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SUMMARY: Data scarcity is one of the major barriers to using Machine Learning (ML) techniques for building 

energy predictions. Transfer Learning (TL) has proven to be an effective approach to address this issue. However, 

most TL approaches have not considered scalability, which is an important factor when using Digital Twin (DT) 

data for predictions. To bridge this gap, this research aims to develop a scalable TL approach for predicting 

building energy consumption from limited DT data using cloud computing. Two frameworks, using Microsoft Azure 

and Amazon AWS, are developed and implemented in a case study to demonstrate their applicability and 

practicality. The findings show that both frameworks possess unique strengths in terms of scalability and improving 

accuracy. Azure performed better in training time and resource efficiency, while AWS excelled in data 

preprocessing speed and prediction accuracy. This paper supports researchers and practitioners in developing a 

scalable model (i.e., cloud-based TL) for predicting building energy consumption with limited DT data. Future 

research can explore the cost of using cloud platforms for building energy prediction and expand the list of decision 

factors for platform selection. 
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1. INTRODUCTION 

The built environment accounts for approximately 37% of global energy-related CO2 emissions (Awan et al., 

2025), and in Europe, buildings consumed 40% of energy according to data collected in 2023 (Energy Performance 

of Buildings Directive, 2025). Hence, improving building energy performance can significantly contribute to 

saving energy and advancing decarbonisation efforts in this sector. Recent advancements in computer science and 

digital technologies have enabled ML to improve building energy performance across various applications, 

including the prediction of building energy consumption (e.g., Olu-Ajayi et al. (2022), Pham et al. (2020)), the 

automation of building operation (e.g., Kawa and Borkowski (2023), Elnour et al. (2022)), the reduction of carbon 

emissions and environmental impacts (e.g., Zheng et al. (2024), Kapoor et al. (2022)), and the assessment of 

occupant comfort and behaviour (e.g., Amasyali and El-Gohary (2021), Zhang et al. (2024)). 

Predicting building energy consumption using ML can offer invaluable insights for informed decisions regarding 

building designs, materials, and technologies (Hussien et al., 2025). However, creating precise ML models requires 

an adequate amount of data imposing constraints on deploying these models for buildings with no or limited 

historical data (Elnour et al., 2024). Pinto et al. (2022) emphasised that most buildings lack appropriate sensing 

technologies or lack the IT infrastructure to collect and store data, which makes collecting and preparing quality 

data to train ML models a time-consuming process.  

DT can contribute to addressing the technological gap of data collection by deploying reality capture technologies 

to provide real-time data from built assets. The idea of DT was first introduced by Grieves in 2003 (Grieves, 2014) 

and the term itself was coined by NASA technologist John Vickers in 2010 (NASA, 2025). Grieves (2014) defined 

DT as a virtual representation of a physical product, which can improve building energy management by 

monitoring, optimising, and predicting building energy performance (Kawa and Borkowski, 2023). Some studies 

(e.g., Han et al. (2024), Jradi et al. (2023)) used DT data and ML for predicting building energy consumption. 

However, DT is recently being adopted in industry, and in many cases, the amount of DT data available for creating 

ML models is not sufficient to achieve acceptable accuracy (Tahmasebinia et al., 2023). Therefore, the adoption 

of DT for developing ML models is not feasible for a new building or a building with a new DT system.  

Recently, TL has attracted the attention of researchers to bridge the gap of data scarcity for creating ML models 

for building energy. TL is able to transfer ML models that are trained and validated for buildings with rich data to 

buildings with limited or poor data (Pinto et al., 2022). TL has been shown by several studies (e.g., Li et al. (2021), 

Li et al. (2024), Xing et al. (2024)) as a promising method for predicting energy performance of buildings when 

limited quality data is available. However, these studies have focused only on investigating the effectiveness of 

TL in different scenarios, or advancing the performance of TL methods, and overlooked the scalability of their 

models. Here, scalability refers to two aspects: i) data scalability, which means the ability of a system to handle an 

increasing data quantity and ii) model scalability, which means the ability of ML models to adapt to changes in 

data patterns and address new use cases (Mishra, 2024). Data scalability is a critical factor when DT data is used 

for prediction because an increasing amount of data should be handled efficiently in the workflow of the prediction 

process. Model scalability is also important due to the dynamic nature of building energy performance, and the 

need for adapting the models to changing conditions such as occupant behaviour and weather conditions that can 

affect energy consumption (De Simone, 2022; Mahamedi et al., 2025).  

To address the scalability of ML models, cloud computing is a suitable solution as it can provide high computing 

power and data storage capacity enabling scaling up models easily (Digitemie & Ekemezie, 2024). Cloud 

computing has been adopted in some studies (e.g., Moudgil et al. (2024), Ni et al. (2021)) for enhancing building 

energy performance. However, there is little research on how to use cloud computing for developing TL models 

predicting energy consumption. 

To address this gap, this research aims to develop a cloud-based approach to enhance the scalability of TL models 

for predicting building energy consumption from limited DT data. To this end, two frameworks using Microsoft 

Azure and Amazon AWS as two leading cloud platforms for ML are developed and tested in a case study for 

demonstrating their applicability and evaluating their performance.  

The rest of this paper is organised as follows. Section 2 presents the a explanation of the TL principles and related 

work on the applications of TL in predicting building energy. Section 3 outlines the research methodology. In 

Section 4, the proposed frameworks are described. Section 5 demonstrates the implementation of the proposed 
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frameworks in a case study. The next section presents the results, followed by a discussion of the case study 

findings. Finally, the last section presents the conclusion of the paper.  

2. LITERATURE REVIEW 

As highlighted in the introduction section, the scarcity or lack of quality historical data for training predictive ML 

models poses a significant to adopting ML for building energy predictions. In addition, preparing and processing 

data for ML is a time consuming and costly endeavour. TL can reduce the reliance of conventional ML techniques 

on historical data, and speed up the training process by allowing cross-domain data utilisation (Chen et al., 2020). 

