2024, systematically 

mapping DT applications across lifecycle stages, categorising key barriers, and evaluating targeted strategies for 

each. By identifying critical knowledge gaps and limitations within the current body of DT research, it offers 

valuable insights to inform future investigations and support more scalable and integrated implementation in 

practice. 
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1. INTRODUCTION 

Industries are increasingly adopting digital and intelligent technologies to address their complexities with the 

advent of Industry 4.0 (Adu-Amankwa et al., 2023). The construction industry is trending towards leveraging the 

approach of DTs to manage, plan, predict, and present buildings and infrastructure (Lu et al., 2020). The concept 

of Digital Twin (DT), originating from Michael Grieves' presentation on Product Lifecycle Management in 2002, 

outlined the basic elements of it: the physical entity, the virtual equivalent, and the bi-directional flow of data 

between the two (Grieves and Vickers, 2017). It has evolved and proliferated in a variety of domains, flourishing 

not only in product manufacturing and aerospace, but more recently gaining attraction in construction and smart 

cities (Boje et al., 2020). Since there is no universally accepted definition of DT, many studies and organisations 

have attempted to define it in terms of its characteristics and functions. Schluse and Rossmann (2016) defined DT 

as a virtual representation of a real-world subject or object including data, functionality and communication 

interfaces, while Madni et al. (2019) described DT as consisting of connected products and a digital thread which 

collects data from the physical twin to update the virtual models. In civil engineering, Jiang et al. (2021) defined 

DT as an integration of Building Information Modelling (BIM) and the Internet of Things (IoT). Unlike the static, 

one-way data flow of BIM, DTs facilitate dynamic, real-time interaction through continuous, bidirectional data 

exchange (Tao et al., 2019). Specifically in the built environment, the Centre for Digital Built Britain defined DTs 

as “a realistic digital representation of assets, processes or systems in the built or natural environment” (Bolton et 

al., 2018) while  Opoku et al. (2022) describe it as a real-time representation of a building or structure that reflects 

the state and features of its physical counterpart. Despite field-specific variations, most definitions focus on three 

key components: the physical entity, the virtual model, and the data flow between them (Tao et al., 2019). 

Given the increasing digitalisation needs of industry, it is evident that DT, with its advanced digital features, offers 

significant advantages and application potential (Jiang et al., 2021). Although DT has proven to be a valuable 

contributor in construction projects and throughout the lifecycle, the application of DTs in construction is still 

underexplored, particularly in the early lifecycle phases (Long et al., 2024). Current research focuses more on 

theoretical frameworks than practical deployment (Zhao et al., 2022b, Madubuike et al., 2022) with studies often 

limited to specific areas such as heritage facilities (Hou et al., 2024), bridges (Jiménez Rios et al., 2023), 

construction safety (Hou et al., 2021), etc. or discussing the relationship between DT and other concepts such as 

BIM (Radzi et al., 2024) and blockchain (Adu-Amankwa et al., 2023).  

However, despite this rapid growth, the synthesis of existing knowledge remains fragmented. Most existing 

reviews focus on specific technologies, application domains or isolated lifecycle phases, often neglecting a holistic 

analysis across technical, operational, and strategic dimensions and lack an integrated perspective on how enabling 

technologies are effectively operationalised within construction DTs. Furthermore, because existing studies focus 

primarily on original research rather than evaluating the review literature itself, their limitations and research gaps 

are often unrecognised. This absence of a systematic “review-of-reviews” obscures the broader research landscape, 

making it difficult to define targeted directions for future study. To address these gaps, this study introduces a two-

stage research design that distinguishes it from previous single-layer reviews. First, it utilises a “review-of-

reviews” to identify how the field has been framed and to assess what has been well explored or insufficiently 

addressed. Second, it synthesises empirical studies to explore the application of DTs in different domains, examine 

key barriers, and assess technology integration. Crucially, this synthesis is translated into actionable, stakeholder-

specific strategies aimed at overcoming challenges of DT deployment. This dual approach is essential to move 

beyond broad overviews and construct a solid, multi-dimensional roadmap for future research and implementation. 

Accordingly, this paper aims to systematically assess the current practice and emerging trends in the development 

and implementation of DTs in construction, identify key knowledge gaps, and address the following research 

questions (RQs):  

RQ1: What key thematic trends emerge from existing DT research in construction?  

RQ2: What are the main barriers to the DT implementation and what strategies have been proposed? 

RQ3: What enabling technologies are used and how are they integrated into the construction DT ecosystem? 

This paper begins with an introduction to the DT concept and the rationale for the study, followed by a two-stage 

systematic literature review methodology.  The findings are presented in three parts: an overview of the literature 
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distribution and keyword co-occurrence networks; an analysis of review articles to identify thematic trends and 

research gaps; and a synthesis of empirical studies focusing on application areas, technology integration, 

implementation barriers, and mitigation strategies. This is followed by a discussion of key findings, directions for 

future research and limitations. The paper concludes with a summary of the research process and results. By 

highlighting best practices, challenges, and future trends, this review provides valuable insights for stakeholders 

and supports strategic decision-making for the effective adoption of DT in the construction industry. 

2. METHODOLOGY AND DATA COLLECTION 

This study employed a systematic literature review (SLR) method, conducting comprehensive searches and 

reviews of relevant literature within the defined research scope. The SLR method typically follows a rigorous and 

explicit procedure (Su et al., 2023) , applying clearly defined search and selection criteria (Hou et al., 2024). The 

review was conducted in three main phases: planning, implementation and literature synthesis.  

2.1 Stage1: Planning  

The process began with the formulation of clear research questions and objectives, aligned with the PRISMA 

(Preferred Reporting Items for Systematic Reviews and Meta-Analyses) framework. As outlined in the 

introduction, this study aims to evaluate the current status and future trends of DTs in the construction industry. 

Specifically, the review addresses three core research objectives:  

(1) to identify thematic trends in existing DT research in construction.  

(2) to explore a comprehensive framework and roadmap for enabling DT technologies and their integration, 

and 

(3) to examine the main barriers to DT implementation and related solutions.  

These objectives informed the design of the review protocol, inclusion and exclusion criteria, and synthesis 

framework. The databases Scopus, the Web of Science and ScienceDirect were chosen for the initial search of the 

literature due to their extensive coverage of construction research (Naderi and Shojaei, 2023, Opoku et al., 2021, 

Deng et al., 2021). To ensure a broad and inclusive search, keywords were extended to cover related terms such as 

“built environment”, “AEC”, “building” and “infrastructure”. The final search string was:  

(“digital twin”) AND (“construction” OR “AEC” OR “built environment” OR “building” OR “infrastructure”).  

The search was limited to English-language journal articles published up to the end of 2024, to ensure quality, 

consistency, and relevance for comparative analysis. 

Inclusion criteria were applied to studies that: Explicitly focused on DTs within the construction industry; 

Presented empirical findings, theoretical frameworks, or structured reviews. 

Exclusion criteria included studies that: Did not engage directly with DTs; Were outside the construction or built 

environment domains; Mentioned DTs only as a future research direction without substantial focus. 

2.2 Stage 2: Implementation  

The defined search strategy was applied to the three databases. The initial search retrieved 3292 articles from 

Scopus, 2892 from Web of Science, and 994 from ScienceDirect. After removing 3076 duplicates, 4102 articles 

remained for screening. 

The initial screening of titles, abstracts, and keywords reduced the corpus to 859 articles for full-text assessment. 

Subsequently, a detailed full-text review against the inclusion and exclusion criteria yielded a final dataset of 419 

articles for synthesis. The full review workflow is illustrated in Figure 1. 

2.3 Stage 3: Synthesis   

The final pool of articles underwent a qualitative content analysis. Key bibliographic and thematic data were 

extracted and coded to facilitate thematic clustering. This process enabled a structured synthesis of research trends, 

application areas, technology integration pathways, implementation challenges, and proposed solutions. The 
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findings directly address the research objectives and provide a critical knowledge base to inform future research 

directions and practical DT deployment in construction. 

 

Figure 1: The systematic literature review process workflow. 

3. RESULTS AND FINDINGS  

3.1 Overview of selected samples 

A total of 419 relevant articles from 135 international journals were included in the final dataset. Table 1 presents 

the distribution of articles among journals with five or more publications, distinguishing between research and 

review articles. Although these 22 journals represent only 16.3% of all sources, they account for 278 articles 

(66.3% of the total dataset), highlighting their centrality in shaping the DT research landscape in construction. 

