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SUMMARY: Technical building equipment (TBE) systems offer significant potential for energy savings that can 

be realized through digital twins and simulations. Digital twins require a precise virtual representation of the real 

object. Geometric-semantic models originating from Building Information Modeling (BIM)-based planning can 

be a valuable basis for this. However, due to unavoidable deviations between planning and construction, a high-

quality comparison of as-planned and as-built data is crucial. This study presents a geometric and statistical 

analysis framework for component-specific validation of TBE systems using as-planned BIM models and as-built 

point clouds. The framework was evaluated on datasets of increasing complexity, from simulations to real-world 

projects. Results show that with sufficient data quality, the framework enables the validation of up to 88% of 

components, significantly reducing manual effort, cost, and time. However, as a geometry-based approach, its 

performance is affected by data quality issues such as point cloud noise and occlusions.  
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1. INTRODUCTION 

The construction industry has struggled to keep up with other sectors regarding the adoption of digital technologies. 

Despite this delay, the transformative potential of digital approaches is increasingly being recognized. Key 

technological developments include Building Information Modeling (BIM) and Digital Twins (DTw), which have 

proven to be key components in the digitization of the construction industry. BIM provides a structured 

methodology for the design, construction, and management of buildings using integrated digital models, and 

promotes collaboration and efficiency among stakeholders. DTw, on the other hand, extend this idea by providing 

dynamic, real-time representations of buildings that enable advanced monitoring and optimization capabilities 

(Tao & Qi, 2019). In addition, DTw integrate various data sources and models and establish a close connection 

between the physical and virtual representations. Particularly with regard to energy efficiency and sustainability, 

the linking of digital working methods and energy system optimizations resulting in the creation of a DTw of the 

technical building equipment (TBE) offers great potential by enabling simulations and the identification of 

optimization opportunities (Becker et al., 2022; Blut et al., 2024). TBE encompasses all technical systems that 

enable the operation of a building. Among other systems, this includes heating, ventilation, and water systems. As 

all of these systems are interconnected, a change or failure in one subsystem can have an impact on the other 

systems. The resulting complexity emphasizes the need for systematic evaluation and inspection methods to ensure 

the reliable operation of the entire construction. 

In the context of developing a DTw, as well as in the broader application of BIM in the lifecycle, accurate and 

continuous alignment between design data (as-planned) and the data representing the actual implementation (as-

built) is essential (Arayici et al., 2012). Comparing planned and actual data not only ensures compliance with 

design requirements, but also serves as a basis for operational optimization and future modernization efforts. The 

quality, and thus the usability, of a DTw depends crucially on the accurate representation of the as-built condition. 

Only if the actual situation is accurately reflected in the digital model can it serve as a reliable basis for advanced 

applications such as energy optimization, predictive maintenance, or life cycle-oriented modernization.  This is 

particularly relevant in the area of TBE systems, which are characterized by high complexity and sensitivity to 

deviations. Deviations between the planned and installed states can lead to inefficiencies or costly maintenance 

work. Furthermore, a comparison between the planning and execution data is necessary to ensure the safety and 

functionality of the system. Manual verification of actual conditions is very time-consuming and costly. Automated 

or partly automated approaches therefore offer great potential for detecting deviations more efficiently and saving 

time and money. For component-specific validation, specialized methods are required that operate within defined 

tolerance ranges. In pursuit of a holistic application of BIM, as-planned data include semantically enriched 3D 

models. While geometric information describes shape, size, and spatial positions, semantic data contain 

information about the type, properties and relationships of the respective objects. Therefore, as-planned BIM 

models, containing both semantic and geometric information, can be leveraged to develop algorithms for object 

validation and to enhance the efficiency of data processing. By contrast, as-built datasets are progressively derived 

from 3D point clouds generated by technologies such as terrestrial (TLS) or mobile laser scanning (MLS), suitable 

camera-based systems or depth sensors like built in the Microsoft HoloLens device (Kinnen et al., 2023). 

However, as modern buildings increasingly encompass complex structures and vast volumes of data, manual 

approaches to data evaluation quickly reach their limitations. Automated or partly automated methods capable of 

efficiently processing and analyzing large datasets are therefore gaining increasing importance. Automation, 

particularly through the application of Artificial Intelligence (AI), plays a pivotal role in analyzing and comparing 

as-planned and as-built data. AI-based approaches offer the potential to process large datasets efficiently and to 

classify discrepancies automatically.  

From today’s perspective, modern AI approaches are predominantly shaped by deep learning methods, which 

require many and diverse datasets for training. In the field of TBE systems, however, there is a lack of publicly 

available datasets suitable for such purposes. Consequently, geometry-based analytical models for detecting 

discrepancies and validating alignment with design data currently represent a more promising approach for TBE 

systems applications. 

In this context, this study introduces a method specifically tailored to the comparison of as-planned and as-built 

data for TBE systems. The proposed method integrates geometry-based algorithms with rigid statistical evaluations 

to enable partly automated classification of TBE objects. Due to the often challenging conditions for creating high-
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quality as-built point clouds in practice for TBE systems, the aim of this work is not to create a comprehensive 

and fully automated solution for comparing as-planned and as-built data. Instead, a method is presented that 

categorizes the respective TBE system in an automated and component-based manner, symbolically inspired by a 

traffic light system. The TBE system is to be divided into areas in which the method determines with a high degree 

of certainty whether as-planned and as-built data match (green) or differ (red). In the remaining areas, where the 

method delivers uncertain results (yellow), the task of inspection remains with the expert human operator. For this 

purpose, each object is automatically categorized to determine whether it has been constructed according to the 

design, is rotated or displaced, is missing, or has been replaced by a non-conforming component. Consequently, 

this approach not only provides detailed component validation but also establishes a foundation for the further 

development of DTw. 

This study begins with a review of relevant works and a summary of the current state of research. Subsequently, 

the various geometry-based analyses in conjunction with the corresponding statistical evaluation methods are 

described in detail. The results obtained from the application of the proposed method are then analyzed using four 

different datasets, and the limitations of its application are identified. The final section consolidates and discusses 

the findings, offering insights and a perspective on potential future research directions. 

2. STATE OF ART 

The necessary systematic comparison of as-planned and as-built data within the BIM context can involve 

significant manual effort, depending on the complexity of the construction project. Therefore, exploring automated 

approaches offers considerable potential for research. A key distinction in this field lies in whether the focus is on 

a comparative approach between the reality capture data and the as-planned BIM (Scan-vs-BIM), or whether 

(partially) automated methods for direct as-built modeling based on scan data (Scan-to-BIM) are considered. A 

detailed literature review on Scan-to-BIM approaches is presented by (Kellner et al., 2024) and (Pătrăucean et al., 

2015).  

For Scan-vs-BIM approaches, (Pătrăucean et al., 2015) propose that the key to effective methodologies lies in 

transforming BIM data into a point cloud, allowing for data analysis with matching data types for both as-planned 

and as-built datasets. In this context, geometric analyses for feature extraction from point cloud data can be applied, 

as demonstrated by (Gumhold et al., 2001), where a method for geometric comparison was presented that involves 

the detection of corners and edges through the examination of local point densities and neighborhood relationships. 

Another approach to Scan-vs-BIM is described by (Chen & Yong, 2019), where a column-detection algorithm, 

alongside the Random Sample Consensus (RANSAC) method, was used for registering point clouds to a BIM 

model. This process included the conversion of the BIM model into a point cloud to facilitate direct point-to-point 

comparisons. Conversely, the geometric deviation analysis by (Anil et al., 2013) involved calculating the minimal 

Euclidean distance between points in the as-built point cloud and the closest corresponding objects in the as-

planned BIM. The resulting distance was then compared to a threshold value, which varied depending on data 

quality, to identify potential errors in data capture, processing, and model creation. In contrast, Scan-vs-BIM can 

also be performed by voxel-based (Meyer et al., 2022) or octree-based approaches (Park et al., 2021). Furthermore, 

(Tran & Khoshelham, 2019) propose an automated approach for detecting changes for walls and floors of indoor 

building environments by comparing BIM data with point clouds using point classification and surface coverage 

analysis. Conversely, (Kim et al., 2020) introduced an approach for monitoring project progress by combining 3D 

point cloud data with the 4D parameters of BIM through the application of the Scan-vs-BIM method. Another 

Scan-vs-BIM approach is presented by (Tan et al., 2024) for quality inspections of walls, floors, and reinforcing 

bars in modular construction, in which LiDAR point clouds of the actual condition are compared with as-planned 

BIM models in order to segment modular units and components. 