However, many existing studies have overlooked the scalability of TL models. This section first introduces the 

principles of TL from the literature. Then, a review of TL applications in enhancing building energy performance, 

and the identified the research gap are presented.  

2.1 Principles of Transfer Learning  

In conventional ML, one of the major assumptions is that the data for training and prediction must be in the same 

feature space and have the same distribution while in some cases, the prediction task is in one domain of interest, 

but sufficient training data is available in another domain of interest (Panigrahi et al., 2021). In such cases, TL can 

help to transfer and apply the prior knowledge from one domain and task to another domain and task (Gao et al., 

2020). That is, in TL, the data for training ML models can come from a different domain. There are some terms 

related to TL that are described below according to Pinto et al. (2022). 

- Domain (D), which forms the input space of the ML model, consists of two components: (i) the feature 

space X, and (ii) the marginal probability distribution P(X) where X= {x1 , …, xn} ∈ X. The feature 

space is the space of all influencing variables (input features) and xi represents the ith influencing 

variable. The marginal probability distribution represents the probability distribution of each input 

feature to be contained in the feature space.  

- Task (T), which forms the output space of the model, consists of two components: (i) a label space Y 

and (ii) an objective predictive function 𝑓(⋅), denoted as T={Y, 𝑓(⋅)}.  f(.) is not observed but learned 

from the training data, represented as {xi , yi } , where 𝑥𝑖 ∈ X and yi ∈ Y.  f(.) can be used to 

approximate the conditional probability P(y|x) and predict the corresponding label of a new instance 𝑥.  

- Transfer Learning is a process of improving the learning of the target predictive function f(.) in Target 

Domain (DT) and Target Task (TT) by using the knowledge in Source Domain (DS) and Source Task 

(TS), where DS≠DT, or TS≠TT. 

In the context of the building energy prediction models, the target building is the one with limited data in the Target 

Domain (DT), and we want to predict its energy consumption. The source building is the one with sufficient 

historical data in its domain (DS), and we want to use it to improve the prediction accuracy for the target building. 

The task of energy prediction for the target building is Target Task (TT), and the task of energy prediction for the 

source building is Source Task (TS). As shown in Figure 1, first, a ML model, called “Base Model” is created from 

the data of the source building available in the Source Domain (DS) for performing Source Task (TS), which is the 

prediction of the source building’s energy consumption. Next, TL principles are used to transfer the knowledge 

from the source building to the target building and create a “TL Model” from the Base Model for performing Target 

Task (TT), which is the prediction of the target building’s energy consumption from the data of the target building 

available in the Target Domain (DT). 

2.2 Transfer Learning applications in Building Energy Predictions 

Over the past few years, several studies have applied TL learning to enhance building energy predictions. Some of 

these studies have attempted to demonstrate the effectiveness of the TL method over the direct learning (i.e., 

conventional ML methods without TL) in various scenarios. For instance, Fan et al. (2020) performed statistical 

assessment to investigate the potentials of TL and validate its value for short-term building energy demand 

predictions. Their experiments demonstrated that the TL-based methodology could reduce approximately 15% to 

78% of prediction errors compared with standalone models. In another study, Hooshmand and Sharma (2019) used 

TL to improve the accuracy of a convolutional neural network (CNN) model for short-term electricity load 

forecasting (i.e., forecasting the next 24 hours of electricity demand based on the energy consumption of the past 
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four weeks).Through a case study, they demonstrated that the TL model could enhance the accuracy of the CNN 

model, which was trained only using the target load data without employing a public dataset and pre-training step, 

by 17%. To consider the effects of seasonality within domains, and predict cross-building energy consumption, 

Ribeiro et al. (2018) proposed a TL method using time-series multi-feature regression with seasonal and trend 

adjustments. Their proposed method merged data from similar buildings with different distributions and different 

seasonal profiles, and improved energy prediction accuracy for building with small historical datasets such as new 

buildings or those with newly installed meters. In their case study, it was shown that the proposed TL method could 

improve accuracy of the prediction by %11.2 compared to a direct learning model.   

 

Figure 1. Overview of the transfer learning technique for predicting building energy. 

Some other studies related to TL focused on exploring novel approaches for improving TL models’ performance 

in energy predictions. For instance, one study proposed a novel approach, called Similarity-Based Chained 

Transfer Learning (SBCTL), for creating neural network-based models for energy forecasting (Tian et al., 2019). 

In their approach, first, a model is trained in a traditional way, and the following models transfer knowledge from 

the previous models in a chain-like manner based on similarities between their energy consumption profiles. The 

objective of this approach was to reduce training time, not to improve accuracy. In an experiment, SBCTL could 

reduce training time by 97% while achieving accuracy comparable to traditional models. For improving the 

training process, Wang et al. (2019) pre-trained the models for TL in a supervised way and then incorporated 

unlabelled test data into the training process in a semi-supervised way by introducing an adaptive layer. This 

method could shrink the distribution discrepancy from different energy sources and lower the demand of a high 

amount of labelled data for training purposes. For automating feature extraction and domain adaptation, Fang et 

al. (2021) proposed a Long Short-Term Memory (LSTM) based feature extractor, and a Domain Adversarial Neural 

Network (DANN) approach identifying domain invariant features between the source and target domains. In their 

proposed approach, the trained model with data from source building is applied directly to energy prediction of 

the Target building without prediction performance degradation caused by domain shifts. In another study, for 

selecting an optimum source building for TL, Lu et al. (2021) defined a similarity measurement index (SMI), and 

integrated it into their proposed TL-based framework for predicting thermal load of buildings. They implemented 

the proposed framework in a number of cases and showed prediction stability in their models while reducing the 

prediction errors by 0.6%~15.26% compared with direct learning and 1.81%~5.65% compared with TL without 

the selection of source tasks. 