The most prolific outlets were Buildings and Automation in Construction, contributing 10.7% and 10.5% of the 

total publications respectively. Together, they make up over one-fifth of the entire dataset, highlighting their 

dominant influence. A second tier includes Sustainability (5.0%), Journal of Building Engineering (4.3%), and 

Applied Sciences (4.1%), reflecting the interdisciplinary scope and applicability of DT. Notably, journals such as 

Buildings and Automation in Construction show a balanced mix of research and review articles, supporting both 

empirical inquiry and knowledge synthesis. Others, including Engineering, Construction and Architectural 

Management and Journal of Information Technology in Construction, lean more towards review articles, indicating 

a focus on conceptual exploration. In contrast, technically oriented journals such as Tunnelling and Underground 

Space Technology and Building and Environment predominantly published original research, highlighting their 

emphasis on applied studies and implementation 

Figure 2 shows the annual distribution of reviewed articles from 2019 to 2024, segmented into original research 

and review articles. The total number of publications has increased significantly over the past six years, reflecting 

the rapidly growing interest in research on DTs in the field of construction. In 2019-2020, at an early stage of 

concept development, a limited number of publications were published, mainly research articles. In 2021-2022, 

the number of publications increased significantly, both articles and reviews. The growth rate slowed slightly in 

2023, but the largest increase was in 2024, with a total of 179 articles (114 research articles and 65 reviews). This 

trend points to both sustained interest in empirical research and an increasing demand for integrative reviews that 

consolidate existing knowledge and guide future developments. 
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Table 1: Journal source and type distribution. 

Rank Journal Name Count Proportion Article Review 

1 Buildings 45 10.7% 26 19 

2 Automation in Construction 44 10.5% 30 14 

3 Sustainability 21 5.0% 13 8 

4 Journal of Building Engineering 18 4.3% 12 6 

5 Applied Sciences 17 4.1% 14 3 

6 Sensors 13 3.1% 12 1 

7 Frontiers in Built Environment 10 2.4% 9 1 

8 Advanced Engineering Informatics 10 2.4% 7 3 

9 Energies 9 2.1% 6 3 

10 Energy and Buildings 9 2.1% 8 1 

11 IEEE Access 9 2.1% 7 2 

12 Engineering, Construction and Architectural Management 9 2.1% 4 5 

13 Advances in Civil Engineering 8 1.9% 7 1 

14 Smart and Sustainable Built Environment 8 1.9% 4 4 

15 Journal of Information Technology in Construction 7 1.7% 2 5 

16 Tunnelling and Underground Space Technology 7 1.7% 7 0 

17 Building and Environment 6 1.4% 6 0 

18 Journal of Computing in Civil Engineering 6 1.4% 6 0 

19 Structure and Infrastructure Engineering 6 1.4% 6 0 

20 International Journal of Construction Management 6 1.4% 5 1 

21 Developments in the Built Environment 5 1.2% 4 1 

22 Sustainable Cities and Society 5 1.2% 3 2 

Total 

 

278 66.3% 198 80 

3.1.1 Keywords Co-occurrence Network   

To explore the thematic structure of DT research in construction, a keyword co-occurrence analysis was conducted 

using VOSviewer. Author keywords were selected over index terms as they better capture the core focus of the 

articles (Opoku et al., 2021). Synonyms such as “digital twin”, “DT”, and “digital twins”, as well as variations of 

“BIM” and “IoT”, were merged for analytical consistency.  

Finally, out of a total of 1159 keywords, 42 keywords with a frequency of five or more occurrences were identified 

and formed eight clusters. Figure 3 presents the co-occurrence network, with node size indicating keyword 

frequency and proximity reflecting thematic correlation (Hosamo et al., 2022).  

Figure 4 shows the corresponding cluster dendrogram. Cluster 1 illustrates the DT lifecycle, with a focus on 

infrastructure applications such as bridges. It includes sensor-based data acquisition, point cloud modelling, 

simulation, and structural health monitoring (SHM). This cluster overlaps with Cluster 2, which incorporates 

machine learning (ML), reflecting the integration of real-time data with predictive analytics for intelligent asset 

management. Clusters 2, 3, and 7 centre on core DT functions, including construction management, facility 

management, smart buildings, and intelligent construction. Cluster 4 highlights advanced digital integrations such 
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as deep learning, AI, and blockchain, indicating an increasing emphasis on automation, diagnostics, and data 

security. Cluster 6 reflects the link between DT and sustainability, including operational carbon reduction and 

energy efficiency, where simulation tools are used to enhance building performance and support low-carbon 

transitions. Clusters 5 and 3 capture conceptual development and implementation challenges, including theory 

building, framework development, and assessments of industry readiness. 

 

Figure 2: Annual distribution of the reviewed articles. 

 

Figure 3: Keyword co-occurrence network. 
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Figure 4: Keyword cluster dendrogram. 

Overall, the co-occurrence analysis reveals a technically robust and thematically expanding research landscape. 

DT research in construction is evolving beyond foundational technologies such as BIM and IoT, toward intelligent 

systems, data-driven decision-making, and sustainable asset development. 

3.2 Synthesis of rview papers 

Table 2 presents a summary of review papers on DTs according to both lifecycle phases and application domains. 

The lifecycle phases are categorised into Construction, Operation and Maintenance (O&M), and Cross lifecycle. 

The application domains include Facilities management (FM), Building, Cultural heritage, Infrastructure, Urban 

Digital Twins (UDTs)/Smart cities, and Broad conceptual and industry-wide studies.  

From a lifecycle perspective, most review studies (90 out of 122) take a cross-lifecycle approach, highlighting 

overarching frameworks and integrated DT applications that span multiple phases. The O&M phase is the next 

most frequently addressed, while construction-focused reviews are comparatively fewer, and the design phase 

remains substantially underexplored. Despite advancements in lifecycle integration, current reviews 
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predominantly emphasise theoretical contributions rather than phase-specific implementation strategies. In terms 

of domains, the most substantial group of reviews was broad conceptual studies. This is followed by reviews 

focusing on infrastructure and buildings, reflecting current DT adoption trends. Conversely, domains such as 

cultural heritage, FM, and UDTs remain relatively underrepresented in the literature. 

Table 2: Research domains and life cycle distribution for review papers. 

                                                              Phase                                             

Domain                                                                    

 

Construction 

 

O&M 

 

Cross lifecycle  

 

Total 

FM 0 0 2 2 

Building 1 12 8 21 

Cultural heritage 0 2 2 4 

Infrastructure 1 5 22 28 

UDTs / smart cities 0 0 5 5 

Broad conceptual and industry-wide studies* 6 5 51 62 

Total 8 24 90 122 

* This category includes studies that address DTs at a broad or conceptual level within the domain such as the 

Construction Industry; Civil Engineering; Built Environment; Architecture, Engineering and Construction (AEC); 

and Architecture, Engineering, Construction, and Operations (AECO). 

 

 

Figure 5: Dimension matrix for review papers. 

Combining both dimensions, cross-lifecycle research dominates, particularly in infrastructure and conceptual 

studies, highlighting a system-level focus over phase-specific detail. In contrast, building-related reviews 

emphasise O&M, aligning with asset management needs. Construction-phase reviews remain limited, likely due 

to the ongoing challenges in DT integration during early project stages. 
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Overall, existing review literature can be grouped into four main categories, as illustrated in Figure 5:  

(1) Life-cycle oriented studies that examine DT across construction, O&M, or the entire asset lifecycle. 

(2) Domain specific reviews that target particular sectors such as buildings (Lauria and Azzalin, 2024b), 

infrastructure (Lampropoulos et al., 2024) or urban systems (Therias and Rafiee, 2023);  

(3) Technology driven studies that focus on the enabling technologies (Tuhaise et al., 2023, Yan et al., 2025) and 

frameworks (Mousavi et al., 2024) that support DT development; and  

(4) Thematic studies that span applications, enabling technologies, conceptual frameworks, barriers and drivers, 

and emerging research trends. 

Technological analyses in the literature primarily emphasise BIM (Nguyen and Adhikari, 2023) and IoT (Siccardi 

and Villa, 2023), with significantly less attention given to AI, ML, blockchain, and other digital technologies, 

despite their increasing importance in recent DT systems. 

Despite the growing literature, key gaps remain. There is limited systematic analysis of barriers to DT adoption 

and few strategies for overcoming them. While emerging technologies are acknowledged, in-depth studies on their 

deployment and integration, particularly AI, blockchain, and the semantic web are scarce. Additionally, there is no 

comprehensive review on evaluating DT success. Performance metrics and validation methods are either missing 

or fragmented. This highlights a maturing but still fragmented field, where conceptual clarity is improving, but 

practical and evaluative research is lacking. Bridging these gaps is crucial for moving DTs toward scalable 

implementation in construction. 