Other Scan-vs-BIM approaches have been introduced with a focus on industrial facilities. For instance, (Lin et al., 

2025) showed an approach, in which the precise object axes are extracted from point clouds and used to update 

the associated BIM model. In the same context, (Jiang et al., 2022) presented a semi-automated approach to 

progress monitoring in infrastructure construction, enabling real-time evaluation of 3D point clouds using 

Hausdorff distance and Poisson surface reconstruction. An object-oriented Scan vs BIM method is introduced by 

(Chuang and Yang, 2023) comparing local geometries  and object similarities. However, none of the presented 

approaches specifically focus on the application to complex TBE systems with their diverse range of component 

geometries and validation requirements. 
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Focusing on TBE systems, (Bosché et al., 2014) introduced a Scan-vs-BIM method in which as-built point clouds 

were processed to assign and segment points based on criteria such as distance and normal vector alignment to the 

surfaces of TBE components from the as-planned BIM. Points that could not be matched are filtered out, and 

occluding point clouds are segmented. Subsequently, object recognition is performed by analyzing the surface 

coverage. Another method was presented by (Nguyen & Choi, 2018), specifically designed for inspecting piping 

systems in industrial facilities and is based on geometric analysis of object-specific segmented as-built point clouds 

and corresponding point clouds generated from as-planned BIM data. The evaluation of the geometric agreement 

between as-planned and as-built data is conducted using metrics such as the mean distance error and the point 

distance error of individual points. Conversely, (Kawashima et al., 2013; Kawashima et al., 2014) proposed an 

approach for the segmentation and identification of piping components through the use of a normal-based region-

growing technique, followed by cylinder fitting. In contrast, (Kalasapudi et al., 2014) introduced a graph-based 

framework for automated spatial change analysis of components that links point clouds from 3D laser scans with 

as-designed BIM models based on their spatial relations.  

However, a key issue that consistently limits the performance of automated approaches for comparing as-planned 

and as-built data is the phenomenon of inaccuracies in point cloud data, as well as occlusions and points in empty 

space. In the field of TBE in particular, occlusions and multiple reflections often have a significant impact due to 

the densely packed environment and the presence of metallic surfaces. The previously named studies show various 

methods for dealing with these disruptive factors. In the approach proposed by (Bosché et al., 2014), points that 

cannot be assigned to the as-planned model are filtered out, and hidden points between the scanner and model 

objects are explicitly identified. On this basis, a theoretically visible area of the planned model is calculated. As 

mentioned before, object recognition is then enabled by evaluating the surface coverage, whereby a confidence 

value quantifies the reliability of the recognition despite possible occlusions. (Nguyen & Choi, 2018), on the other 

hand, described their approach as only applicable to object segments that are not affected by occlusion. 

(Kawashima et al., 2013) and (Kawashima et al., 2014) treated occluded sections of the analyzed pipes by 

interpolating axis points and performing supplementary fitting. A different way is shown by the approach of 

(Kalasapudi et al., 2014), which combines local object features with global spatial contexts. This enables object 

recognition via the spatial relationship to neighboring objects, even if the object is partially occluded. 

However, all of these approaches are either designed for general deviation detection or optimized for specific 

geometric shapes such as pipes and cylindrical elements. Consequently, they do not adequately address the 

validation of deviations for the wide variety of part geometries found in TBE systems, nor do they support a 

systematic classification of detected deviations based on component-specific characteristics. 

In addition to the previously discussed works in the Scan-vs-BIM context, the exploration of the potential of 

machine learning approaches, including deep learning, is significantly shaping current research trends. Also, the 

construction sector is experiencing an increasing examination of such approaches. For instance, (Kim et al., 2024) 

presented a deep learning approach for the Scan-vs-BIM analysis of steel structures. However, despite the strengths 

of deep learning in processing large datasets, its practical application in industrial scenarios is often constrained 

by the limited availability of representative training data and the associated costs required to achieve sufficient 

model accuracy and generalization. (Abreu et al., 2023) highlighted the issue of insufficient representative datasets 

in their examination of existing Scan-vs-BIM applications, emphasizing that this gap restricts effective 

comparisons of as-planned and as-built data in the context of TBE systems. Nevertheless, some machine learning 

approaches do not require comprehensive training datasets. An example of this in the context of AI-based Scan-

vs-BIM for mechanical, electrical, and plumbing (MEP) scenes is presented by (Wang et al., 2025) that uses a few-

shot learning method to overcome the issue of missing training data to automatically recognize components. (Hu 

et al.,2024) also presented an AI-based scan-vs-BIM approach that focuses on the semantic segmentation of MEP 

components and combines 2D images processed with Faster R-CNN with 3D point clouds from photogrammetry 

and LiDAR. Focusing on the concept of semantic segmentation, (Hu & Brilakis, 2024) proposed an approach that 

uses PROSAC shape recognition and DBSCAN clustering to enable automatic instance segmentation in complex 

construction environments. Another approach was introduced by (Jia et al., 2024), which uses high-dimensional 

feature tensors to describe local structures in point clouds and applies a rough-to-fine correspondence strategy to 

perform a Scan-vs-BIM comparison. 

Another essential part of this work is the application of statistical evaluation methods. Statistical methods are 

essential in engineering, especially for reliable data analysis, modeling and decision-making. Commonly used 
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techniques include hypothesis testing, correlation analysis and regression methods. These methods are covered in 

numerous textbooks and technical literature, such as (Witte et al., 2020) and (Schiefer & Schiefer, 2018), and 

enable significant relationships in complex engineering datasets to be identified and informed decisions to be 

made. 

In conclusion, numerous approaches have been developed in the domain of automatic Scan-vs-BIM processes, 

reflecting the extensive and multifaceted interest in this field. In the specific context of TBE systems, existing 

methodologies predominantly concentrate on defined geometric structures such as pipes and cylindrical elements. 

Despite the potential of AI-based methods, their application remains constrained due to the scarcity of 

comprehensive datasets necessary for effective training.  Without the feasibility of AI-driven object recognition, 

the necessity shifts towards leveraging geometric analysis methods. Prior knowledge from existing planning data, 

such as as-planned BIM models, proves to be a valuable asset in this context. With this foundation, the development 

of an automated Scan-vs-BIM process tailored for TBE systems holds great potential, since it promises a reduction 

in manual effort and contributes to the development of DTw, which can serve for continuous monitoring and 

optimization of energy efficiency within TBE sectors.  

However, existing approaches for comparing as-planned and as-built data are mostly based on a single dominant 

strategy. Each method has its strengths in certain applications. Nevertheless, in particular with complex TBE 

systems, appropriate methods often encounter limitations. Challenges arise especially due to occlusions, multiple 

reflections caused by metallic surfaces, and variability in the installation of components. Therefore, many studies 

focus solely on a specific type of TBE objects, such as pipes. Methods for the holistic analysis of TBE systems, 

including systematic quantification of deviations at the component level, are rarely presented.  

To address this gap, the present work introduces a geometry-based ensemble framework for the holistic analysis 

of as-planned and as-built data of TBE systems. In contrast to a single dominant strategy, four complementary 

analysis methods are integrated into the framework. Each method is evaluated using a specific statistical procedure. 

This design enables robust detection across different component geometries. Furthermore, by jointly considering 

all probabilistic analyses of the results of these four methods, a robust final classification of the respective 

component can ultimately be made. Nevertheless, the previously identified limitations remain disruptive factors 

that cannot be completely ruled out in the proposed approach. In particular, this concerns the strong influence of 

occlusions and multiple reflections on geometry-based analysis methods, as well as the challenge of robustly 

distinguishing significantly displaced or rotated components from completely different components. The aim of 

this study is therefore to evaluate the performance of the novel framework, which combines geometric analysis 

with statistical evaluation methods, under the influence of these key challenges. 

3. METHOD 

Our goal in the energyTWIN1 research project is to develop new methods for the digital, BIM-based 

commissioning of technical systems in buildings and their energy system optimization. The main focus is on the 

automated generation of a DTw of technical building systems during commissioning following the execution phase 

and their continuous enrichment with information during the operating and usage phase. An important basis for 

this approach is the development of a methodology for the partly automated comparison of as-planned and as-built 

data. The overall goal of this method is to support  workers in inspecting the TBE system by automatically detecting 

the areas in which automated analysis methods can provide reliable results and those in which manual inspection 

remains necessary (traffic light system).For this approach, we first created an initial scenario. This scenario 

requires the existence of an as-planned BIM and involves the initial alignment of the as-planned BIM with the 

captured as-built point cloud, which represents the actual state of the TBE system after its installation. For our 

application, BIM models were always exported in the Industry Foundation Classes (IFC) format, which is the 

standard for data exchange within the BIM environment. Also, the registration of the as-planned BIM and the as-

built point cloud serves as a foundation for our analysis, as it forces both data to be in a common coordinate 

reference system, which allows us to effectively identify discrepancies. After this alignment, we focus on a detailed 

component-level analysis. Specifically, a component from the as-planned model is selected using its Globally 
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Unique Identifier (GUID), which allows for unambiguous identification of the object (buildingSMART Technical, 

2024). Subsequently, the bounding boxes of individual TBE components are calculated and transferred from the 

as-planned BIM to the point cloud. To account for minor geometric deviations between the planned BIM and the 

actual point cloud, an empirically determined fill of 10% of the bounding box dimensions was applied. This value 

was chosen to ensure complete segmentation of the correct instance and proportional coverage across components 

with different dimensions, while keeping the risk of including points from neighboring objects as minimal as 

possible. By applying the padded bounding box, the corresponding points in the point cloud are segmented, 

yielding an object-specific point cloud for further analysis. The process of segmenting the point cloud based on 

individual objects is illustrated in Figure 1. 

 

Figure 1: Object-based Point Cloud Segmentation. 