These studies demonstrated how TL can address data scarcity in building energy predictions. However, they 

considered only static data in their model and overlooked the adaptability of the models (i.e., model scalability), 

which is an important factor due to the dynamics of building energy and the need for adapting the predictive 

models to changing conditions that affect the model performance. To the best knowledge of the authors, only one 

recent study has attempted to address this drawback by proposing a novel reinforcing TL approach, which 

dynamically incorporates the newly generated building data into the model to improve its accuracy (Mahamedi et 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/seasonality
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al., 2024). Their proposed approach could support the use of real-time DT data for building energy prediction when 

limited DT data is available.  

For building energy prediction using direct learning, some studies have considered the adaptability of ML models. 

For instance, Yang et al. (2020) developed an adaptive ML model for improving building automation and control 

applications by updating the ML model every day using online building operation data. In another study, Wang et 

al. (2018) considered adapting ML models predicting building energy use by incorporating new building data into 

the models every two weeks. These studies showed that adapting ML models can continuously improve accuracy 

of the models as more new data is incorporated in the models. However, no study has considered the adaptivity of 

TL models using dynamic DT data.  

Another challenge for developing TL models using DT data is data scalability because the models need to handle 

an increasing amount of data continuously generated by DT. Cloud computing has been adopted in some recent 

studies as a robust technology that can address data scalability. For instance, ElArwady et al. (2024) developed a 

cloud platform to use DT data for ML models predicting indoor thermal comfort in buildings. In another study, 

cloud computing was used for connecting IoT devices with the DT model and predicting CO2 emissions of 

buildings (Arsiwala et al., 2023). Despite the contributions of these studies to develop cloud-enabled ML models, 

none of them considered TL for prediction. Therefore, this research intends to address the scalability (i.e., both 

model scalability and data scalability) of TL models for predicting energy consumption of buildings by leveraging 

cloud computing and DT data.  

3. METHODOLOGY 

In this research, the chosen research methodology is Design Science Research (DSR) method. DSR is a suitable 

method for this research because it offers a systematic approach for clearly defining the problem, which is 

addressing scalability of TL models for building energy prediction from limited DT data, and developing a 

problem-driven solution that meets the defined objectives of the solution. The solution is this research is a 

framework that leverages cloud computing to develop scalable TL-based models. DSR can generate knowledge of 

how things can and should be constructed (Vom Brocke et al., 2020), and encompasses six main steps including: 

1) problem identification and motivation, 2) define the objectives for a solution, 3) design and development, 4) 

demonstration 5) evaluation, and 6) communication (Peffers et al., 2007). If needed, some of these steps can be 

iterated to refine objectives and/or the design and development. These iterations are very beneficial to this research 

because developing a scalable cloud-based TL framework requires several iterations for development, testing and 

refinements. The six steps of DSR are followed in this research as described below: 

1. Defining the problem: The problem is how to develop scalable TL models using limited DT data for predicting 

energy consumption of buildings. The problem was identified through a semi-systematic review and by 

conducting thematic analysis of the literature (Snyder 2019) on data scarcity as a barrier of building energy 

predictions using ML, and the use of DT and TL as potential solutions to overcome this barrier. The summary 

of the literature review findings was presented in the introduction and literature review section of this paper. 

The selected studies for review were from 2020 to 2024. 

2. Defining objectives and requirements of a solution: The main objectives of the solutions are to adopt cloud 

computing for 1) transmitting building data seamlessly from DT to TL models, and 2) developing TL models, 

which includes data preparation, model training and execution, and data visualisation on a single cloud 

platform. The requirements of the solution are i) addressing model scalability to adapt the TL models to the 

changing conditions by incorporating newly generated DT data into the models, and ii) addressing data 

scalability for handling an increasing amount of DT data. The objectives and requirements of a solution were 

identified through the semi-systematic review and thematic analysis, as described in the step 1.  

3. Design and development: Design and development of two frameworks using Microsoft Azure and Amazon 

AWS as common cloud platforms that have the required services and power for handling an increasing amount 

of IoT data from DT models and developing scalable machine learning models. These two platforms are 

selected because they have services for DT and ML that enable the development of all required functions for 

the frameworks such as creating a data pipeline for transferring data, data preparation modules, and ML 

modules. 
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4. Demonstration: Conduct a case study to test and validate the practicality and applicability of the developed 

frameworks in predicting energy consumption of a building from limited DT data in a scalable manner. The 

case study is a commercial building as a Target building with limited historical data in London in 2021. A 

similar building with two years of historical data is selected as a Source building. For prediction of the energy 

consumption, four features were used: (1) temperature, (2) wind direction, (3) wind speed, and (4) dew point 

temperature. 

5. Evaluation: Analyse the results of the case study to assess the frameworks by comparing the performance of 

used cloud platforms. For the comparative analysis, multiple performance indicators such as Mean Absolute 

Percentage Error, average data loading time, average CPU usage, average RAM usage, average throughput, 

training loss, validation loss, and training time were utilized. If needed, the previous steps are repeated to 

refine the framework and ensure that it can address the identified problem and meet the objectives and 

requirements.  

6. Communication: Publish this paper to share the research outcomes to scholars and practitioners. 

4. PROPOSED FRAMEWORKS 

To develop the intended framework, first, a conceptual model as shown in Figure 2 is created to identify the key 

components and specify their functionalities. The conceptual model consists of five modules including: 

- M-1: “Source building’s data transfer and data preparation” module and M-2) “Base Model 

development and training module”, which are for developing a Base Model from the historical data of 

the Source building, 

- M-3: “Target building’s data transfer and data preparation” module, and M-4) “TL model development 

and fine-tuning” module, which are for developing TL models from the DT data of the Target building, 

and 

- M-5: “TL model deployment and interface” module for deploying the TL model and visualise the data. 