3.3 Synthesis of research articles 

Current DT research in construction is highly multidimensional, with broad, intersecting topics. To address core 

research questions, this section provides a critical analysis along four dimensions: (1) distribution of DT 

applications across lifecycle phases and domains; (2) integrated technology frameworks from data collection to 

decision-making; (3) key barriers to industry adoption; and (4) a multidimensional strategy matrix for response.  

3.3.1 DT applications distribution across domains and lifecycle 

Table 3 classifies 297 DT-related articles by lifecycle phases and domains.  

Among all domains, infrastructure has attracted the widest academic attention (n = 94) with a strong focus on the 

O&M phase (n = 59) where DTs enable risk management and decision support. Given the great importance of 

infrastructure safety, the DT function in existing studies focuses on two core activities: (1) inspection and 

monitoring, which significantly reduces operational costs and safety risks by improving safety management 

effectiveness and automating inspections to replace high-risk manual work; and (2) decision response, through the 

fusion and analysis of data from multiple sources, to provide data-driven support for decision-making, predictive 

maintenance and performance optimisation. DTs integrate emerging wireless communication technologies, 

predictive maintenance approaches, IoT, structural reliability analysis, and other advanced tools to enhance the 

understanding of structural behaviour and integrity, thereby enabling real-time monitoring of the behavioural 

evolution of infrastructure assets (Futai et al., 2022). Feng et al. (2024a) developed an integrated DT model 

including both the physical components and operational processes of a pump station, achieving a 100% automatic 

detection rate in case studies and realising cost savings of 2.25 million RMB (approximately US$310,000). Hagen 

and Andersen (2024) proposed the integration of DT with ML to improve the detection and diagnosis of bridge 

damage, while Heng et al. (2024) incorporated predictive models, monitoring data, and detection outcomes into 

DTs to support proactive and sustainable maintenance of ageing infrastructure and to optimise resource allocation. 

In the construction phase, DT is mainly applied to dynamic control of construction quality, process optimisation 

and real-time risk monitoring. The DT model delivers real-time feedback on over-excavation and under-excavation 

data during tunnel construction, facilitating accurate assessment of geotechnical conditions and enabling dual 

control of construction quality and cost (Fang et al., 2024). DT has demonstrated considerable value in the safety 

management of tunnel construction. It was confirmed that DT systems can detect tunnel deformation and generate 

early warnings alongside responsive action plans (Feng et al., 2024b). Zhao et al. (2022a) reported that the 

prediction accuracy of settlement values using DT meets the requirements for dynamic safety assessment. Building 

on this, He et al. (2024) enhanced the accuracy and reliability of water inrush disaster simulations by integrating 
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ML with finite element analysis. In a case study, Ye et al. (2023) developed an intelligent early warning platform 

based on multi-source information, which successfully predicted a collapse at the tunnel excavation face and 

safeguarded construction personnel through timely emergency intervention. However, research in the planning and 

design phases is still limited, with existing results focusing on improving design efficiency and accuracy. By 

creating highly detailed 3D models, DTs can provide stakeholders with a comprehensive visual representation, 

which can contribute to better understanding and communication between stakeholders (Li et al., 2023). While 

technologies like BIM already support these capabilities, DTs go further by integrating real-time data and advanced 

analytics, making them powerful decision-making tools. DT provides effective decision support for the design 

process of complex infrastructure engineering systems by quantitatively and conveniently predicting and managing 

design changes (Chen and Whyte, 2022). 

Table 3: Research domains and lifecycle distribution of research articles. 

              Phase 

Field 

Design & 

Planning 

Construction O&M The entire 

lifecycle/not 

limited 

Building 

 (n = 85) 

 

  

2 8 60 15 

Building energy 

efficiency analysis. 

Energy 

consumption.  

Decision analysis.  

Site safety management. 

Construction project 

performance. 

Construction site management. 

Information pipelines. 

FM: sensing and monitoring; fault 

detection and diagnosis; damage 
detection; early warning; SHM. 

Energy: energy consumption 

monitoring, predictions and efficiency 

optimisation. 

Occupancy: monitoring, visualising, 
assessment; human-building 

interactions; space management. 

Emergency and safety: fire protection 

or emergency; danger warning and 

positioning; seismic behaviour 
monitoring and post-earthquake safety 

prediction. 

Smart buildings. 

Predictive maintenance.  

Carbon emissions control & reduction. 

Building performance. 

Renovation: renovation strategies 

assessment. 

Model upgrade: in situ model fusion; 

enriching geometric digital twins. 

Building collapse accident 

investigation. 

Sustainability 

assessment. 

Building 

environment 

monitoring.  

Energy 

performance.  

FM.  

Embodied 

carbon 

estimation.  

Smart buildings.  

 

 

  

Construction 

project  

(n = 20) 

0 15 0 5 

 Construction management: 

optimise the process; safety 

management. 

Automated construction. Progress 
monitoring. 

Modular integrated construction: 

real-time monitoring and 

dynamic control; supply chain 

management. 

 Accountable 

information 

sharing in 

projects. 

Decision 

support. 

Maturity 

measurement. 
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              Phase 

Field 

Design & 

Planning 

Construction O&M The entire 

lifecycle/not 

limited 

Prefabricated construction: 

intelligent safety risk prediction. 

Smart construction. 

Robotic construction. 

Optimal 

construction 

project 

management: 

performance 
management; 

project data 

categorisation. 

Construction 

site (n = 20) 

0 20 0 0 

 Tower cranes: Predicting 

degraded lifting capacity; 
Stability analysis. 

On-site assembly: real-time 

synchronisation for planning, 

scheduling, and execution 

Quality assessment/error control. 

Safety risk analysis/threat 

assessment. 

Construction efficiency: cable 

structure demolition 

optimisation.  

Collaborative human-robot. 

Construction management.  

  

Structure & 

materials  

(n = 8) 

1 5 2 0 

Quality control 

(precast concrete 

elements). 

Construction material: 

construction material provenance 

tracing and tracking. 

Construction element: remote 
real-time concrete compressive 

strength monitoring. 

Continuous monitoring of 

temperature & humidity in 

construction elements. 

Structural safety analysis: 

intelligent safety assessment 

method of prestressed steel 

structures. 

Crack monitoring (concrete). 

Structural performance and damage 

prediction (earthquake-affected 

pinched structures). 

 

Cultural 

heritage  

(n = 19) 

0 0 19 0 

  Predictive maintenance. 

Preventive maintenance. 

SHM: structural stress analysis; 

structural integrity after earthquake 

(cracks). 

Indoor environment: IAQ; humidity; 
temperature. 

Risk/threat detection. 

 

3 14 59 18 
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              Phase 

Field 

Design & 

Planning 

Construction O&M The entire 

lifecycle/not 

limited 

Infrastructure (n 

= 94) 

To predict and 

manage design 

changes. 

Clearance check 

for underpass roads 
in road widening 

design. 

Just-in-time design 

of rock tunnel: 

improve efficiency 
and accuracy. 

Safety management & hazard 

prevention: health, safety, and 

real-time monitoring. 

Quality assurance & process 

optimisation: quality control and 
precision construction. 

Structural performance & risk 

mitigation: deformation 

prediction and structural integrity. 

Data integration & operational 
efficiency: data-driven decision 

support. 

SHM & predictive maintenance. 

Energy and carbon management. 

Safety and emergency management. 

Automated inspections and asset 

management. 

Data integration and decision support. 

Performance optimisation. 

Enhancing 

decision-

making and 

management. 

Sustainability 
assessment and 

risk 

management. 

Maintaining 

structural 
sustainability. 

Comprehensive 

lifecycle 

monitoring and 

management. 

UDT (n = 8) 

  

1 1 4 2 

Urban road 

planning: 

facilitating the 

evaluation and 
comparison of road 

development 

proposals. 

Urban excavation safety: to 

proactively monitor urban 

excavation, dynamically assess 

collision risk, and timely warn 
against unsafe behaviours. 

Environmental monitoring 

management. 

Sustainable comfort monitoring. 

Predictions, and what-if analysis for 
assessing impact of changes: enabling 

stakeholder and citizen participation. 

Theory 

building: 

framework; 

urban dynamics 
(cases). 

 

 

Broad 

conceptual and 
industry-wide 

studies  

(n = 41)  

0 3 10 28 

 Automated progress monitoring.   

Intelligent dispatching System.  

Human-robot collaborative 

system. 

FM: indoor air quality; emergency; 
asset health. 

Human-robot teaming: compatibility 

of the environment with robots. 

Model upgrade: federated data 

modelling to improve interoperability. 

Carbon reduction (residential area). 

Experience improvement 

Workforce 
development: 

engineering 

education; 

safety training. 