The application of this methodology enables the identification of whether each element within a TBE system has 

been constructed in accordance with the planning data. Specifically, components can be categorized into three 

distinct groups. The first two groups assess whether a component from the planning model has been installed (1) 

or not (2). If a component has been installed (1), it is further examined to determine if it is rotated or displaced 

relative to the planned design. The third category (3) considers the possibility of a component being built, but it is 

significantly different. This could involve the installation of an entirely different component, such as a pipe in 

place of a pump, or a component that is functionally equivalent but varies in dimensions, such as a pump from an 

alternative manufacturer. The outlined approach is presented schematically in Figure 2Error! Reference source 

not found.. 

 

Figure 2: Schematic overview of the methodological analysis (Blut et al., 2024). 

For the validation of the individual TBE components, careful consideration of specific spatial or geometric 

tolerances is essential to ensure the most accurate assessment of construction quality. The tolerance limits are based 

on two primary factors. First, an appropriate construction tolerance 𝜏𝑐 must be included in the analysis. This 

construction tolerance reflects possible deviations that can inevitably occur during the execution phase. Typically, 
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this value must be defined specifically for the respective application and scenario and is determined in advance by 

the client or in accordance with applicable standards and guidelines. On the other hand, the as-built data is based 

on 3D scan data. Every quantity determined by measurement is subject to measurement deviations that affect the 

precision and accuracy (ISO, 2023). Precision is defined as the degree of agreement between several measured 

values obtained under the same conditions. In contrast, accuracy defines the degree of agreement between the 

measured value and the actual or reference value. The precision and accuracy of scan data depends on the method 

used for data acquisition, meaning that a specific measurement tolerance 𝜏𝑚 must also be permitted in the analysis. 

Therefore, based on the predefined tolerance value by the client, it is the responsibility of the surveyor, for example, 

to select a suitable measuring device to ensure compliance with the specified tolerances. The maximum permissible 

standard deviation and thus the required precision of the measurement method can be derived from this tolerance. 

The correlation between the standard deviation and the tolerance is according to (Witte et al., 2020) approximated 

as  

 
𝜎𝑚 =

𝜏𝑚

5
 (1) 

However, Equation 1 assumes that there are only random (noise) and no systematic (bias) or gross deviations (e.g. 

outliers) in the data. 

Since our theoretical approach cannot incorporate a client’s specified tolerance, we adopted a different strategy. 

Instead of the common practice, we determined the measurement tolerance backwards via the standard deviation 

respectively the accuracy of the particular measuring instrument. By transforming Equation 1, the relation arises 

 𝜏𝑚 = 5𝜎𝑚 (2) 

However, as unknown systematic deviations may still be present in the measured values, an additional amount 𝛥𝑢 

can be taken into account to cover additional systematic deviations, which represents a benchmark for the 

correctness of the measurement result (Witte et al., 2020). Those unknown systematic deviations represent 

consistent measurement biases that shift results. These biases may arise from factors such as remaining instrument 

calibration errors, unaccounted temperature or other environmental influences, including reflections from metallic 

surfaces. Data processing procedures, such as model errors, can also contribute to these biases. Therefore, these 

kinds of deviations differ from random errors since they do not average out over repeated measurements. As a 

result, the total measurement tolerance to be taken into account is 

 
𝜏𝑚 = 5𝜎𝑚  +  𝛥𝑢 (3) 

The overall tolerance, as a test criterion for classifying the components, is determined through a combined 

calculation of the two influencing factors of the construction tolerance and the measurement tolerance. For this 

calculation, we used the Euclidean L2 norm, as execution and measurement errors are considered independent and 

random sources of error. The quadratic combination takes into account that statistically independent deviations 

sum up according to the amount of their variances and not linearly, resulting in a consistent estimate of the overall 

tolerance.  Therefore, and according to the German Standard DIN 18710-1 (German Institute for Standardization 

[DIN], 2024) and (Witte et al., 2020), the overall tolerance 𝜏𝑡𝑜𝑡𝑎𝑙  is calculated as  

 
𝜏𝑡𝑜𝑡𝑎𝑙 = √𝜏𝑐

2 + 𝜏𝑚
2  

 
(4) 

3.1 Geometry-based approaches for as-planned vs. as-built component comparison 

This chapter initially presents the analytical methods used for the validation and classification of TBE components, 

along with their respective automated statistical evaluations. Subsequently, the process chain is outlined, 

demonstrating how these individual methods can be interconnected to generate a robust, automated assessment. 

This assessment aims to determine whether the components installed during the execution phase align with the as-

planned data or if discrepancies are present, such as rotation, displacement, combined rotation and displacement, 

absence, or the installation of an alternative component at the anticipated location. Figure 3 indicates which 

framework approaches can be used for the cases defined in Figure 2. Nevertheless, the targeted classification is 

limited to the segmented object point cloud. Displaced or rotated and displaced objects can only be correctly 
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identified if the extent of the displacement still ensures sufficient representation of the actual object point cloud 

within the area segmented by the bounding box. 

 

Figure 3: Assignment of the possible cases defined in Figure 2 to the individual approaches of the framework. 

 

3.1.1 Approach A: Two-step co-registration  

According to the initial situation described above, the raw data for the analysis network consists of the as-planned 

BIM model and the as-built scan data in the form of a 3D point cloud. (Pătrăucean et al., 2015), who presented 

relevant work from the fields of computer vision, geometric processing, and civil engineering, claimed that the 

core of the as-built and as-planned comparison lies in the registration of the point cloud sampled from the as-

planned BIM with the as-built point cloud. Therefore, we first followed the approach of aligning the data formats 

of the as-planned and as-built data by converting the as-planned BIM component into a mesh in order to create a 

point cloud with the points of the resulting vertices. For our study, an empirical evaluation showed that the mesh 

vertices provided sufficient density and no sparsity issues occurred. However, with regard to reproducibility and 

applicability to other datasets, upsampling can be considered by adding randomly selected points to the mesh to 

further increase the density. 

On this basis, the two object point clouds are analyzed using a two-step co-registration process. First, a coarse 

registration is performed. This step is aimed at optimally pre-adjusting the objects in cases where there is 

significant rotation or displacement. To perform this coarse registration, we use the Fast Point Feature Histogram 

method as described in (Rusu et al., 2009). 

Firstly, the relationships to its direct neighbors are calculated for each point in both point clouds, resulting in a 

simplified histogram (Simplified Point Feature Histogram, SPFH). Next, the SPFH is weighted with the SPFH 

values of the neighbors and merged to obtain a histogram (Fast Point Feature Histogram, FPFH), which 

summarizes the geometric relationships between a point and its neighbors and serves as a clear description of the 

local environment of a point. A schematic representation of this operation is shown in Figure 4. The figure shows 

how a point (red) is connected to its direct k-neighbors. Each direct neighbor is connected to its own neighbors 
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and the resulting histograms are weighted with the histogram of the query point to form the FPFH. (Rusu et al., 

2009) 

 

Figure 4: Areas of influence for creating Fast Feature Point Histograms (Xie et al., 2020). 

Following the FPFH calculation, features of the points in both point clouds are compared in order to find possible 

point correspondences. For this purpose, FPFH values are checked for similarity. Meanwhile, points whose FPFH 

values are close to each other are considered potential correspondences. The identified correspondences can 

subsequently be used to estimate a transformation that aligns the two point clouds as closely as possible. In order 

of further improvement of the registration, the described coarse registration is followed by a fine registration using 

the method of Iterative Closest Point (ICP) (Besl & McKay, 1992; Zhang, 2021). Here, Point-to-Plane ICP is 

applied, which minimizes distances along surface normals rather than direct point-to-point distances, providing 

faster and more accurate convergence for structured or planar surfaces. Additionally, a multi-scale refinement is 

performed, where ICP is applied sequentially at decreasing voxel resolutions, optionally using a robust kernel to 

reduce the influence of outliers. This step further refines the transformation and ensures high alignment accuracy. 

The result of the estimated transformations from the coarse and fine registrations is presented as a 4x4 

transformation matrix 𝐴. This matrix comprises a rotation matrix 𝑟𝑖𝑗 and a translation vector 𝑡𝑥𝑦𝑧 and is extended 

for 3D operations by employing homogeneous coordinates. 

 

𝐴 =  [

𝑟11 𝑟12 𝑟13 𝑡𝑥

𝑟21 𝑟22 𝑟23 𝑡𝑦

𝑟31 𝑟32 𝑟33 𝑡𝑧

0 0 0 1

] (7) 

The product of multiplying the transformation matrices obtained from the coarse and fine registrations yields a 

matrix that reflects the spatial relationship between the as-planned and as-built point clouds. From the rotation 

matrix and translation vector contained within this resultant matrix, it is thus possible to infer the extent to which 

the installed TBE component has been rotated or displaced. Ideally, the resulting transformation matrix 𝐴 would 

be identical to the identity matrix 𝐼 if the component were installed precisely according to the as-planned BIM. 

Consequently, for the automated evaluation of this approach, the difference matrix 𝐷 between 𝑇 and 𝐼 is computed. 