 

 

Figure 2: A Conceptual model for developing the framework. 

As discussed in Section 2, the historical data of the Source building is used to develop a Base Model using an ML 

algorithm. To this end, first, M-1 undertakes the task of transferring the historical data of the Source building to 

the ML model, and pre-processing the data as a preparation prior to training the Base Model. Then, M-2 develops 

and train the Base Model using a suitable ML algorithm from the pre-processed historical data of the Source 

building. The developed and trained Base Model will be used for TL to predict the energy consumption of the 

Target building. 

In this paper, the assumption is that DT of the Target building already exists. Therefore, the focus for the Target 

building is on transferring DT data to the TL model for prediction. M-3 undertakes the task of transferring and pre-

processing the DT data to prepare it for the TL model. Then, the processed data is used in M -4 for training the TL 

model. The TL model is also fine-tuned in this module using newly generated DT data. This function addresses 
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the model scalability requirement of the framework by adapting the TL model to the changing conditions of the 

Target building. 

Finally, M-5 executes the TL models and visualises the model input and output data on a dashboard. Developing 

all these modules on a single cloud platform provides a seamless data pipeline transmitting the data to predictive 

models, training the models, and visualising the data, which addresses the requirement of data scalability to handle 

an increasing amount of DT data. Based on the conceptual model, two frameworks are developed on Microsoft 

Azure and Amazon AWS. The proposed frameworks are described in the following sections. 

4.1 Proposed Azure-based Framework 

The Azure-based framework is shown in Figure 3. The framework has five modules as per the conceptual 

framework. The description of each module is provided in the following subsections. 

4.2 Source building’s data transfer and data preparation module in Azure 

The process in this module begins with transferring historical data collected from the Source building that to Azure 

Blob Storage, which stores the data sets. Azure Blob Storage is a massively scalable object storage solution for 

text and binary data, which provides support for big data analytics (Microsft, 2025b). The stored data is then routed 

to Azure Databricks, which is a unified analytics platform for building, deploying, sharing, and maintaining data 

analytics at scale (Microsft, 2025c).  Azure Databricks pre-processes the Source building’s raw data to make it 

suitable for developing ML models, by cleaning the data, handling any missing values, and reshaping it into 

structured formats. In addition, the data can be enriched through feature engineering techniques such as generating 

time-based features such as day of week, month, and quarter to prepare the data for effective ML model training. 

After processing the data in M-1, it is then transferred to M-2. 

 

Figure 3: Proposed Azure-based framework for transfer learning. 
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4.2.1 Base Model development and training module in Azure 

In this module, the Azure ML Model Management environment, which consists of Azure Machine Learning (Azure 

ML) and the Model Registry, receives the pre-processed Source building’s data. Azure ML develops the Base 

Model from the received data. Azure ML offers a space for creating, testing and analysing ML models, which 

simplifies managing ML processes (Microsoft, 2024c), and enhances scalability and effectiveness of the models 

(Microsoft, 2024a). The Base Model is trained utilising a suitable ML algorithm that is efficient for sequential and 

temporal data. In this paper, Gated Recurrent Unit (GRU), which is a type of such as Recurrent Neural Network 

(RNN) algorithm, is used for training the Base Model. The description of GRU is provided in Section 4.2. To train 

the Base Model, the workflow transitions from the ML Model Management to Azure Container Instances (ACI), 

which is a serverless, on-demand container hosting service that is designed to run containerized workloads in a 

lightweight, cost-effective, and isolated environment (Microsoft, 2024b). These features are crucial for efficiently 

training the Base Model that requires handling a large dataset and complicated calculations during training. After 

training, the Base Model is saved in the Azure Model Registry, which is a central repository for storing ML models, 

enabling organised version control. Then, the Base Model is used to develop the TL model in M-4. 

4.2.2 Target building’s data transfer and data preparation module in Azure 

This module creates a data pipeline transferring DT data of the Target building, including real-time readings of 

IoT devices, from Azure Digital Twins (Azure DT) for data pre-processing. Azure DT provides a powerful query 

API with extensive search conditions, including property values, relationships, relationship properties, model 

information to extract insights from the DT model (Microsoft, 2025b). In this module, the DT data is transferred 

from Azure DT to Azure Databricks through the API for pre-processing and make the data suitable for ML models. 

This pre-processing is an essential step prior to creating the ML model because DT data captured by IoT devices 

often contains noise or missing values that can degrade the performance of ML models. Azure Databricks can 

transform large amounts of raw data to data with quality, structured, sanitised, and enriched features (Microsoft, 

2025a) through some tools that can perform data cleaning, data normalisation, and feature engineering. After pre-

processing, the data is transferred to Azure ML for creating the TL model.  

4.2.3 TL Model development and fine-tuning module in Azure 

In this module, the TL model is developed using the Base Model received from M-2 as described in Section 2.2. 

Azure ML and ACI are used to develop and train the TL model. The developed TL model is then stored in the 

Model Registry. Version control and governance is a necessary step in the ML lifecycle as it ensures that the 

workflow is consistent and traceable across various other steps (Microsoft, 2025c). Since DT data is constantly 

generated and incorporated in the TL model for prediction, the TL model is fine-tuned with the new DT data and 

the TL model is continuously adapted to the changes. Therefore, the version control by Model Register is important 

throughout this process to track the version of the models and provide the right and the latest version of the TL 

model to be deployed. The trained or fine-tuned TL model is then transferred to M-5 for deployment and inference. 

4.2.4 TL model deployment and inference module in Azure 

In this module, the registered TL model is deployed into Azure ACI for inference. ACI can operate in isolated 

containers, eliminating the need for orchestration, and run event-driven applications, enabling quick deployment 

of the container development pipelines, and efficient data processing (Microsft, 2025a). Therefore, ACI provides 

a light, scalable, and effective containerised environment to perform inference tasks (Microsoft, 2024b). Through 

the processing of inference requests, the predictions of the Target building energy consumption are made, and the 

results are streamed to Azure Digital Twin Dashboard for visualisation. The dashboard provides insights into the 

building energy performance and enables data informed decision making for enhancing building operation 

strategies. 