Theory 
building: 

awareness; DT 

readiness 

assessment; 

barriers; 
contractor’s 

perspective. 

Deep learning 

integration. 

Circular 
economy 

integration. 

Total 6 66 156 69 

Proportion 2% 22% 53% 23% 

 

Similarly, studies related to buildings (n = 85) also exhibit strong attention to the O&M phase (n = 60), with DTs 

enhancing facility management, energy efficiency, comfort, and disaster response. By deeply integrating AI and 

big data analytics, DT achieves high-precision modelling and real-time mapping of a building's physical state and 

drives a fundamental shift from static management to dynamic prediction and intelligent decision-making (Tan et 
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al., 2022). Research shows that DT demonstrates significant advantages in thermal comfort control (ElArwady et 

al., 2024), energy consumption prediction (Henzel et al., 2022), carbon emissions monitoring (Arsiwala et al., 

2023), predictive maintenance (Hosamo et al., 2023b), structural health assessment (Longman et al., 2023), and 

disaster response (Lauria and Azzalin, 2024a). Some case studies have successfully applied it to complex scenarios 

like healthcare facilities, using multi-objective optimisation algorithms, ML models, and model predictive control 

to effectively enhance the response efficiency and energy performance of building systems (Hosamo et al., 2023a, 

Harode et al., 2023). Fewer studies focus explicitly on construction and design phases, indicating that building-

oriented DT research predominantly targets post-construction operational efficiencies and occupant-centred 

applications. However, recent research indicates that DT is gradually emerging as one of the key technologies for 

intelligent construction of buildings, enabling real-time monitoring and dynamic response to construction progress, 

site safety, equipment utilisation, and performance and quality management (Chacón et al., 2024, Posada et al., 

2024, Torres et al., 2024). Lifecycle-spanning studies highlight emerging interests in sustainability assessment 

(Boje et al., 2023), embodied carbon estimation (Chen et al., 2021), and integrated smart building systems (Eneyew 

et al., 2022).  

The domains of construction projects (n = 20) and construction sites (n = 20) mainly target the construction phase, 

where DTs' real-time data transmission capabilities shine. Research on construction projects focuses largely on 

optimising management processes, modular construction, automated progress monitoring, and intelligent risk 

prediction. Similarly, construction-site studies emphasise safety management, equipment monitoring, on-site 

assembly optimisation, and collaborative human–robot systems. DTs enable real-time site monitoring, which 

supports efficient site management by providing dynamic updates on construction progress (Deng et al., 2021). 

Automated site monitoring with DTs improves logistics, progress control, site safety, quality assessment and 

management, ultimately reducing long-term costs (Boje et al., 2020). From a management perspective, Jiang et al. 

(2022b) utilised the real-time resource status and construction progress information obtained from DT to facilitate 

planning, scheduling and execution of construction projects, thereby improving efficiency and productivity. DTs 

accurately predict worker behaviours in risky situations (Jiao et al., 2024) and analyse the information collected 

through ML, thus effectively contributing to the improvement of construction safety and risk control (Zhao et al., 

2022b). Moreover, some experiments have confirmed that DTs enable human-robot collaboration by integrating 

visualisation and supervision of the planning and execution of tasks as well as bi-directional communication, which 

greatly improves efficiency (Wang et al., 2021). In contrast, studies focusing on cultural heritage (n = 19) are 

entirely oriented towards the O&M, emphasising condition monitoring (Vila-Chã et al., 2023), structural integrity 

(Sivori et al., 2023), preventive maintenance (Galiano-Garrigós et al., 2024) and indoor environment control 

(Zhang et al., 2023). The exclusive focus on O&M in this domain aligns with the distinctive preservation and risk 

mitigation needs associated with heritage assets. 

Structures and materials domain (n = 8) displays research activity across multiple lifecycle phases, which typically 

address real-time monitoring of the conditions of structures(Liu and Bao, 2023) and materials like concrete (Iqbal 

et al., 2024), structural safety analysis (Liu et al., 2022), and material tracing (Xu et al., 2023), reflecting an interest 

in lifecycle-integrated material and structural performance monitoring. Also, the emerging area of UDTs (n = 8) 

shows a relatively balanced distribution across lifecycle phases. Research in this domain addresses diverse issues, 

from urban planning and excavation safety to environmental monitoring and stakeholder participation, 

demonstrating an integrated and systemic approach at the urban scale (la Riccia et al., 2024, Afif Supianto et al., 

2024). 

Finally, extensive conceptual and industry-specific studies (n = 41) mostly adopted a full lifecycle or non-specific 

phase perspective (n = 28), covering foundational theoretical issues such as theoretical framework building, 

technology readiness assessment (Alnaser et al., 2024), workforce capability development (Hazrat et al., 2023), 

and the integration of DT with sustainability strategies like circular economy (Meng et al., 2023). These studies 

reflect scholars' shared focus on integrating fragmented knowledge, overcoming adoption barriers, and advancing 

the maturity of DT technology. 

Overall, current DT research exhibits significant phase-based imbalances: the O&M phase dominates (53%), 

construction phase research is relatively scarce (22%), and research on the design and planning phase is severely 

lacking (2%). Additionally, Long et al. (2024) highlighted the insufficient research on DT applications in the 

demolition phase. DT has the potential to enhance demolition operations by enabling precise planning and 

simulation of demolition activities through detailed virtual models, improving safety by identifying and mitigating 
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hazards (Borjigin, 2022). It can also assess environmental impacts, promote effective waste management and 

resource recovery, and optimise cost and time schedules. In contrast, the number of studies on the entire life cycle 

(23%) is relatively substantial, indicating that academia is deepening its understanding of DT from a lifecycle 

perspective and in terms of integration. However, future research should focus on DT application in the early and 

late phases of the lifecycle to drive the construction sector toward achieving true lifecycle digital asset 

management. 

 

Figure 6: Framework of DT technologies. 

3.3.2 DT technology framework 

As an evolving concept, DTs face notable technical challenges (Rasheed et al., 2020) with insufficient research on 

enabling technologies. Core technologies for data acquisition, modelling, and processing are essential to achieving 

DTs' key features. However, supporting technologies that enhance DT performance, such as data integration, 

security, and automation, remain underexplored and fragmented.  

Therefore, a structured DT technology framework was developed (Figure 6) and organised into six primary 

categories: Data Acquisition, Data Integration and Management, Data Security, Simulations and Analytics, 
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Modelling and Visualisation, and Automation and Robotics. These categories collectively support the 

comprehensive lifecycle management and functionalities of DT systems. The framework differentiates between 

two fundamental layers: the Physical layer, comprising real-world assets and environments, and the Digital and 

Functional layer, involving digital replicas and analytical functionalities. The Physical layer includes real-time 

data acquisition through advanced sensing technologies such as IoT sensors, LiDAR, drones, and Radio Frequency 

Identification (RFID) tags (Shi et al., 2024, Chen et al., 2021) as well as other system sources such as BIM and 

Building management system (Hosamo et al., 2023b). These instruments facilitate the accurate collection of 

geospatial data, environmental parameters, asset information, and operational metrics crucial for maintaining the 

fidelity of digital twins. 

The Digital Layer begins with data integration and management. Network and hardware infrastructure employing 

protocols such as Representational State Transfer Application Programming Interface (RESTful APIs) and 

Message Queuing Telemetry Transport (MQTT) ensure seamless data transfer and interoperability across diverse 

platforms (Banfi et al., 2022, Gao et al., 2023). Additionally, edge computing and cloud-based integration 

platforms (e.g., Azure and Bentley Systems) support real-time processing and storage, maintaining continuous and 

effective DT operation (Harode et al., 2023) . Central to the DT framework's security strategy is blockchain 

technology, which provides enhanced integrity, transparency, and traceability of the data streams (Figueiredo et 

al., 2024, Naderi and Shojaei, 2024). Cybersecurity protocols further ensure secure interactions and compliance 

with international standards for authentication and authorisation (Liu et al., 2024). 

Simulations and analytics form the analytical core of the Digital layer, where tools such as ANSYS, EnergyPlus, 

and SAP2000 (Galiano-Garrigós et al., 2024, Dang et al., 2022), coupled with ML libraries such as TensorFlow 

and PyTorch (Tan et al., 2022, Peng et al., 2020), enable predictive analysis, scenario testing, and informed 

decision-making. These computational tools offer extensive analytical capacity, underpinning proactive asset 

management and operational optimisation. Furthermore, modelling and visualisation technologies including BIM 

and 3D Finite element models, augmented reality (Microsoft HoloLens), virtual reality platforms (Unity 3D, 

Unreal Engine), and business intelligence dashboards (Power BI, Tableau), facilitate intuitive user interactions 

(Futai et al., 2022, Asare et al., 2024, El Mokhtari et al., 2022, Harode et al., 2023). They provide visually rich and 

interactive environments, enabling stakeholders to explore, interpret, and manage the physical assets effectively. 