 𝐷 = 𝐴 − 𝐼 (8) 

Subsequently, a hypothesis test in the form of a paired t-test (Witte et al., 2020) is conducted to determine whether 

the mean deviations of the difference matrix 𝐷 are statistically significantly different from zero. The null 

hypothesis (H0) thus posits that the mean of the deviations in 𝐷 is equal to zero. For this purpose, the mean value 

𝑑̅ (Equation 9) and the standard deviation 𝑠𝑑  (Equation 10) of the total number 𝑛 of the values 𝑑𝑖𝑗 in the difference 

matrix 𝐷 are determined, followed by the calculation of the test statistic 𝑡 (Equation 11). 
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𝑑̅ =
1

𝑛
∑ 𝑑𝑖

𝑛

𝑖=1

 (9) 

 

𝑠𝑑 = √
1

𝑛 − 1
∑(𝑑𝑖 − 𝑑̅)

2
𝑛

𝑖=1

 

(10) 

 
𝑡 =

𝑑̅

𝑠𝑑 ∕ √𝑛
 

(11) 

Next, the value of the test statistic 𝑡 is used to determine the probability 𝑝 from the 𝑡-distribution, which assesses 

the likelihood of the observed data to be occurring under the null hypothesis. The assertion that the TBE component 

is constructed in accordance with the as-planned data is accepted if the transformation matrix 𝐴 does not 

statistically significantly differ from the identity matrix, thereby satisfying the condition 

 𝑝 > ∝  (12) 

Otherwise, the null hypothesis is rejected if the following applies 
 𝑝 ≤ ∝  (13) 

If it is certain that the as-built and planning data pertain to the same TBE component, the transformation matrix 

resulting from the two-stage co-registration can also be used for the automated modeling of an as-is BIM model 

(Figure 5Error! Reference source not found.).  

 

Figure 5: Conceptual Diagram of the Approach. 

3.1.2 Approach B: Median-based Evaluation 

Analogously to the technique presented in chapter 3.1.1, in the second approach we aim to perform a TBE 

component analysis based on identical data types for as-built and as-planned datasets represented as point clouds.  

The primary objective of our second approach was to determine the distances between the as-planned and as-built 

point clouds to gain insights into the alignment between planning data and real-world data. In the first phase, we 

aimed to calculate the distances between all points in the as-built point cloud and the as-planned point cloud. 

However, it is crucial to ensure that corresponding points from both point clouds are accurately matched. 

Otherwise, the analysis would not result in the actual distance between the point clouds, but rather the shortest 

possible distance. Figure 6 illustrates this with an example of a slightly displaced component. 

To determine the corresponding point pairs, the two point clouds are aligned with each other using the registration 

method described in detail in chapter 3.1.1. Thereupon, the nearest neighbor is determined for each point of the 

as-built point cloud and its corresponding point in the as-planned point cloud is recorded. Subsequently, the actual 
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distances between the two point clouds can be calculated in their original pre-registration positions using the 

logged point pairs.  

In the next step, the median 𝑥̃ is determined from all distances between the corresponding point pairs of both point 

clouds. In this context, the median is more meaningful than the mean value 𝑥̅ as it is less sensitive to outliers 

(Lehmann, 2023). In a point cloud, individual points can be significantly distanced from the majority of the data 

due to measurement errors or other disturbances, which would distort the mean value. The median, on the other 

hand, remains stable even if individual points (less than 50%) are widely spaced, providing a more robust measure 

of the central tendency of distances. 

 

Figure 6: Illustration of the shortest distance calculation between two point clouds (left) and the determination of 

actual distances between corresponding point pairs (right). 

However, since the generation of point clouds is always subject to a randomized point distribution, the distance 

between point pairs can only be zero by chance, even if the TBE component was installed precisely according to 

the planning specifications. For this reason, we decided to calculate the shortest distances between each point of 

the as-built point cloud and the mesh of the as-planned data instead of the distances between the point pairs. In 

this way, the confounding factor of the randomized point distribution of a point cloud is excluded, and a more 

precise analysis of the correspondence between the planned and actually implemented components is made 

possible. 

For the automated classification of the TBE component, the determined median value is finally compared with the 

permissible tolerance threshold using the statistical evaluation method of a hypothesis test (Witte et al., 2020). 

Meanwhile, the null hypothesis (H0) asserts that the component was installed within the permitted construction 

tolerances and is confirmed if 

 𝑥̃ ≤ 𝜏  (5) 
applies. Conversely, the null hypothesis is rejected if 

 𝑥̃ > 𝜏  (6) 

applies. 

3.1.3 Approach C: Voxel-based Analysis  

In a further approach, we pursued the goal of identifying component-specific sub-areas of the as-built data that do 

not significantly deviate from the as-planned data, considering the applicable tolerances. This was done to facilitate 

predictions regarding the classification of the respective TBE component, based on the identified overlapping sub-

areas as well as the overall percentage distribution. A voxel-based approach was chosen for this, as voxel-based 

techniques have the advantage of speeding up processing and improving robustness to noise, occlusions and 

density variations (Martens & Blankenbach, 2023). 

For the voxel-based analysis, both the as-planned point cloud of a component, generated as described in 3.1.1, and 

the corresponding segment of the as-built point cloud are transferred into a voxel grid. In this process, the multitude 
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of points is aggregated based on the defined size of individual grid cells (voxels), creating the organized structure 

of a regular 3D grid. The level of detail of the 3D grid, and thus the resulting analysis, is significantly influenced 

by the chosen voxel size. Since the planned and realized states of the TBE components are to be evaluated taking 

into account a defined tolerance as described above, we have adapted the tolerance value determined according to 

Equation 4 as a voxel size in this approach. In this way, compliance with the specified tolerance can be ensured 

for overlapping voxels from the as-planned and as-built datasets. Subsequently, a neighborhood analysis identifies 

only the voxels within the voxel grid of the as-planned data that represent the surfaces of the components, while 

the remaining voxels are discarded. This step is essential because, during the voxelization of the components from 

the design model, the entire volume of the components is divided into voxels, whereas the as-built data only 

includes voxels located on the component surfaces. In this way, the voxel grids of the point clouds in the as-built 

and in the as-planned state can be directly compared, which are aligned in a uniform coordinate reference system 

according to the predefined initial situation. For each voxel in the as-built point cloud, it is checked whether there 

are overlaps with any voxel from the as-planned voxel grid, which leads to a corresponding categorization of each 

voxel. Figure 7 illustrates a visual example of the described voxel analysis. 

As mentioned earlier, point clouds are inherently subject to random distribution, which also affects the 

automatically generated voxel grids. To address this issue, we refined the previously described method by 

voxelizing only the as-built point cloud instead of transforming both the as-built and the as-planned data into voxel 

grids. The resulting voxels are then checked for overlaps with the mesh of the as-planned component. 

 

Figure 7: Voxel-based analysis of the as-planned (yellow) and as-built (blue) point cloud for voxel categorization 

as overlapping (green) or non-overlapping (red). 

The results of the voxel-based analysis provide a detailed representation of reality. Not only do they enable the 

identification and visualization of overlapping and non-overlapping areas between the as-planned and as-built data, 

but they also form the basis for the classification of the TBE component. This classification is carried out by means 

of a subsequent statistical analysis and categorization of the entire voxel distribution. For this purpose, the number 

and percentage of overlapping voxels (𝑝𝑂) and non-overlapping voxels (𝑝𝑁𝑂) is determined and then evaluated 

using predefined assumptions thresholds (𝛾𝑖) as exemplified in Table 1Table 1. 

Table 1: Categorization of the voxel-based analysis results. 

Analysis results Assessment 

𝑝𝑂 ≥ 𝛾1: The TBE component is assumed to be correctly installed 

𝛾2 ≤ 𝑝𝑂 < 𝛾1: The TBE component may be rotated, displaced or a different component may have been installed 

𝑝𝑂 < 𝛾2: The TBE component is probably missing or displaced or another component has been installed 

3.1.4 Approach D: Iterative Analysis of Convex Hulls 

Our fourth method for analyzing as-planned versus as-built data of TBE components focuses on an iterative convex 

hull analysis of the respective point cloud data. Previous approaches yield results only for individual classification 

possibilities of the TBE components. In contrast, this method offers a holistic classification, enabling assignment 

to all categories illustrated in Figure 2. Consequently, the approach is designed to identify positional and structural 

deviations, enabling the detection of whether the constructed object conforms to its planned specifications or 

exhibits discrepancies, such as translation and rotation.  
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To initiate the process, the spatial extent of the as-planned an as-built point clouds is determined by identifying the 

minimum and maximum coordinates along the X, Y, and Z axes. Following that, the principal axis is identified by 

comparing the span of coordinates across each dimension in both datasets, selecting the dimension with the largest 

overall range. The identified principal axis serves as the directional reference for the following systematic 

segmentation of the as-planned and the as-built point clouds into cross-sectional slices, ensuring that the spatial 

orientation of each iteration is consistent. The thickness of each segment is controlled by an iteration size. The 

iteration size can either be calculated individually by dividing the maximum range of the principal axis by a 

specified number of iterations or set uniformly with a constant value. Within each iteration, all points that fall 

within the limit of the current slice are collected. This process of creating matching regions across both point 

clouds allows for a localized comparison, isolating changes within each segment independently. 