4.3 Proposed AWS-based Framework 

The proposed AWS-based is presented in Figure 4. Similar to the Azure-based framework, this framework has five 

modules with the same functionalities that were specified in the conceptual model. The following subsections 

describe these five modules implemented in AWS.  
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4.3.1 Source building’s data transfer and data preparation module in AWS 

In this module, the Source building’s historical data is transferred and stored in Amazon Simple Storage Service 

(S3). AWS S3 is a scalable data storage that is fully elastic, automatically growing and shrinking as the data is 

added and removed (Amazon, 2025a).  The stored data is then routed to Amazon SageMaker Processing, which is 

capable of data pre-processing and feature engineering (Amazon, 2025e). Similar to Azure Databricks, Amazon 

SageMaker Processing pre-processes the Source building’s data and makes it ready for the ML models through 

data cleaning and feature engineering techniques. Then, the pre-processed data is transferred to M-2. 

4.3.2 Base Model development and training module in AWS 

The pre-processed data in M-1 is used in this module to develop the Base Model. In this module, the AWS ML 

Model Management environment, which consists of Amazon SageMaker Studio Lab and SageMaker Registry, 

receives the Source building’s data. Amazon SageMaker Studio Lab, which is an integrated development 

environment that provides tools for building, training, and deploying ML models (Amazon, 2019), develops the 

Base Model. In this paper, the same algorithm (i.e., GRU) is used for developing the Base Model in Azure and 

AWS. The developed Base Model then transitions from the ML Model Management to AWS SageMaker Endpoint, 

which helps train models and then deploy them into a production-ready hosted environment (Amazon, 2025b). 

After model training is complete, the model is registered in SageMaker Model Registry. With the Amazon 

SageMaker Model Registry, models are organised for version control and easy deployment to production. Finally, 

the trained Base Model is transferred to M-4 for TL. 

 

Figure 4: Proposed AWS-based framework for transfer learning. 

4.3.3 Target building’s data transfer and data preparation module in AWS 

In this module, a data pipeline is created to transfer DT data of the Target building Azure from AWS IoT 

TwinMaker to Amazon SageMaker Processing. AWS IoT TwinMaker provides the tools for creating DT, which 
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enables the use of existing data from multiple sources to create virtual representations of any physical environment 

(Amazon, 2025d). The required DT data for building energy prediction is accessed through an API and transferred 

to Amazon SageMaker Processing for pre-processing. As discussed earlier, this step is crucial for addressing 

potential noise or missing values in the DT data of the Target building. The pre-processed data through data 

cleaning and feature engineering techniques in SageMaker Processing is then transferred to M-4 for creating the 

TL model.  

4.3.4 TL Model development and fine-tuning module in AWS 

In this module, the received Base Model from M-2 and the Target building’s data from M-3 are used to develop 

the TL model. Amazon SageMaker Studio Lab and AWS SageMaker Endpoint are adopted to develop and train 

the TL model. SageMaker Model Registry then stores the developed TL model with a proper version control. By 

incorporating newly generated DT data of the Target building to the TL model, the models are fine-tuned and 

adapted to the changes. SageMaker Model Registry traces the version of the models throughout this updating 

process to provide the right and the latest version of the TL model to be deployed. Finally, the developed TL model 

is transferred to M-5 for deployment and inference. 

4.3.5 TL model deployment and inference module in AWS 

In this module, the registered TL model is deployed into SageMaker Endpoint, which serves as the entry point for 

real-time inference requests (Amazon, 2025f) and can provide features to manage resources and optimise inference 

performance when deploying ML models (Amazon, 2025g). The deployed model then predicts the Target building 

energy consumption, and the results are streamed to AWS IoT TwinMaker Dashboard for visualisation, which 

provides users with an intuitive interface to interpret and make decisions upon the insights derived. 

5. CASE STUDY 

The proposed frameworks are implemented in a case study of a commercial building to predict its energy 

consumption utilising the historical data of a similar building in London UK. We used Azure Machine Learning 

Studio for development and Python 3.10 as a programming language for the Azure-based framework. We also used 

AWS SageMaker Studio for development and Python 3.11 as a programming language for the AWS-based 

framework. The following subsections outline the implementation for each module of the frameworks. 

5.1 Implementation of the Source building’s data transfer and data preparation module 

In this module, the data pipeline is created to transfer and pre-process Source building’s data to make the data 

suitable for developing the Base Model. Data pre-processing involves data cleaning, normalising, and data 

engineering. In this case study, two years of historical data from the Source building is used with four features: (1) 

temperature, (2) wind direction, (3) wind speed, and (4) dew point temperature, and the output for the prediction 

is the daily energy (electricity) consumption of the building. For feature engineering, time-based features including 

quarter, month, week of year, day of year, day of week, a day, and weekend/weekday are created because all the 

used data is time-dependent, and these features could help the predictive models understand seasonal and periodic 

patterns that influence energy usage. To substitute missing values in a dataset (i.e., data imputation) (Yuan, 2010), 

the linear interpolation technique, which estimates the missing values by drawing a straight line between the known 

data before and after the missing data is used. This technique is suitable for weather data imputation because the 

selected features generally change gradually. While the prediction is made for daily energy consumption, the 

historical data has been collected on an hourly basis. Therefore, the historical data is aggregated to calculate their 

daily average to be used in the next module for developing the Base Model. 