Lastly, the Automation and Robotics category addresses the integration of AI-driven autonomous systems, such as 

robotic inspection platforms, remote-controlled machinery, and collaborative human-robot operations (Gao et al., 

2023, Ye et al., 2022). These technologies enhance operational efficiency, precision, and safety across construction, 

maintenance, and facility management tasks. 

In sum, the framework provides a holistic and layered view of DT technologies, linking physical assets to digital 

intelligence and enabling data-driven decision-making across the built environment lifecycle. 

3.3.3 Barriers and challenges for DT implementation  

Despite the transformative potential of DT in construction, adoption remains limited due to a complex set of 

barriers. Table 4 categorises 26 identified barriers into four key domains: technological, organisational, industry 

and market, and regulatory. Ranked by frequency in the literature, these barriers reveal the multi-dimensional 

challenges constraining DT implementation. 

Technological challenges were the most frequently cited category across the reviewed articles. A recurring issue 

involves sensor installations and the volume of data generated by advanced sensing networks, which place 

significant strain on existing digital infrastructures (Adeagbo et al., 2024). Massive data processing reduces system 

agility and operational efficiency, triggering huge computing demands (Piras et al., 2024). Agostinelli et al. (2021) 

reported that network capacity, device battery life, and maintenance costs often make real-time monitoring systems 

impractical, particularly in projects with complex site conditions. Moreover, the potential heterogeneity of DT 

architectures due to a lack of unified design, tools, approaches and platforms introduces further complexity 

(Adeagbo et al., 2024). This heterogeneity, combined with disparate information systems, results in data 

fragmentation which remains a critical challenge. Without a shared framework and detailed maintenance procedure 

for ensuring data integrity and synchronisation, the value and quality of data updated in DTs is compromised 

(Mahmoodian et al., 2022). Additionally, data privacy and security concerns persist, especially in critical 

infrastructure or sensitive information (Piras et al., 2024, Xiao et al., 2024). 
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Organisational barriers primarily originate from cultures and strategies resistant to change and a lack of strategic 

vision among practitioners and decision-makers (Agrawal et al., 2022). Literature highlights the difficulty many 

organisations face in making suitable decisions and investments regarding enabling technologies, particularly 

where the benefits of DTs are not well understood. In several studies, lack of structured project pathways was 

identified as a critical barrier, leading to uncertainty around how to initiate or scale DT implementations (Agrawal 

et al., 2022, Yang and Ng, 2024). The absence of clear value propositions also featured prominently in findings. 

Without demonstrable application cases or benchmarks, stakeholders are hesitant to commit resources to DT 

systems perceived as experimental (Vieira et al., 2024). Skill and knowledge gaps further hinder progress. For 

instance, Asare et al. (2024) reported low levels of knowledge on the design and implementation of DT-based 

projects, making it difficult to select appropriate platforms and benchmarks. 

Table 4: Barriers for DT implementation. 

Barrier category Code Sub-barriers Barrier description Frequency 

Technological 

barriers 

T1 Data integration and 

processing complexity 

Disparate data sources leading to processing and 

integration challenges. 

32 

 

T2 Interoperability issues Incompatibility between DT platforms, legacy systems, or 

tools. 

29 

 

T3 Technical challenges Practical issues with sensors or IoT devices, platforms, 
models and hardware deployments. 

23 

 

T4 Difficulty in real-time 

communication 

Real-time communication is difficult due to lack of 

performance. 

14 

 

T5 Computational demand  High resource requirements for real-time processing or 

large-scale simulations. 

8 

 

T6 Cybersecurity, data security 

and privacy concerns 

Risks of data breaches, unauthorised access, and 

uncertainty over privacy policies. Data security and 

privacy issues raise concerns in the areas of intellectual 

property, privacy and asset security. 

8 

 

T7 Data management and 
governance 

Large volumes of data are difficult to collect, store, 
process, and analyse. 

5 

 

T8 Lack of standards and 

frameworks 

Lack of unified DT development standards, models or 

interoperability protocols. 

5 

Organisational 

factors 

O1 Resistance to change Cultural inertia or scepticism toward adopting DT 

workflows. 

12 

 

O2 Lack of skilled workforce Shortage of personnel trained in DT technologies. 11 
 

O3 Cultural barriers and 

collaboration issues 

The difficulty for effective collaboration and teamwork 

among DT practitioners to addressing the variety, 

complexity, and scale. 

9 

 

O4 Knowledge and awareness 

gaps 

The lack of knowledge and awareness of DT capabilities 

or implementation among owners and contractors. 

5 

 

O5 Resource constraints Limited budget for pilot studies, training and other 

resources input. 

3 

 

O6 Unclear value proposition The absence of clear value propositions for DTs results in 

weak stakeholder engagement. 

2 

 

O7 Trust and reliability concerns Low confidence in the fidelity of DT outputs and decision 

support. 

2 

Industry and 
market 

environment 

I1 Return uncertainty The return on investment of DT projects and the benefits 
are unclear and uncertain.  

8 

 

I2 High initial investment and 
cost concerns 

Significant upfront costs for DT projects. 7 

 

I3 Risk aversion and innovation 

resistance 

The industry is more cautious about taking risks and 

adopting innovation. 

5 
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Barrier category Code Sub-barriers Barrier description Frequency 
 

I4 Economic pressures  Competitive pressures, tight schedules, and minimal 

profitability hinder investment and changes in 

conventional workflows. 

3 

 

I5 Fragmentation and structural 

rigidity 

The sector’s fragmented nature (transient subcontracting 

networks) poses a barrier to process innovation. 

3 

 

I6 Lack of scalability or 

implementation scale  

Most DT applications are specific-use cases and lack 

scalability, resulting in high costs. 

3 

 

I7 Market confusion  Software vendors' promotion simplifies the concept of DT 

into a mere technology or product, which confuses the 

market. 

1 

Regulatory 

constraints 

R1 Policy and government 

support gaps 

Absence of relevant policies, standards and government 

incentives. 

7 

 

R2 Lack of standards and 

regulations for DT 

Lack of standards and regulations leads to inconsistencies 

in implementations. 

5 

 

R3 Data privacy and ethical 

concerns 

Ownership, ethical and copyright concerns arise when 

dealing with the vast amount of data, especially personal 

data. 

3 

 

R4 Regulatory and compliance 

issues 

Uncertainty around approvals, data governance rules, IP 

ownership and legal processes. 

2 

Structural characteristics of the industry increase the challenges above. The sector is widely described as 

fragmented, with a generally conservative approach to innovation (Sacks et al., 2020). These conditions create an 

ecosystem that is digitally hesitant and often lacks clarity on return on investment, discouraging experimentation 

with novel technologies (Pregnolato et al., 2022). High initial costs and uncertainties surrounding long-term 

financial benefits remain dominant deterrents (Torres et al., 2024).  Moreover, the lack of consistent 

communication from technology vendors has resulted in conceptual ambiguity, where terms like DT are interpreted 

inconsistently across stakeholders (Camposano et al., 2021). This conceptual misalignment, combined with 

practical challenges in procurement, hinders the scaling of DT applications beyond demonstration-level initiatives. 

As a result, industry adoption remains slow, often limited to large, innovation-led projects or university-affiliated 

demonstrators. 

Although less frequently reported, regulatory issues pose long-term risks. Issues of data ownership, ethics, and 

intellectual property are particularly problematic in multi-stakeholder, high-volume data environments (Adeagbo 

et al., 2024). The absence of supportive policies and legal clarity contributes to compliance uncertainty (Pregnolato 

et al., 2022).  Additionally, limited government incentives restrict adoption, especially given the substantial initial 

investment required (Yang and Ng, 2024).   

In sum, DT implementation is hindered by a highly interdependent web of constraints. Technological readiness 

alone cannot ensure success without organisational capacity, regulatory clarity, and market confidence. A 

coordinated, cross-sectoral response is essential to overcoming these multifaceted challenges.  

3.3.4 Multidimensional Strategies for DT Implementation 

Table 5 maps the categorised barriers to DT implementation against a comprehensive set of strategies proposed in 

the reviewed literature. The strategies fall into four interdependent domains: Technical solutions, Organisational 

measures, Industry collaboration, and Policy support. The table offers an integrated framework for overcoming 

adoption challenges. 