For each segment in both point clouds, the algorithm constructs a convex hull by generating a triangular mesh that 

represents the surface and boundary of the slice. In order to detect structural deviations, the volume is then 

calculated and logged for both convex hulls of each iteration. In addition, the coordinates of the centroids of both 

convex hulls are determined and recorded. These centroids provide a center of mass for each segmented volume, 

which is key for identifying any spatial offset between the as-planned and as-built point clouds. An example of the 

data to be logged for each iteration step is visualized in Figure 8.  

 

Figure 8: Exemplary iterative convex hull analysis of an as-planned point cloud (yellow) and an as-built point 

cloud (blue), with the convex hull volumes (V1, V2) shown in subfigure (i) and the centroids (P1, P2) illustrated 

in subfigure (ii). 

All calculated volumes and centroid coordinates are then aggregated across each segment for both point clouds. 

This collection of data enables a robust comparison of corresponding geometric features, which can be used to 

reveal trends or anomalies. Significant differences in volume between corresponding segments, for instance, 

suggest inconsistencies in construction and potential structural mismatches, pointing to construction deviations 

from the planned specifications under the assumption of a low-occlusion acquisition of the as-built data. Shifts in 

centroid positions may indicate rotational or translational misalignments. More specific, linear shifts in centroid 

positions along the principal axis point toward translation, while non-linear shifts suggest rotational deviation.  

Based on the aggregate results, two hypothesis tests are conducted to evaluate the conformity between as-planned 

and as-built data. The application of hypothesis tests in this approach follows the structure of a t-test. The initial 

hypothesis test assesses whether the differences in volume at each iteration step are statistically significant, serving 

as a method for detecting structural deviations. To account for the defined tolerances, any deviations falling below 

the tolerance threshold are rounded down to zero. The null hypothesis (H0) posits that the as-planned and as-built 

data are identical. Following the procedure outlined in 3.1.1, the probability (p-value) of the null hypothesis being 
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true is subsequently calculated. The p-value is then compared against the established significance level, accepting 

the null hypothesis if Equation 12 is satisfied and rejecting it if Equation 13 applies. The second hypothesis test 

follows the same methodology as the first, with the distinction that it evaluates the differences in the XYZ 

coordinates of the centroids rather than volume discrepancies. This test is conducted individually for each axis to 

detect potential translational shifts.  

Finally, it needs to be checked if the as-planned and the as-built component are uniform in their basic geometry, 

even if they are dimensioned differently in both datasets. Such is often the case, for example, with pipes in the 

TBE that are planned without a corresponding covering in the course of the planning process, but are recorded 

with a covering in the course of reality capturing after the installation has been realized. In this case, the 

documented volumes of the iteratively determined volumes would differ greatly from each other, which would 

result in an incorrect categorization of the component by the automated method. 

Therefore, we recorded the volumes of the as-planned and as-built component iterations in a diagram, with the 

iterations plotted on the x-axis and the volumes on the y-axis. The corresponding values were entered and 

connected linearly to create a graph. Subsequently, the as-planned and as-built volume graphs of a component are 

analyzed for similarity. This analysis examines whether the as-built volume graph increases in the same segments 

as the corresponding as-planned graph or exhibits an opposite trend. Specifically, the concept of a normalized 

cross-correlation is used for this purpose, which measures the similarity between two datasets as a function of a 

temporal shift (lag) (Hoffmann and Wolff, 2014). For this purpose, the linear correlation coefficient 𝑟 between two 

discrete data series 𝑥𝑖 and 𝑦𝑖  is calculated by  

 

𝑟𝑥𝑦(𝑘) =
∑(𝑥𝑖 − 𝑥̅)(𝑦𝑖+𝑘 − 𝑦̅)

𝜎𝑥𝜎𝑦𝑁
 (14) 

(Hoffmann and Wolff, 2014; Witte et al., 2020) . In this case 𝑥𝑖 and 𝑦𝑖  are the volume values of the iterations of 

the as-planned and as-built components, 𝑘 is the lag, 𝑥̅ and 𝑦̅ are the mean values of all respective volume values, 

𝜎𝑥  and 𝜎𝑦  are the standard deviations of the volume values and 𝑁 is the number of values considered. We then 

determine the lag with the largest linear correlation coefficient. The value of the resulting linear correlation 

coefficient serves as a measure of the linear dependence of the two data series and is always between the fixed 

limit values 

 −1 ≤ 𝑟𝑥𝑦(𝑘) ≤ 1. (14b) 

In this context, a resulting value of minus one or one stands for a strict linear dependence and a value of zero, on 

the contrary, has no stochastic linear dependence. 

Due to the existing possibility of significant influence by outliers or scattering of the measurements, which can 

decisively influence the cross-correlation, we have previously applied a Savitzky-Golay filter (Savitzky & Golay, 

1964) to the data in order to exclude such deviations. The Savitzky-Golay filter reduces the noise in the data while 

retaining important trends. This filter is based on a local polynomial fit of the data within a defined window and 

thus enables smoothing without distorting significant features of the original data. Mathematically, this means that 

a polynomial of a certain order is fitted for each pair of data points within a sliding window, whereby the 

coefficients of the polynomial are determined by weighted least squares fitting. Smoothing is performed according 

to the formula 

 

𝑦𝑖 = ∑ 𝑐𝑗𝑥𝑖+𝑗  ,

𝑚

𝑗=−𝑚

 (15) 

where 𝑦𝑖  is the smoothed value, 𝑥𝑖+𝑗 is the original values within the smoothing window, 𝑐𝑗  is the coefficient of 

the polynomial fit and 𝑚 is the half of the smoothing window (Chen et al., 2004; Savitzky & Golay, 1964). This 

ensures that short-term fluctuations in the data are minimized while the general structure of the data is preserved. 

The coefficients 𝑐𝑗 are determined in such a way that the sum of squared errors is minimized 
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𝑚𝑖𝑛 ∑ (𝑥𝑖 − 𝑃(𝑖))

2
𝑚

𝑖=−𝑚

  

𝑤𝑖𝑡ℎ 𝑃(𝑖) = ∑ 𝑐𝑘𝑖𝑘 ,

𝑘

𝑘=0

 

 

(16) 

where 𝑃(𝑖) is the approximated polynomial (Savitzky & Golay, 1964). The application of the Savitzky-Golay filter 

thus contributes to improving the robustness of the normalized cross-correlation analysis by reducing systematic 

measurement deviations. As a result, the reliability of the determined correlations increases, which enables a more 

precise assessment of the similarity between the volume curves of the as-planned and as-built components. 

For the classification of the TBE component, a threshold value 𝜆 is defined for the correlation factor, above which 

there is sufficient agreement between the volume graphs to assume that the corresponding as-planned component 

was installed in reality. In order to include correlation factors that deviate slightly from this threshold value, a 

hypothesis test is used to check whether correlation factors that are smaller than the defined threshold value 

𝜆 actually deviate statistically from the threshold value. Therefore, the null hypothesis of the hypothesis test states 

that the actual correlation reaches or exceeds at least a specified threshold value. The alternative hypothesis 

postulates that the correlation is below this threshold value. As correlation factors for small sample sizes 𝑛1 cannot 

assumed to be normally distributed, the Fisher Z-transformation (Fisher, 1915) is used for the hypothesis test with 

a probability of error 𝜑, which first transforms the observed correlation 𝑟𝑥𝑦 into an approximately normally 

distributed variable 𝑧1
∗ by the formula 

 

𝑧1
∗ =

1

2
𝑙𝑛

1 + 𝑟𝑥𝑦

1 − 𝑟𝑥𝑦
 (17) 

(Fisher, 1915; Witte et al., 2020). The standard deviation of the variable 𝑧1
∗ can be estimated as 

 

𝜎𝑧1
∗ =

1

√𝑛1 − 3
 (18) 

(Fisher, 1915; Witte et al., 2020). Similarly, the threshold value is also transformed by 

 

𝑧0
∗ =

1

2
𝑙𝑛

1 + 𝜆

1 − 𝜆
 (19) 

(Fisher, 1915; Witte et al., 2020). Finally, the standardized test statistic 𝑧̂ can be calculated by 

 

|𝑧̂| =
|𝑧1

∗ − 𝑧0
∗|

𝜎𝑧1
∗

 (20) 

(Fisher, 1915; Witte et al., 2020). To decide whether to accept or reject the null hypothesis, the critical value of the 

standard normal distribution 𝑧1−
𝜑

2
 must first be determined in relation to the selected probability of error 𝜑. On 

this basis, the null hypothesis is accepted if  

 
|𝑧̂| < 𝑧

1−
𝜑
2

 (21) 

is fulfilled. By contrast, if  

 
|𝑧̂| ≥ 𝑧

1−
𝜑
2

 (22) 

applies, the null hypothesis is rejected. Due to the increased level of complexity, the workflow of the approach 

presented is shown as pseudo code in Listing 1. 
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3.1.5 Combined classification framework 

We previously introduced four different approaches for object-based geometric analysis of as-planned and as-built 

data of TBE components in combination with statistical hypothesis tests for automatic evaluation. For the final 

classification of the individual TBE components according to the categories defined in Figure 2, the individual 

approaches need to be merged into a combined classification framework.  