5.2 Implementation of the Base Model development and training module 

In this module, the Base Model is developed and trained using the GRU algorithm, which is a type of RNN. GRU 

is a suitable ML algorithm for predicting energy consumption because it can solve the problem of error caused by 

the spatiotemporal evolution of energy consumption (Liu et al., 2017). The architecture of the model consists of 

four stacked GRU layers with decreasing units (i.e., number of neurons in each layer): 400, 300, 200, and 150 to 

progressively distil information. Each GRU layer is followed by Batch Normalisation and Dropout layers. Batch 

Normalisation standardises the inputs to each layer, which stabilises and accelerates training by reducing internal 

covariate shift. Dropout layers help prevent overfitting by randomly deactivating a fraction of neurons during 



 

 

 
ITcon Vol. 31 (2026), Mahamedi et al., pg. 116 

training. After the GRU layers, the model includes two Dense layers with 100 and 50 units, respectively, both 

using ReLU activation functions. The output of the last Dense layer is a single value representing the predicted 

energy consumption. After training, the Base ML model is registered and safely stored to be used for developing 

the TL model. 

5.3 Implementation of the Target building’s data transfer and data preparation module  

In this module, the generated DT data from the Target building is transmitted from the DT model through the API, 

and pre-processed. In this case study, 90 days of data from the Target building is used for the experiment. The pre-

processing task in this module is similar to the one for the Source building data as described in Section 4.1. That 

is, the same features are selected, and the same data imputation technique and feature engineering approach are 

used in this module to prepare the data for developing the TL model.   

5.4 Implementation of the TL Model development and fine-tuning module  

In this module, the TL model is developed using the Base Model and the DT data of the Target building. The 

developed TL model is then registered and stored with a proper version control to be deployed in the next module. 

As new DT data from the Target building is generated, this process is repeated periodically by fine tuning the TL 

model to adapt the model to the changes.  

5.5 Implementation of the TL model deployment and inference module 

Finally, the registered TL model is deployed for inference and predicting the Target building energy consumption. 

The results are visualised on a Dashboard to provide insights into the energy consumption and support decision 

making. 

The results of the case study are presented in the next section. 

6. RESULTS 

For executing the developed models, first, the compute instance for each platform should be selected. The choice 

of compute instances affects both performance and cost. Azure and AWS offer various specifications and pricing 

for their compute instance, allowing flexibility to match resources with project needs and budgets. The selected 

compute instances from Azure and AWS were similar in terms of the Central Processing Unit (CPU) type and 

Random Access Memory (RAM). In this case study, the following compute instances were used:  

- Azure: Standard_E4ds_v4 with 4 vCPUs, 32GiB RAM  

- AWS: AWS r5.xlarge with 4 vCPUs, 32 GiB RAM. 

These instances were chosen because of their suitability for ML tasks and cost-effectiveness as they start with 

megabyte-sized datasets and scale them to gigabyte-sized data if needed. As of April 2025, the cost of the selected 

compute instance from Azure and ASW is approximately $0.288 per hour (CloudOptimo, 2025), and $0.302 per 

hour (Amazon, 2025c), respectively. 

Figure 5 and Figure 6 show the results of the predictions in comparison with the actual values over the 90 days of 

the experiment on Azure and AWS, respectively. The errors of the predictions were measured using Mean Absolute 

Percentage Error (MAPE) calculated as the following formula: 

𝑀𝐴𝑃𝐸 =
1

𝑛
 ∑ |

𝑦𝑡𝑟𝑢𝑒(𝑖) − 𝑦𝑝𝑟𝑒𝑑(𝑖)

𝑦𝑡𝑟𝑢𝑒(𝑖)
|

𝑛

𝑖=1

× 100 (1) 

where ytrue represents the actual value, ypred represents the predicted value, i is an observation, and n is the total 

number of observations. 

MAPE for the models are presented in Table 1. As seen in this table, the AWS-based TL model has slightly lower 

MAPE than the Azure-based TL model. Since a lower MAPE indicates a more accurate model, the ASW model 

has a better performance in predicting the energy consumption of the Target building.  

Table 1: MAPE of the TL models for the 90-day prediction. 
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 MAPE 

Azure-based TL model 23.6% 

AWS-based TL model 22.8% 

 

Figure 5: Azure-based TL model predictions versus actual values over the 90-day test. 

 

Figure 6: ASW-based TL model predictions versus actual values over the 90-day test. 

7. DISCUSSION 

In this section, a comparative analysis is performed to evaluate the performance of the Azure-based model and 

AWS-based model. In addition, the performance of the TL model is compared with the direct learning approach to 

underscore the value of TL for energy performance prediction with limited DT data. Finally, scalability of the 

frameworks is also discussed.  
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7.1 Comparison of data pre-processing performance 

During data preprocessing, the performance of Azure and AWS can be compared using some measures such as 

average data loading time, average CPU usage, average RAM usage, and average throughput. Table 2 shows the 

details of this comparison. On average, AWS processed the data faster, taking only 0.74 seconds, while Azure took 

2.25 seconds, which is a noticeable difference in speed. CPU usage was much higher on AWS (12.55%) compared 

to Azure (0.57%). This shows AWS used more processing power to finish the task faster while Azure used very 

little CPU, but it took longer. Azure used more RAM (357.80 MB) than AWS (267.29 MB). So, AWS was more 

efficient than Azure in terms of RAM usage. Finally, looking at throughput, which indicates how much data was 

processed per second, AWS showed a better performance. It had an average throughput of 0.10 MB/s, compared 

to 0.03 MB/s for Azure. 

Overall, while both Azure and AWS offer similar computational power specifications, AWS was faster and more 

efficient in data loading and had higher throughput, but it used more CPU resources to achieve this better 

performance. Azure, on the other hand, used less CPU but took longer and used more RAM for pre-processing. 

The choice between the two may depend on whether the priority is the speed or resource utilisation. 

Table 2: Comparison of data pre-processing performance between Azure and AWS models. 