Technical strategies focus on modular and decentralised DT architectures to enhance interoperability and 

scalability (Adeagbo et al., 2024, Niccolucci et al., 2022), which mitigates scalability challenges and allows 

systems to evolve incrementally across stakeholders and project phases which directly responds to interoperability 

concerns (T2) and the heterogeneity of digital platforms (T7). The increasing reliance on real-time data from 

distributed environments introduces vulnerabilities in communication architecture. In this context, AI-enhanced 
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IoT (AIoT) and edge computing architectures (Gao et al., 2023) offer improved resilience by reducing dependency 

on centralised processing and enabling real-time decision-making at the network edge, particularly relevant for 

barriers related to communication stability and performance (T4, T5). Data governance and privacy, central to 

regulatory and technical concerns, are addressed through secure data-sharing mechanisms such as blockchain and 

multilevel access control systems (Figueiredo et al., 2024). These solutions enhance trust across DT ecosystem by 

establishing clear protocols for ownership, protection, and role-based access, tackling barriers T6 and R3. Efforts 

to simplify sensing and modelling technologies are gaining traction as a response to the high complexity and cost 

of current DT systems (Kang and Mo, 2024). Lightweight solutions enable real-time data handling without 

compromising performance, thus targeting barriers related to hardware complexity (T1), system modelling (T3), 

and overall integration difficulty (T7). Simultaneously, the development of user-friendly interfaces (Banfi et al., 

2022) is emerging to reduce technical entry barriers for non-specialist users (O2, O4), which often impede wider 

adoption. 

Table 5: Strategies for DT implementation. 

Strategy 

category 

Strategy Description Addressed 

barriers 

References 

Technical 

solutions 

Modularisation and 

decentralisation of 

DT systems 

Breaking down DT systems into modular, 

decentralised units improves scalability, resilience, 

and adaptability across different project phases and 
stakeholders. 

T1, T2, T7 (Adeagbo et al., 2024, 

Niccolucci et al., 

2022, Teisserenc and 
Sepasgozar, 2021) 

 

Development of 

secure data-sharing 

mechanisms  

Utilising blockchain or trusted data-sharing 

frameworks to ensure the secure exchange, 

ownership control, and privacy of DT data across 
multiple systems and stakeholders.  

T6, R3 (Figueiredo et al., 

2024, Naderi and 

Shojaei, 2024, Xiao et 
al., 2024) 

 

AIoT and edge 

computing for 

communication 
resilience 

Deploying AI-enhanced IoT and edge computing 

architectures minimises reliance on centralised 

systems, enabling real-time decision-making even 
under network disruptions. 

T4, T5, T7 (Gao et al., 2023, 

Armijo and Zamora-

Sánchez, 2024) 

 

Lightweight sensing, 

modelling and 

analysing  

Utilizing lightweight sensors and simplified 

modelling approaches to minimise data complexity, 

optimise system performance, and facilitate real-

time data integration and analysis. 

T1, T3, T7 (Kang and Mo, 2024, 

Shlash Mohammad et 

al., 2024, Dan et al., 

2022) 

 

Multilevel security 

and access control 

Implementing hierarchical security protocols 

ensures that only authorised users can access 

specific DT datasets, protecting sensitive data. 

T6, R3 (Piras et al., 2024, 

Shahzad et al., 2022, 

Ellul et al., 2024) 

 

Development of 

user-friendly 

interfaces 

Developing intuitive DT interfaces that lower the 

technical barrier for users, facilitating broader 

adoption among non-specialist stakeholders. 

T3, O2, O4 (Naderi and Shojaei, 

2024, Banfi et al., 

2022) 

Organisational 

measures 

Internal training 

program for digital 

skills 

Providing training and skill development 

opportunities to close digital skill gaps and prepare 

employees for DT-related tasks and workflows. 

O2 (Piras et al., 2024, 

Broo and Schooling, 

2023, Naderi and 

Shojaei, 2024) 

 

Fostering a culture of 

openness and 

innovation 

Promoting an organisational culture of openness, 

knowledge sharing, and digital innovation that 

encourages the workforce to learn and experiment 

with DT tasks.  

O1, O3 (Broo and Schooling, 

2023, Piras et al., 

2024) 

 

Development and 

comparative 

evaluation of DT 

prototypes 

Developing prototypes of alternative DT solutions 

and presenting detailed comparisons of their 

advantages and limitations to stakeholders, 

facilitating informed decision-making and 
stakeholder confidence in DT implementation. 

O3, O4, 

O6, O7 

(Asare et al., 2024) 
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Strategy 

category 

Strategy Description Addressed 

barriers 

References 

 

Promoting 

collaborative 

governance 

Setting clear and measurable objectives, 

emphasising transparency and accountability, and 

fostering cooperation between stakeholders during 
DT project.  

O3, O4 (Broo and Schooling, 

2023, Haraguchi et al., 

2024) 

Industry 

collaboration 

Establishment of 

industry-wide 

standards 

Establishing industry-wide standards and common 

protocols for DT implementation. Defining open, 

non-proprietary standards for data formats, 

communication protocols, and system interfaces to 
facilitate integration. 

T2, T8, I5, 

I6, R2 

(Adeagbo et al., 2024, 

Callcut et al., 2021, 

Camposano et al., 

2021, Shahzad et al., 
2022, Vieira et al., 

2024)  
 

Promotion of non-

proprietary tools and 

ecosystem 

cooperation 

Encouraging the development and adoption of tools 

that work across platforms to improve 

interoperability and promote cross-sector 

cooperation. 

T1, T2, 

O4, I7 

(Casillo et al., 2024) 

 

Development of DT 

pilot projects 

Launching pilot DT projects to validate concepts, 

refine designs, and reduce concerns. Documenting 

and publishing open DT case studies to provide 

relatable, evidence-based examples. 

O1, O4, I1, 

I6, I7 

(Karatzas et al., 2024, 

Yang and Ng, 2024) 

 

Mapping the 

business value of DT 

Assessing the expected business value and returns of 

DT projects early to support strategic decision-

making and resource allocation. 

O6, O7, I1, 

I2 

(Torres et al., 2024, 

Vieira et al., 2024, 

Yang and Ng, 2024, 

Mahmoodian et al., 

2022) 

Policy and 

regulatory support 

Development of 

regulatory 

frameworks 

Developing legal guidelines to address data 

ownership, protection, and sharing issues specific to 

DT deployments. 

R2, R3, R4 (Camposano et al., 

2021, Naderi and 

Shojaei, 2024, Ohueri 

et al., 2025) 

 

Government support 

and incentives 

Providing support, financial incentives and 

subsidies for early DT projects to lower adoption 

risks and subsidies costs. 

I2, R1 (Yang and Ng, 2024, 

Xiao et al., 2024, 

Ohueri et al., 2025) 

A core theme across the organisational domain is the gap between technological readiness and institutional 

capacity. Internal training programs (Broo and Schooling, 2023) are essential for closing digital skill gaps, directly 

addressing the frequent lack of DT knowledge reported among project teams and managers (O2). However, 

training alone may not be sufficient without structural support. Studies emphasise the importance of fostering a 

culture of openness and innovation (Piras et al., 2024). Another promising strategy is the development and 

comparative evaluation of DT prototypes (Asare et al., 2024). By assessing multiple DT implementation options, 

stakeholders can better understand trade-offs in performance, cost, and integration, thereby addressing value 

ambiguity (O6), technical trust (O7), and cross-stakeholder collaboration (O3, O4). Closely related is the notion 

of collaborative governance, which frames DT adoption not just as a technological upgrade but as an inter-

organisational process requiring shared objectives, transparency, and accountability (Haraguchi et al., 2024). It 

helps overcome relational and procedural barriers that often appear as fragmented knowledge flows or stakeholder 

disengagement (O3, O4). 

Barriers associated with market structure and fragmented supply chains can be addressed through collaborative 

initiatives. The establishment of industry-wide standards (Shahzad et al., 2022) has emerged as a foundational 

enabler for DT implementation, targeting systemic issues like data format inconsistency (T2), integration across 

project phases (I5, I6), and regulatory uncertainty (R2). In parallel, efforts to promote non-proprietary tools and 

ecosystem cooperation (Casillo et al., 2024) counteract vendor lock-in and platform incompatibility (T1, I7). 

Cross-sector cooperation enables DTs to remain adaptable and interoperable across application cases, thus 

supporting long-term scalability. Pilot projects have also proven to be an effective means of reducing adoption 

risk. These small-scale experiments allow organisations to demonstrate feasibility, resolve technical barriers 
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incrementally, and generate stakeholder confidence through case-based learning (Yang and Ng, 2024).  Mapping 

DT business value can justify investment and align implementation with corporate objectives (Torres et al., 2024).  