Listing 1: Pseudocode for the analysis of convex hulls. 

function: IterativeConvexHullAnalysis (P_plan, P_build, N): {D} 

input: P_plan  - As-planned Point Cloud 

 P_build - As-built Point Cloud 

 N  - Number of Iterations 

output: D - Classification Outcome 

 

1 for P_plan, P_build do 

2  // Segmentation 

3  Determine principal_axis with maximal spatial extent 

4  Divide principal axis into N slices {𝑆1, …, 𝑆𝑁} 

5  // Feature Extraction and Aggregation 

6  for each slice 𝑆𝑘 do 

7   Compute Convex Hull 

8   Compute Volume 

9   Compute Centroid 

10  end-for each 

11 end-for 

  

12 // Statistical Evaluation 

13 Calculate Volume Differences for all k 

14 Calculate Centroid Differences for all k 

15 ΔV_conf, ΔZ_conf  Compute Confidence Interval  

16 Perform hypothesis tests on ΔV_conf and ΔZ_conf 

  

17 // Correlation Analysis 

18 V_plan_smooth, V_build_smooth    Apply Savitzky Golay Filter 

19 Compute Cross Correlation R between V_plan_smooth and V_build_smooth 

20 R_norm  Apply Fisher-Z-Transform to R  

21 Evaluate significance of R_norm 

  

22 // Classification 

23 Determine classification outcome D based on statistical tests and correlation 

  

24 return {D} 

The first category for classifying the TBE components comprises the analytical result that the respective 

component was installed in reality according to the planning specifications (1A). This classification is made under 

some constraints. For approach A, the transformation matrix of the two-stage co-registration must not deviate 

significantly from the identity matrix. In the case of approach B, the median of the distances should show no 

significant deviation. Approach C requires that the proportion of overlapping voxels reaches at least the value of 

γ₁. Finally, in approach D, neither the volumes nor the differences and variances of the XYZ-coordinates of the 

centroids of the iteration steps may deviate significantly, taking the tolerance into account. In addition, the 

correlation factor of the volume graphs must be higher than the defined threshold value. 

Conversely, a component is classified as rotated (1B) when a significant deviation is detected in Approaches A and 

B, while less than the value of 𝛾1 of all voxels are categorized as overlapping in Approach C. For Approach D, no 

deviation in the center coordinates is detected in this context, but there is a significant deviation in the volumes 

and a lower correlation factor in the volume graphs, as the defined threshold value is detected. 
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A component is classified as displaced (1C) when the criteria for Approaches A, B, and C align with those for the 

rotated category. In Approach D, however, significant deviations are found only for the centroid coordinates of the 

iterations, but no deviations in volumes, which also results in a higher correlation factor value than the defined 

threshold. 

Table 2: Classification framework combined by all approaches and their hypothesis tests. 

 

Component exists (1) 

Component 

does not exist 

(2) 

Different 

component 

installed 

(3) 

Not 

rotated or 

dis-placed 

(1A) 

Rotated 

(1B) 

Displaced 

(1C) 

Rotated 

and dis-

placed 

(1D) 

Approach 

A 
𝑇1 

 
𝑝 > ∝ 

 
True False False False False False 

 
𝑝 ≤ ∝ 

  
 

False True True True True True 

Approach 

B 
𝑇2 

 
𝑥̃  ≤  𝜏  

 
True False False False False 

True/ 

False 

 
𝑥 ̃ >  𝜏  

 
 

False  True True True True 
True/ 
False 

Approach 

C 
𝑇3 

 
𝑝𝑂 ≥ 𝛾1  

 
True False False False False 

True/ 

False 

 
𝛾2  

≤ 𝑝𝑂 < 
𝛾1  

 

False 
True/ 

False 

True/ 

False 

True/ 

False 
False 

True/ 

False 

 
𝑝𝑂 <  𝛾2  

 
False 

True/ 

False 

True/ 

False 

True/ 

False 
True 

True/ 

False 

Approach 

D 

𝑇4 

 
𝑝𝑉𝑜𝑙  >  ∝ 

 
True False True False False False 

 
𝑝𝑉𝑜𝑙 ≤  ∝ 

 
False True False True True True 

𝑇5,6,7 

 
𝑝𝐷𝑖𝑓𝑓  >  ∝ 

 
True True False False False 

True/ 

False 

 
𝑝𝐷𝑖𝑓𝑓 ≤  ∝ 

 
False False True True True 

True/ 

False 

𝑇8 

 
𝑟𝑥𝑦(𝑘) ≥ 𝜆 

 

True 

(False) 
False 

True 

(False) 
False False False 

 
𝑟𝑥𝑦(𝑘) < 𝜆 

 

False 

(True) 
True 

False 

(True) 
True True True 

𝑇9 

|𝑧̂| < 𝑧
1−

𝜑
2

 True False True False False False 

|𝑧̂| ≥ 𝑧
1−

𝜑
2

 False True False True True True 

A combination of rotation and translation (1D) is identified when significant deviations are found in each of 

Approaches A, B, and D, and Approach C shows that the proportion of overlapping voxels in the total voxel grid 
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is less than the value of 𝛾1. If a component from the planning model is missing in reality, this is indicated either 

by the inability to perform the analyses due to a completely absent as-built dataset or by an overlap percentage of 

less than the value of 𝛾2 in Approach C, combined with significant deviations in the respective evaluation metrics 

across all other approaches. 

The scenario in which a component differing from the planning model is installed in its place (3) cannot be clearly 

identified by this type of analysis, as also shown by related publications above. The diverse geometric 

characteristics and the uncertainty regarding the orientation of the differing component preclude the assumption 

of significant deviations across various tests in an automated analysis.  Nevertheless, in such cases, it is anticipated 

that Approach A will produce a transformation matrix that significantly deviates from the identity matrix, while 

Approach D will reveal a volume difference during the iterative steps. For other analytical approaches, no 

conclusive observations can be made. Consequently, this scenario cannot be clearly distinguished from other 

classifications, particularly the "Rotated and Displaced" category, and must always be considered as a potential 

outcome. The outlined decision-making framework is summarized in Table 2. 

In summary, this methodology provides a systematic, segment-wise comparison between the as-planned and as-

built models, supporting precise quality assurance by revealing positional and structural discrepancies. This 

process ensures that any deviation, whether a minor misalignment or a major structural inconsistency, can be 

detected, quantified, and visualized, providing critical insights into the accuracy of construction in relation to 

planned designs. Based on these results, the TBE system can be divided into areas where the methodology can 

reliably identify either a match or a validated discrepancy between the as-planned and the as-built data, and areas 

where no valid statement can be made and manual verification is therefore required. Furthermore, the methodology 

presented forms a fundamental benefit for the generation of DTw, provided that the specified initial situation is 

adhered to and, in particular, an as-built detection with limited occlusion is achieved. 

4. IMPLEMENTATION 

In this chapter, the practical implementation of the methodology described above is presented. First, we introduce 

the datasets on which the methodology was applied. Next, we outline the implementation in detail, including the 

technical application and the selected parameter values.  

4.1 Datasets 

For the initial performance analysis of the proposed method, a manually generated simulated dataset with simple 

geometric shapes was created. Using the BIM authoring software Autodesk Revit2, a simple geometric model was 

constructed, consisting of a wall and a column, both represented as cuboids (Figure 9). Those objects were selected 

to verify that the method performs well for simple geometric shapes before applying it on complex geometries of 

TBE systems. Each object was then modified by controlled rotations, translations, or a combination of both. 

Uniform translations of one meter were applied, while rotations of 45° were performed on the column and 20° on 

the wall. These transformation parameters were selected randomly, ensuring that the resulting spatial change was 

significant. To establish the required baseline conditions all modeled objects were first converted into meshes and 

then transformed into object point clouds, which served as as-built data. To ensure a realistic representation, the 

point clouds were also augmented with a noise factor of 5 mm, corresponding to the accuracy of the geodetic 

terrestrial laser scanner Riegl VZ-400i used for the other datasets, as specified by the manufacturer (Riegl, 2017). 

This enabled the simulation of various scenarios for the wall and the column, including cases where the objects 

were realized without deviation and where rotations or translations were introduced. To simulate the case where 

an object was absent, an empty point cloud was used as the as-built data. A further scenario involved the installation 

of an incorrect component, represented by using the wall object as the as-planned dataset and the column object 

as the as-built dataset. During the manual creation of this dataset, care was taken to exclude potential sources of 

interference, such as occlusions in the point clouds representing the as-built data. In this way, it was ensured that 

the analysis methods could be validated under idealized conditions, focusing solely on their fundamental 

functionality. 