 Average data loading 

time (s) 

Average CPU usage (%) Average RAM usage 

(MB) 

Average throughput 

(MB/s) 

Azure 2.25 0.57 357.80 0.03 

AWS 0.74 12.55 267.29 0.10 

7.2 Training loss and validation loss comparison 

 

Figure 7: Training Loss During Base Model Training: Azure versus AWS. 

Throughout training the Base Model, the average training loss (which refers to the error the model makes on the 

data it learns from), and average validation loss (which illustrates the error that the model makes on unseen data) 

were monitored in each complete training iteration (which is called an epoch) to evaluate the learning curve of the 

ML model and ensure that the training process is healthy. The training loss and the validation loss are shown in 

Figure 7 and Figure 8, respectively. As shown in these two figures, the loss values have decreasing trends over the 

epochs. However, there are some differences between the two platforms. On the training loss curve, Azure 

consistently maintains a slightly lower loss compared to AWS. On the validation loss curve, Azure’s line is mostly 

lower (particularly at the beginning) and generally smoother than that of AWS, which shows more fluctuation, 

especially in the earlier epochs. This observation is interesting because both models were trained under similar 

conditions (e.g., CPU type and memory configuration) using the exact same architecture and the same input data, 

but Azure performed slightly better. This could be related to the way that Azure and AWS handle data loading, 

memory allocation, or internal Input/Output operations. The operating system and the configuration of the 

background processes could also affect training speed and consistency. These small differences can have a 
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noticeable impact when training deep learning models, even on CPU-based machines. The consistency of Azure 

in lowering both training and validation data suggests that system-level optimisations on Azure could be support 

a more efficient training.  

 

Figure 8: Validation Loss During Base Model Training: Azure versus AWS. 

Throughout training the TL Model, the training loss and validation loss had a different trend as shown in Figure 9 

and Figure 10. As seen in Figure 9, the training loss of Azure started with a higher loss of about 0.166 while that 

of AWS started around 0.150. However, the Azure line drops smoothly and steadily across epochs, eventually 

reaching about 0.126. In contrast, AWS’s training loss fluctuated throughout the 15 epochs, staying mostly between 

0.135 and 0.153, without a strong downward trend. This suggests Azure’s system allowed the model to learn more 

consistently during training. The smoother behaviour might be influenced by background system load or how the 

compute handles optimization under the hood. However, for the validation loss, AWS consistently performs better 

than Azure as shown in Figure 10. AWS’s validation loss stays around 0.135 to 0.142 for most epochs. Azure’s 

validation loss starts at around 0.188 and slowly decreases but only reaches about 0.157 by the final epoch. Since 

validation loss indicates how well the model performs on unseen data, the lower values from AWS suggest better 

generalisation ability. 

 

Figure 9: Training loss during training the TL model: Azure versus AWS. 
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For further investigation, MAPE, which is a more interpretable metric for understanding prediction errors, was 

plotted over Epochs for the TL model training as presented in Figure 11. As seen in this figure, AWS starts with 

an MAPE of around 31.8%, fluctuating slightly between 27.2% and 31.8%. Azure starts with a higher MAPE, 

close to 37.1%, but improves it gradually. By the end of the training, Azure reaches a final MAPE of about 25.5%, 

which is better than AWS’s ending value of around 29%. That means Azure ended with more accurate predictions 

than AWS even though it started with less accuracy. 

Overall, Azure demonstrated smoother training and slightly better final prediction accuracy than AWS. Meanwhile, 

AWS produced lower validation loss, suggesting better generalisation on unseen data. These results illustrate that 

even when cloud platforms use the same model and data, small differences in system performance and environment 

behaviour can affect how well models are trained and performed. 

 

 

Figure 10: Validation loss during training the TL model: Azure versus AWS 

 

 

Figure 11: MAPE over epochs for the TL model training: Azure versus AWS. 
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7.3 Comparison of training time  

The training time is another measure for comparing Azure and AWS. The time needed to train the Base Model can 

be time-consuming as it involves developing a new ML model from a relatively large historical dataset. The time 

needed for training the TL model and fine-tuning it could be less time-consuming as it requires only updating the 

models with a relatively small dataset. The time spent on training both the Base Model and the TL model was 

measured as presented in Table 3. As seen in this table, Azure is approximately 33% faster than AWS in training 

the Base Model and 42% faster in training the TL model. 

Table 3: Training time comparison between Azure and AWS models. 

 Training time for the Base Model (s) Training time for the TL Model (s) 

Azure-based model 398 46 

AWS-based model 593 79 

7.4 Comparison of CPU and RAM usage ratios 

 

Figure 12: CPU usage during the Base Model training: AWS versus Azure. 

CPU and RAM usage ratios during training models are useful measures for evaluating resource utilisation by cloud 

platforms. Figure 12 and Figure 13 show the CPU and RAM usage ratios during the Base Model training, 

respectively. These figures reveal an interesting contrast considering the fact that both platforms used similar 

computational configurations. AWS consistently showed higher CPU usage, staying above 80% for most of the 

training period. Its RAM usage was also relatively high, around 24%. In contrast, Azure used slightly less CPU 

but significantly less RAM (about 7.5%) than AWS. Despite the fact that AWS utilised more resources, it didn’t 

lead to faster training. Azure completed the task in 398 seconds, while AWS took 593 seconds to complete it. This 

suggests that Azure utilises not only fewer resources but also uses them more efficiently. There could be a few 

possible technical reasons why Azure performed better. For instance, Azure could have lower system overhead, 

which allowed more resources to go directly to the training task. It is also possible that disk speed, memory 

bandwidth, or input/output handling was more optimised in Azure for this kind of workload. 

The CPU and RAM usage ratios during the TL Model training are shown in Figure 14 and Figure 15, respectively. 