Although underrepresented, policy support is vital. Regulatory frameworks are essential for managing legal 

ambiguity and supporting ethical data practices (Camposano et al., 2021), directly targeting barriers related to data 

ownership, security, and ethical governance (R2, R3, R4). Government support and financial incentives were 

identified as a catalyst for early adoption (Ohueri et al., 2025). By offsetting high upfront costs (I2) and reducing 

perceived investment risk, such support mechanisms can trigger adoption among smaller firms and encourage 

broader diffusion. 

These integrated strategies provide a practical roadmap to overcome the multifaceted barriers to DT 

implementation, enabling sustainable and scalable adoption in the construction industry. 

4. DISCUSSION, FUTURE DIRECTIONS AND LIMITATIONS 

DTs offer stakeholders a unique opportunity to smoothly integrate the physical world with the digital domain, 

significantly enhancing the construction industry’s capacity to address long-term challenges (Su et al., 2023). 

While notable progress has been made, the effective application and widespread adoption of digital technologies 

remain limited, requiring further strategic, technical, and institutional efforts (Opoku et al., 2023).   

4.1 Lifecycle  

Recent research increasingly underscores the importance of viewing Digital Twins (DTs) through a whole-lifecycle 

lens, particularly for enhancing cross-phase coordination and improving asset management. However, current DT 

implementations tend to remain siloed within individual project stages. Cross-phase data continuity, particularly 

from construction to O&M, is essential to enable proactive decision-making and enhance downstream efficiencies 

(Long et al., 2024). 

A major impediment is the heterogeneity of data formats and schemas used across lifecycle phases, which often 

lack standardisation and semantic consistency (Piras et al., 2024, Mahmoodian et al., 2022). This challenge is 

exacerbated by stakeholder fragmentation, disparities in digital maturity, and ongoing concerns regarding data 

security, ownership, and interoperability (Sacks et al., 2020). The increasing volume of data (Adeagbo et al., 2024), 

the incompatibility between proprietary technology platforms (Banfi et al., 2022), and persistent concerns around 

data security and privacy (Piras et al., 2024) also hinder efforts to establish seamless lifecycle integration. 

Additionally, there is a tendency in existing literature to focus on transitions between adjacent phases while 

neglecting incorporating early-stage (design) and end-of-life (demolition) stages (Long et al., 2024), despite their 

relevance to project traceability, feedback loops, and cross-project knowledge transfer. Future research should 

focus on unlocking the latent potential of DTs in underrepresented lifecycle phases. For instance, studies could 

explore deploying IoT and material tagging technologies during early phases to support long-term component 

tracking and reuse at end-of-life (Iqbal et al., 2024). Furthermore, there is a critical need to design interoperable 

DT platforms capable of evolving across lifecycle stages while preserving data integrity, and to investigate 

feedback mechanisms from late-stage demolition to inform future design standards and material choices. 

4.2 Technology integration and Human-AI interactions 

Despite growing interest, the construction industry continues to face substantial technological barriers in adopting 

DTs, particularly due to its traditionally low digital maturity and the complexity of project environments (Rasheed 

et al., 2020, Naderi and Shojaei, 2022). Construction projects generate vast and highly heterogeneous datasets 

drawn from diverse sources, ranging from BIM and IoT sensors to maintenance records and BMS systems 

(Adeagbo et al., 2024). However, a significant portion of this data remains unstructured, limiting its utility. For 

instance, quality assurance processes often rely on text-based inspection logs, which traditional geometric DTs fail 

to capture. Recent efforts, such as the development of semantic datasets for fire door defects (Wang et al., 2025), 

demonstrate how converting unstructured construction records into structured data through automatic methods is 

essential for maintaining a seamless digital thread from construction into operations. These data are frequently 

stored in isolated, incompatible formats. The resulting lack of interoperability not only hinders data processing and 

integrated analytics but also undermines the accuracy and reliability of AI-driven insights (Banfi et al., 2022). As 
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such, the development of standardised data protocols and integration frameworks remains an urgent research 

priority. 

In recent years, the role of AI, including ML and DL, in DT applications for the built environment has gained 

substantial traction. However, the successful deployment of these data-driven models is frequently hampered by 

the lack of high-quality training data. To address this, a growing body of research has focused on bridging the gap 

between theoretical algorithms and real-world data availability. For instance, Wang (2025b) established 

comprehensive labelled operational datasets for Air Handling Units across diverse facilities, including offices, 

auditoriums, and hospitals, offering essential benchmarks for model training. Further research has tackled the 

challenge of class imbalance, where fault data is inherently rare. Hybrid generative models, such as SMOTE and 

Trans-CWGAN, have been successfully employed to synthesise realistic fault patterns (Wang, 2025a). Beyond 

data limitations, the progress of AI has also raised concerns about the trustworthiness of AI-enabled decision-

making (Callcut et al., 2021). Due to the non-transparent nature of many AI algorithms, particularly in DL, human 

users often struggle to interpret or verify the internal logic of such systems. This "black box" characteristic poses 

a serious barrier to trust (Zhang et al., 2024), especially among construction professionals such as site managers 

and facility managers, who are hesitant to rely on decisions that lack transparency or verifiability. To address this, 

studies proposed a shift of human roles from passive task executors to active supervisors of autonomous systems 

(Wang et al., 2021). Through targeted training and task reallocation, users can be empowered to participate in 

collaborative decision-making processes, thereby improving both trust and the effectiveness of human–robot 

collaboration, especially on construction sites (Wang et al., 2021, Lee et al., 2023). Moreover, the advancement of 

explainable AI (XAI) techniques offers a promising path forward. By enabling the reasoning processes behind 

automated decisions to be more transparent and interpretable, XAI bridges the trust gap between human users and 

AI systems (Riggio and Nasir, 2024). Such developments are vital not only for enhancing the accountability of AI 

systems in safety-critical environments, but also for enabling more effective human–AI collaboration in the 

construction DT projects. 

4.3 Cost, value, and maturity considerations in DT adoption 

While many DT case studies have demonstrated compelling benefits, these successes are often context-specific 

and difficult to replicate across varying project types and scales(Camposano et al., 2021). The lack of systematic 

frameworks for evaluating the DT value in a standardised, consistent, evidence-based manner limits both the 

comparability of outcomes and the strategic confidence of stakeholders, particularly in early decision-making 

stages (Pregnolato et al., 2022). 

The adoption of DT typically requires substantial upfront investment, including hardware acquisition (e.g., LiDAR 

scanners, high-fidelity sensors), software development, integration platforms, and workforce training (Sacks et al., 

2020, Broo and Schooling, 2023). These costs present significant barriers to adoption, especially for small and 

medium-sized enterprises, which often lack the capital and technical capacity to support the resources required for 

DT deployment (Piras et al., 2024). To address this, there is a growing need for comprehensive cost and benefit 

analyses that assess the economic viability of DTs across diverse project scales and lifecycle phases. Such 

evaluations should consider both direct financial outcomes such as reductions in operational costs and time savings 

and indirect or intangible benefits (e.g., risk mitigation, enhanced decision-making and sustainability). In parallel, 

research should explore strategies to reduce implementation costs, including the adoption of modular DT 

architectures, the use of open-source platforms, the deployment of cloud-based solutions and crowdsourcing 

(Casillo et al., 2024) to lower technical entry barriers. Furthermore, when evaluating the value proposition of DTs 

in the construction industry, a recurring concern in the literature is the limited involvement of key stakeholders 

and organisations in both the development and assessment processes (Agrawal et al., 2022). Existing studies tend 

to underrepresent the perspectives of those directly responsible for project delivery, asset operation, and long-term 

strategic planning. It is therefore crucial to investigate DT value from a stakeholder-centric viewpoint, 

encompassing not only cost-saving efficiencies but also broader opportunities for revenue creation and competitive 

advantage (Zhu et al., 2024). This includes exploring how DTs can support new business models, enhance service 

offerings, and improve client satisfaction, thereby positioning their adoption as a strategic investment rather than 

a purely technical or operational upgrade. 

Additionally, the maturity of DTs is increasingly recognised as a critical factor influencing both adoption and value 

realisation. Maturity models help assess the organisational, technical, and operational readiness for DT 
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deployment. Chen et al. (2024) introduced an expert-driven evaluation framework to assess DT maturity in 

building projects, offering a useful foundation but lacking sufficient granularity and differentiation for diverse DT 

applications. Similarly, Li et al. (2024) proposed a five-level hierarchical maturity model for infrastructure DT 

adoption. However, it lacks quantitative indicators such as data volume thresholds and system response latency 

that would affect precision in evaluating specific DT implementations. Further, the model missed collaborative 

and systemic dimensions, such as cross-disciplinary coordination or stakeholder integration, which are essential 

for lifecycle-wide deployment. Thus, establishing a more comprehensive and adaptable DT maturity model which 

incorporates both qualitative and quantitative metrics and aligns with distinct characteristics could be a promising 

future research direction. Such a maturity framework would enable practitioners to benchmark progress, identify 

capability gaps, and prioritise adoption strategies in line with organisational goals. 