 

 
2 https://www.autodesk.com/products/revit/ 
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The second dataset consists of a physical TBE demonstrator designed to represent typical TBE geometries. The 

structure includes eleven components made up of plastic pipes, cuboid and cylindrical elements simulating TBE 

components, as well as metal pipes. The demonstrator has a width of approximately 1 m, a height of 1.5 m, and a 

depth of 0.4 m. It was suspended from the ceiling using nylon threads and stabilized with weights on the floor to 

minimize movement during the scanning process. The data was collected under controlled laboratory conditions 

using again the Riegl VZ-400i laser scanner with an accuracy of 5 mm. The scanning process covered 360 degrees 

from multiple heights to prevent occlusions. In addition, obvious outliers were removed by means of manual post-

processing, whereby points located in empty space around the objects were roughly cropped. However, only points 

that could clearly distort the analysis were removed, while noise on the object surfaces remained unchanged. Based 

on the resulting point cloud, a digital model of the demonstrator was manually modeled to accurately reflect the 

real structure. To evaluate the methodology’s ability to detect deviations, a second version of the digital model was 

manually modified. In this manipulated model, individual components were shifted by 20 centimeters, rotated by 

35 degrees as well as rotated and shifted with the same values. In addition, one component representation was 

removed from the as-built point cloud (Figure 10). This dataset serves as a functional test for the methodology in 

a physical environment under laboratory conditions. The demonstrator includes TBE-relevant geometries and 

surfaces, and the scanning setup ensured a complete, occlusion-free acquisition. By applying the methodology to 

both the unmodified and the manipulated model, the dataset enables an evaluation of its performance on a real-

world structure while minimizing external disturbances. 

 

Figure 9: Point clouds of the simulated dataset showing (i) a column (0.5 × 0.5 × 3.0 m) and (ii) a wall (5.0 × 0.2 

× 3.0 m), each illustrated in its original position (red), rotated (blue), displaced (turquoise), and rotated and 

displaced (pink). 

 

Figure 10: TBE demonstrator (i) and the non-manipulated (ii) and manipulated (iii) digital model with overlaid 

point cloud. 
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Finally, the third dataset consisted of a real technical installation located within a large hall, which was captured 

using TLS. More specifically, the data acquisition was again performed with the laser scanner Riegl VZ-400i from 

45 scanning positions, which were subsequently registered into a single as-built point cloud. The registration of 

the 45 scan positions was performed using a MultiStation Adjustment in RiSCAN Pro3, utilizing a total of 961,308 

plane patches. The resulting standard deviation of the residual distances between corresponding plane patches was 

7.6 mm. Although the scans were planned to minimize occlusions, this could not be fully achieved due to the dense 

arrangement of the components. The resulting colored as-built point cloud of the dataset is shown in the appendix 

in Figure A1. The technical installation comprises a wide variety of 315 objects with complex geometries, 

including pumps, pipes, valves, control cabinets, and a steel framework. Pipes, for example, show high complexity 

due to different categories, varying diameters, long and slender runs, non-standard layouts, and interactions with 

surrounding components. A detailed representation of the included component types of the dataset is illustrated in 

Table A1 in the appendix. Consequently, the dataset represents diverse geometric forms and scales that characterize 

intricate TBE systems. Based on the resulting point cloud, the installation was initially reconstructed through a 

detailed manual modeling process (Figure 11). Each object was modeled directly from the point cloud data, 

capturing its geometry with as much detail and accuracy as the data allowed, so that the anticipated outcome of 

applying our analysis method to this dataset was the identification of all components as neither displaced nor 

rotated. This allowed for the evaluation of the method’s functionality under real-world conditions, given the wide 

range of geometric forms and variations present within the components. The point cloud for this dataset was not 

manually refined, preserving the inherent characteristics of point clouds generated via laser scanning techniques. 

As a result, the dataset included noise and residual occlusions. These challenges are typical of point clouds obtained 

from laser scanning in the context of TBE systems. Specifically, laser scanning often leads to multiple reflections 

due to the numerous metallic surfaces of the components. Additionally, the complex structure and dense 

arrangement of TBE systems make it impossible to capture them entirely without occlusions. This dataset was 

therefore instrumental in testing the method's robustness and effectiveness in handling realistic data with typical 

imperfections arising from laser scanning processes. 

 

Figure 11: Dataset of a Field2BIM project. 

4.2 Technical Implementation 

For the technical implementation of the methodology, the as-planned and as-built BIM models were exported to 

IFC and converted into geometric mesh representations using the open-source library IfcOpenShell4. Each IFC 

element was meshed using IfcOpenShell's standard BRep triangulation, whereby world coordinates were used to 

ensure consistent positioning. The resulting meshes consist of vertices and triangular faces that represent the 

geometry of the elements. For further conversion into a point cloud, the mesh surfaces were uniformly sampled 

 

 
3 https://www.riegl.com/products/detail/riscan-pro 
4 https://ifcopenshell.org/ 
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using the open-source library Open3D5. The number of points per triangular face was selected proportionally to 

its area, resulting in an even distribution of points across the surface. The total number of points per element was 

set at one million in order to capture sufficient geometric detail. To approximate measurement uncertainty, additive 

Gaussian noise was applied to the point cloud, modeled as isotropic and independently distributed in all spatial 

directions, with a standard deviation corresponding to the specified measurement precision of the Riegl VZ-400i 

laser scanner. Following this, the generation of convex hulls could be generated using the open-source library 

SciPy6. 

As mentioned above, the tolerances, including the execution tolerance, which serve as the basis for the analysis, 

are usually specified in advance by the client or in accordance with applicable standards and guidelines in practice. 

Based on those defined values, it is the task of the surveyor, for example, to select a suitable measuring instrument 

in order to comply with these tolerances. Here, in order to be able to evaluate our methodology in practice, we 

defined realistic tolerances ourselves in order to use these values to check how our methodology performs under 

those conditions. Also, we defined all necessary thresholds by either empirically evaluated values or common 

application values. On the one hand, we have defined a tolerance value of 0.10 m for the execution tolerance 𝜏𝑐. 

On the other hand, for the measurement tolerance 𝜏𝑚, a standard deviation 𝜎𝑚 of 0.005 m results from the 

manufacturer's specifications of the TLS used. However, since the observed standard deviation of the residual 

distances after registration was 0.0076 m for the real-world dataset, we adopted a more realistic standard deviation 

𝜎𝑚 of 0.008 m. To take account of unknown systematic measurement deviations, we have set the value of 𝛥𝑢 to 

0.01 m. According to Equation 3, this results in a measurement tolerance of 0.05 m. Hence, the total tolerance 

𝜏𝑡𝑜𝑡𝑎𝑙  results in a value of 0.1118 m according to Equation 4. 

Further to implement our methodology practically we defined a common 𝛼-value of 5% for the hypothesis test 

that determine whether the obtained transformation matrix significantly deviates from the identity matrix in 

Approach A.  

In Approach C the threshold 𝛾1, which defines the percentage distribution of overlapping voxels beyond which the 

TBE component is assumed to be correctly installed, was set at 80%. Conversely, the threshold 𝛾2, beyond which 

it is assumed that the TBE component is probably missing, displaced, or replaced by another component, was set 

at 20%. 

The number of iterations for the iterative analysis of convex hulls in Approach D was set to 50 in order to ensure 

a robust approximated normal distribution of the correlation factors within the Fisher-Z transformation. However,  

before conducting statistical assessments, a preprocessing step was applied in which the 20% of the distribution 

of the XYZ-coordinates of the centroids with the highest deviation was identified and excluded to mitigate the 

influence of outliers. The same exclusion criterion was applied to the analysis of volume differences and cross-

correlation, ensuring that the remaining 80% of the distribution formed the basis for further analysis. In the 

subsequent t-tests on the distributions of the recorded XYZ-coordinate differences of the centroids as well as on 

the volume differences across iterations, we again set the 𝛼-value to 5%. For the classification of components 

based on cross-correlation, the threshold 𝜆 for the resulting correlation factor, beyond which as-planned and as-

built components are considered identical, was set at 0.8. Finally, for the Fisher-Z transformation, an error 

probability 𝜑 of 5% was chosen, yielding a critical value 𝑧1−
𝜑
2
 of 1.96 for the standard normal distribution. 

5. EVALUATION 

For the evaluation of our automated and geometry-based analysis method for the comparison of as-planned and 

as-built data in the context of TBE systems for component-specific validation using statistical test procedures, 

various datasets were considered. The datasets differ in the degree of their potential confounding factors, allowing 

the basic functionality to be evaluated, possible application limits and result-distorting factors to be identified and 

optimization potential to be recognized. This section presents the results obtained on the various datasets with 

increasing complexity.  

 

 
5 https://www.open3d.org/ 
6 https://scipy.org/ 
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5.1 Simulated dataset 

The application of the proposed analysis framework to the simulated test dataset demonstrated the effectiveness 

of the method in various scenarios. For components where as-built data matched the as-planned specifications, the 

calculated median of the shortest distances between the as-built point cloud and the as-planned component was 

negligible and therefore below the tolerance threshold, indicating compliance with the design. The two-stage co-

registration process resulted in a transformation matrix that deviated slightly from the identity matrix due to the 

iterative optimization process. However, the marginal deviations did not prove to be significant in the subsequent 

hypothesis test. As expected, the voxel-based analysis revealed a complete overlap, while the convex hull analysis 

revealed no significant differences in centroid coordinates or volumetric differences. Consequently, the cross-

correlation analysis also resulted in higher correlation factors than the defined threshold value of 0.8, so that the 

components were correctly identified as installed according to design specifications. 