As seen in these figures, the general trends of CPU and RAM usage ratios during the TL Model training are similar 

to those observed during the Base Model training. AWS maintained higher CPU usage throughout the training, 

hovering steadily around 70–80%. Azure’s CPU usage was slightly lower, closer to 70%, and showed a few brief 

dips. RAM usage for AWS stayed between 24% and 25%, while Azure consistently used much less, between 8% 

and 9%. Similar to the Base Model training, Azure completed the TL Model training tasks in 46 seconds, whereas 

AWS took 79 seconds to complete them.  

Overall, Azure could deliver the results faster with fewer resources, showing more efficiency in this specific model 

training process. 
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Figure 13: RAM usage during the Base model training: AWS versus Azure. 

 

Figure 14: CPU usage during the TL Model training: Azure versus AWS. 

 

 

Figure 15: RAM usage during the TL model training: Azure versus AWS. 
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7.5 Comparison between TL and direct learning 

To demonstrate the effectiveness of TL in improving ML model prediction compared to direct learning when DT 

data is limited, an ML model with the same algorithm was created using the 60 days of the data for training and 

30 days of the data for testing. The results of the experiment on predicting 30 days of the data using TL and direct 

learning models are shown in Table 4. These results indicate that TL could reduce prediction errors by 

approximately 8.5 percentage points in both Azure-based and AWS-based models. This finding aligns with existing 

research (e.g., (Lu et al., 2021) and (Mahamedi et al., 2024)) demonstrating the effectiveness of TL in addressing 

data scarcity for developing ML models and enhancing accuracy of the models compared to direct learning 

approaches.  

Table 4: MAPE of the TL models and direct learning models for the 30-day prediction. 

  MAPE 

Azure-TL model 28.42% 

AWS-based TL model 26.21% 

Azure-based direct learning model 36.88% 

AWS-based direct learning model 34.83% 

7.6 Data scalability and model scalability of the proposed frameworks 

The proposed frameworks were implemented on cloud platforms, which streamlined the data flows from historical 

data of the Source building to the Base Model, and DT data of the Target building to the TL model through data 

pipelines.  All the data pipelines and the ML models were created on a single cloud platform, which enhanced data 

scalability through seamless integration of all required services. From the computational perspective, cloud 

computing is flexible for scaling resources up and down based on the computational demand. For instance, Blob 

Storage and Amazon S3 are scalable solutions for data storage allowing for storing large datasets from the Source 

and Target buildings. In addition, Azure and AWS offers various compute instances to be selected based on the 

required computational needs, which is very critical for handling real-time DT data. Hence, the user has access to 

a variety of high-computational resources only when needed. Particularly in this case that the TL model needs to 

be fine tuned in certain intervals, cloud computing is more cost effective than expensive on-premises hardware 

because the cost of cloud services is based on the usage. 

The proposed frameworks also consider model scalability by continuously incorporating dynamic DT data into the 

TL model and fine tuning the TL models based on the newly generated DT data. In this way, the models are adapted 

it to the changing conditions of the building energy performance, which are reflected in the DT data. In summary, 

these findings collectively demonstrate that cloud-based TL frameworks can effectively address the scalability 

challenges of building energy prediction when DT data is limited. 

8. CONCLUSION 

This paper focused on developing scalable TL frameworks for predicting building energy consumption from 

limited DT data using cloud computing (i.e., Azure and AWS). The frameworks were implemented and tested in a 

case study, demonstrating their applicability and practicality in handling large computational workloads and 

improving prediction accuracy. Based on the comparison made between the TL models and direct learning models, 

it was shown that the developed TL model could reduce the prediction errors (i.e., MAPE) by 8.5 percentage 

points. Through the conducted comparative analysis between the Azure-based models and AWS-based models, it 

was revealed that Azure surpassed AWS in some metrics while AWS outperformed Azure in others. Azure is 

approximately 33% faster than AWS in training the Base Model and 42% faster in training the TL model. In 

addition, the CPU and RAM usage in Azure was lower than in AWS, showing a more efficient training process in 

Azure. On the other hand, AWS had less data preprocessing time (0.74s versus 2.25s) and slightly lower MAPE 

than Azure (22.8% versus 23.6%). The findings of these analyses can help users select the most suitable cloud 

platform based on their priority factors. 
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The main contribution of this research is the development of frameworks that meet several requirements for 

employing ML models to predict building energy consumption, including: 

- Addressing the challenge of data scarcity for developing ML models from limited DT data by adopting 

TL 

- Integrating dynamic DT data into the TL process for energy consumption prediction 

- Addressing both model scalability and data scalability of TL models by employing cloud computing 

- Guiding researchers and practitioners on capabilities of two leading cloud platforms (i.e., Azure and 

AWS) by testing and analysing their performance in a case study 

This research can further advance the application of DT in building energy predictions in both research and practice 

as DT is still in its early stage of adoption in the building sector, and DT data availability is limited for many 

buildings.  

There are some limitations in this paper that could be addressed in future research. In this paper, the unit cost of 

using the selected compute instances in Azure and AWS was provided as a reference. It should be noted that 

executing the developed TL models entails additional costs for other services, such as data storage and data pre-

processing. Due to the complexity of estimating the total cost for all used services, the cost metric was not included 

in the comparative analysis. Additionally, there could be other decision factors for selecting the most suitable cloud 

platform, such as compatibility with existing IT infrastructures. Future research can investigate the cost of adopting 

cloud platforms for predicting building energy consumption, as well as identifying a more comprehensive list of 

decision factors for selecting the most suitable cloud platform. 

This paper assumed that the DT model of the Target building was already in place, and its data was available to be 

streamed into the TL model. Future research could extend the developed frameworks to incorporate DT model 

development into the workflow. The findings of the comparative analysis presented in this paper depend on 

selected compute instances. Further experiments with various computing configurations could be carried out to 

generalise the results. In this paper, only one ML algorithm (i.e., GRU) was used for developing the base model. 

While the framework is independent of the algorithm type, future research could evaluate the impact of different 

ML algorithms on the performance of cloud platforms and their prediction accuracy.  
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