Overall, these efforts can contribute to a more inclusive, economically sustainable, and scalable DT ecosystem, 

which can operate beyond isolated case success and support widespread, long-term value creation in the 

construction industry. 

4.4 Practical implications for stakeholders 

Building on the previously identified barriers and strategies, this section converts the findings into concrete actions 

for key stakeholder groups, thereby bridging the gap between theoretical potential and practical deployment. 

For asset owners, the priority is to recognise the strategic value of the digital twin and to articulate a digital vision 

aligned with organisational key performance indicators (Callcut et al., 2021). DTs should not be understood as 

static deliverables but rather as evolving systems whose long-term utility depends on robust data governance 

frameworks and standardised information structures. Moreover, asset owners must invest in comprehensive 

internal training to improve staff awareness, technical competency, and acceptance of DT, thereby bridging the 

divide between organisational IT capabilities and operational requirements (Piras et al., 2024, Broo and Schooling, 

2023).  

For designers, considering the principle of "digital twin readiness” is essential for the subsequent construction, 

integration, and operational performance of the DT system. Design activities should account for sensor deployment 

strategies, data acquisition pathways, and the scalability of information models, while also conforming to 

established modelling specifications and semantic standards to minimise downstream integration costs (Chen and 

Whyte, 2022). The adoption of parametric and modular modelling methodologies further enhances the efficiency, 

reproducibility, and analytical value of simulation processes and DT construction (Adeagbo et al., 2024). Given 

that DTs span the full lifecycle of an asset, version traceability and cross-phase interoperability of design models 

are crucial. 

Contractors continue to face a fundamental challenge arising from the disparity between static design BIM models 

and the dynamic conditions of construction sites. This discrepancy frequently results in scheduling and resource 

decisions being based on outdated or incomplete information, thereby constraining construction efficiency 

(Esmaeili and Simeone, 2023). Continuous capture of the “as-built” environment through a construction digital 

twin provides a mechanism for generating real-time semantic updates, reducing dependency on static models. 

From an implementation perspective, it is necessary to prioritise high-value scenarios such as progress monitoring, 

equipment utilisation analytics, and safety risk detection, rather than attempting to create a comprehensive twin of 

the entire project at the outset. Furthermore, by adopting standardised business process models and integrating 

service-oriented interfaces, contractors can embed DTs directly into operational workflows, alleviating cost 

pressures while enhancing progress visibility, resource optimisation, and overall site productivity (Torres et al., 

2024).  

Technology vendors typically undertake the critical tasks of constructing the technical framework for DT systems 

and enabling cross-system integration. As industry expectations shift towards enhanced real-time analytics and 

predictive intelligence, providers must reinforce interoperable system architectures (Naderi and Shojaei, 2024). 

Sustainable operation of DTs further requires providers to establish long-term support mechanisms, including 

model updating, sensor calibration, and periodic algorithmic retraining to ensure continuous synchronisation 

between the digital and physical systems. 

Given that DT systems involve cross-departmental and cross-system data flows, their effective application heavily 

relies on unified standards. For policymakers and regulators, establishing industry-level standards and clarifying 
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data security requirements can mitigate interoperability risks stemming from system fragmentation while ensuring 

data security and privacy compliance (Camposano et al., 2021, Naderi and Shojaei, 2024, Ohueri et al., 2025). 

Additionally, policy interventions such as fiscal incentives, targeted R&D funding, and performance-based 

subsidies can significantly reduce organisational barriers to adoption and stimulate innovation within the wider 

ecosystem (Ohueri et al., 2025). 

Facility managers and O&M teams are most closely engaged with physical assets throughout the DT lifecycle, 

having direct influence over the fidelity and validity of twin models. To unlock the long-term value of DTs, these 

systems must be integrated into daily operational routines. Continuous calibration, achieved through real-time data 

feeds, equipment health diagnostics, and systematic annotation of anomalies, enables the DT to maintain an 

accurate representation of the physical system (Hosamo et al., 2022). Cross-phase collaboration between O&M 

teams, designers, and contractors further strengthens data continuity and lifecycle coherence. With the growing 

adoption of predictive maintenance and risk-informed decision-making, operations personnel must increasingly 

cultivate digital literacy, analytical capability, and interpretive skills, supporting a transition from reactive 

operational behaviour to proactive, data-driven asset management (Almatared et al., 2024). 

Regarding end users, while DTs offer technical advantages such as visualisation, real-time feedback, and intelligent 

decision support, their practical value is often influenced by user experience and operational complexity. System 

design must therefore prioritise usability and interpretability, ensuring users can comprehend state changes 

reflected by the twin model through intuitive interfaces and receive clear decision support prompts when necessary 

(Lee et al., 2023). Furthermore, user participation plays a vital role in the continuous optimisation of twin systems. 

Feedback data not only assists developers in refining interfaces and interaction logic but also serves as a crucial 

data source for training models, enabling dynamic optimisation of DT systems (Asare et al., 2024). 

4.5 Limitations  

This study provides a macro-level synthesis of recent developments in DT research, offering a clear and systematic 

overview of current trends and future directions, particularly for readers less familiar with the concept. While this 

broad perspective improves accessibility, it involves certain trade-offs. Due to space constraints, areas such as 

technological frameworks and domain-specific applications are not explored in depth and require focused attention 

in future research. The methodology, centred on a systematic literature review, is inherently influenced by the 

selection bias. Specifically, the search string prioritised the full term “Digital Twin” to ensure high relevance. 

While this decision was necessary to avoid significant noise, as the abbreviation “DT” is widely used for unrelated 

concepts such as “Decision Trees” or “Data Transmission”, it may have inadvertently excluded studies that rely 

solely on the abbreviation or alternative terminologies in their metadata. Although the snowballing technique was 

used to expand the literature base during the discussion, the overall scope may remain limited. In addition, the 

review emphasises conceptual and thematic synthesis rather than empirical validation. Future research would 

benefit from more in-depth studies, case analyses, and comparative evaluations to build on the foundations 

established here. 

5. CONCLUSIONS 

This study has conducted a comprehensive two-stage systematic literature review to assess the development, 

implementation, and integration of Digital Twins (DTs) in the construction industry. The review first synthesised 

122 existing review articles to map thematic trends and lifecycle focus areas, followed by an in-depth analysis of 

297 original research articles to identify domain applications, enabling technologies, barriers, and response 

strategies. This dual approach enabled a multidimensional understanding of both the conceptual evolution and 

practical realities of DT adoption in construction.  

Findings indicate that despite the growing research volume, the DT landscape remains fragmented and thematically 

skewed. A substantial majority of studies are clustered around the operation and maintenance (O&M) phase, while 

early-stage design and end-of-life phases remain critically underexplored. This gap not only limits the strategic 

potential of DTs but also hinders the development of circular and data-driven asset management practices. The 

review also identifies technological, organisational, industrial, and regulatory barriers that hinder DT 

implementation. These include data heterogeneity, platform incompatibility, unclear value propositions, limited 

stakeholder participation, and a lack of policy guidance. A range of multidimensional strategies, such as modular 

architecture, blockchain integration, and collaborative governance, have been proposed and mapped with barriers. 
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To address these challenges, the study formulates actionable strategies for key stakeholders. Asset owners are 

urged to shift from passive procurement to active data governance and internal competency building. For 

contractors and designers, the adoption of hybrid human-digital workflows and “Twin-Ready” design standards is 

essential to ensure verifiable “as-built” data. Furthermore, policymakers and regulators need to collaborate to 

establish applicable standards and fiscal incentives to de-risk adoption. 

Additionally, the study highlights limitations in trust in AI systems and value realisation. The lack of standardised 

data protocols and the limited use of explainable AI hinder effective integration and stakeholder trust. Moreover, 

high implementation costs and the absence of consistent, stakeholder-informed value assessment frameworks 

restrict broader adoption. Existing maturity models often lack practical metrics and overlook collaborative 

dimensions, limiting their applicability.  

Overall, this review contributes to a more integrated understanding of DT research in construction, clarifying its 

current limitations and identifying actionable directions. Addressing the gaps identified, particularly in lifecycle 

coverage, value definition, stakeholder engagement, and maturity evaluation, will be essential to transforming DTs 

from isolated technological pilots into scalable, trustworthy, and strategic systems in the construction sector. 
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