When the as-built component was rotated relative to the as-planned BIM, the median distance exceeded the 

tolerance threshold. Furthermore, the transformation matrix derived from the co-registration significantly deviated 

from the identity matrix. The results of the voxel overlap, on the other hand, varied for the two different test 

objects. For the wall, the proportion of voxels with an overlap of the mesh of the as-planned data was in the range 

between 20 % and 80 %, while for the column it was over 80 %. The convex hull analysis detected no deviations 

in centroid coordinates for either component. However, the volumetric analysis revealed discrepancies for the wall 

along its representative axis, leading to a lower correlation factor of the cross-correlation analysis, which correctly 

classified the wall as rotated. In contrast, no volumetric deviations have been detected for the column along its 

representative axis, resulting in its misclassification as correctly installed. This highlighted a limitation of the 

method, where rotation is only detected when it does not occur along the analyzed axis. 

For the components that have been translated, the median of the calculated distances also exceeded the tolerance 

threshold. Similarly, the transformation matrix resulting from the registration process again deviated significantly 

from the identity matrix, as the part of the translation vector in particular exhibited a corresponding characteristic. 

Furthermore, no overlap was detected in the voxel-based analysis, as anticipated. Nevertheless, the iterative convex 

hull analysis identified deviations for the centroids coordinates without volumetric anomalies. In this way, the 

component was correctly identified as being translated without any rotation. 

In the cases where the components were both rotated and translated, all metrics investigated showed significant 

deviations.  The difference with the results for the components that were only translated lies in the iterative analysis 

of the convex hulls, where significant deviations were found in the center coordinates and volumes. As a result, 

the components were either correctly identified as rotated and shifted or as potentially incorrect components. 

However, distinguishing between these two possibilities required remains a central issue as also shown by related 

works in this field (see Chapter Error! Reference source not found.). Therefore, in such cases manual inspection 

is unavoidable. 

Proof of this could also be provided using the scenario of an installation of a component deviating from the 

planning situation. This case was simulated by using the wall in its initial position as an as-planned component 

and the object point cloud of the column as an as-built component. The result showed that all null hypotheses of 

the hypothesis tests and threshold comparisons applied to the results of the four different analysis methods were 

rejected for this example. With this result, the object could be identified as invalid. However, the obtained result 

data does not allow a precise distinction to be made as to whether a deviating component has been installed or 

whether the component is severely rotated and displaced. However, the algorithm enables pre-filtering in these 

cases. Table 3 summarizes the results of the method on the simulated dataset. 

Table 3: Component analysis results for the simulated dataset. 

Achieved classification Wall Column 

Correctly Installed (1A) True True 

Rotated (1B) True False 

Displaced (1C) True True 

Displaced and Rotated (1D) True True 

Different component (3) True /False 
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In summary, the results from the test dataset confirmed the robustness of the method in identifying components 

installed according to design specifications or those subjected to translation. Rotations were reliably detected when 

convex hull analyses were extended to all axes. However, distinguishing between cases that combine rotation and 

translation and those where a deviating component has been installed remains a challenge. 

5.2 TBE demonstrator 

Our method was applied to the TBE demonstrator to evaluate its functionality using a real dataset under controlled 

conditions. As described in Section 4.1, the demonstrator was manually modeled both as a faithful representation 

of reality and with manipulated components that deviated from the actual structure. 

In the first case, where the non-manipulated model was used as the as-planned BIM, the method correctly classified 

9 out of the 11 components as identically installed. The components not classified as identical were the two metal 

pipes with polished surfaces. Since the scanning process of the TBE demonstrator was conducted in a near-range 

setup, the representations of these metal pipes in the point cloud were significantly affected by strong scattering 

due to multiple reflections. This pronounced scattering of measurement points led to discrepancies in the 

component analysis, as in Approach D the convex hull of the as-built point cloud exhibited substantial deviations 

from the convex hull of the as-planned component. Consequently, significant differences in volume metrics were 

observed, and the cross-correlation analysis revealed a low correlation factor. This finding indicates that the well-

known problem of multiple reflections has a significant impact on the performance of our method, as also reported 

in related work. However, since the high occurrence of multiple reflections in this specific case is greatly increased 

by near-range scanning, it cannot be generalized that the method is unsuitable for components with metallic 

surfaces. The applicability of the method to such components under different scanning conditions is further 

analyzed in Section 5.3. To assess the results, Figure 12 presents the confusion matrix of the classification results 

together with the derived evaluation metrics accuracy, precision, recall and specificity. In this context, true 

positives (TP) refer to components that were correctly recognized as identically installed. False negatives (FN) 

denote components that were not recognized as identical despite being correctly installed. Since in this scenario 

only correctly installed components were evaluated, the categories true negatives (TN) and false positives (FP) 

remain empty. 

 

Figure 12: Summary of the TBE demonstrator results using the non-manipulated model, showing the confusion 

matrix parameters (left) and the derived evaluation metrics (right). 

For the second use case of the demonstrator, the manipulated model, in which one component was each manually 

rotated, shifted, rotated and shifted as well as removed, was used as an as-planned BIM. In this case, the same 

results were obtained for the remaining non-manipulated components of the demonstrator as before, meaning that 

the two metal pipes were classified as not identically installed and the remaining components were classified as 

identically installed. The component whose representation was removed from the as-built point cloud to illustrate 

the possible case of a missing component in reality was in fact categorized as a missing or different component by 

the method. Through the object-based point cloud segmentation, only outliers and a small number of points of the 
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neighboring elements were included in the analysis. As a result, the transformation matrix determined in Approach 

A deviated from the identity matrix and the median determined in Approach B deviated significantly from the 

defined tolerance limit. Similarly, in Approach C only a marginal number of overlapping voxels could be 

determined and in Approach D both the volumes and the centers differed significantly from each other. The 

components of the manipulated dataset that were rotated and the component that was shifted could also be correctly 

classified by the method. In both cases, the transformation matrix determined in approach A deviated significantly 

from the identity matrix, the median determined in approach B significantly exceeded the tolerance limit and the 

determined proportion of overlapping voxels in approach C was below the defined threshold 𝛾1. For the rotated 

component in approach D, on the other hand, a significant deviation of the volume differences and a low correlation 

factor of the cross-correlation analysis were diagnosed, but no significant deviation of the centroid coordinates. In 

contrast, for the shifted component, a significant deviation of the centroid coordinates, but no significant deviation 

of the volume differences, as well as a higher correlation factor than the defined threshold value 𝜆 was determined. 

Finally, in the analysis of the rotated and shifted component, all hypothesis tests of Approaches A, B and D were 

rejected. In Approach C a proportion of overlapping voxels between the threshold values 𝛾1 and 𝛾2 was determined. 

Thus, this component could also be correctly classified as either rotated and shifted or as another component. 

Figure 13 and Figure 14 summarize the results of the method on the manipulated TBE demonstrator dataset. 

 

Figure 13: Classification results and resulting confusion matrix parameters for the manipulated TBE 

demonstrator. 

 

Figure 14: Evaluation metrics for the manipulated TBE demonstrator derived from the confusion matrix 

parameters of Figure 13. 
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Overall, the results obtained on the demonstrator with the non-manipulated and the manipulated digital model 

demonstrated the basic functionality of our method on a real dataset as long as the central requirement of sufficient 

scan data quality for geometry-based methods is fulfilled. 

5.3 Real-world dataset 

The decision-making framework for component-specific comparisons of as-planned and as-built data for TBE 

systems was further evaluated using a real-world dataset in which the as-planned BIM model had been manually 

modeled based on the as-built point cloud.  

By including unprocessed point cloud data with inherent noise, such as occlusions and multi-path reflections, this 

approach allowed us to assess the framework's robustness under realistic and imperfect conditions. In addition, 

this procedure enables the identification of limitations and areas for optimization. 

The dataset includes 315 TBE components, with dimensions ranging from small-scale elements in the lower tens 

of centimeters to large-scale components spanning several meters. The holistic application of our method to the 

present dataset indicates that 195 out of a total of 315 components were identified as correctly installed, which 

corresponds to a reduction in manual effort for system verification of approximately 61.90%. However, 120 

components of the dataset remain that were not classified as identical components by our method as expected. 

Figure 15 summarizes the results of the holistic approach of our method on the dataset. 

 

Figure 15: Summary of the real-world dataset results, showing the confusion matrix parameters (left) and the 

derived evaluation metrics (right). 

A closer examination of the results obtained showed that in particular components that have not been affected by 

occlusions or surrounded by closely packed neighboring elements were consistently classified as matching the as-

planned specifications without deviations. Due to the densely installed structure of the TBE system, this 

particularly affects the large proportion of the dataset of components that were directly accessible. In these 

scenarios, the object-based point cloud segmentation reliably captured the component's geometry, allowing the 

subsequent analytical methods to perform effectively due to the high overall data quality. An example of such a 

component is shown in Figure 16 in its initial position as well as in the course of the resulting object-based point 

cloud segmentation and the performed voxel-based analysis. Additionally, Figure 17 includes a graphical 

representation of the recorded XYZ centroid coordinates and volumes over the iterations performed as part of the 

convex hull analysis for the example component shown in Figure 16. The graphs demonstrate that while the 

method of iterative convex hull analysis is sensitive to outliers in the point cloud segments, the relatively low 

frequency and magnitude of such noise in these cases allow for a robust identification of the structural equivalence 

between as-planned and as-built data. 
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Figure 16: Properly detected TBE component in its initial position (i), segmented object point cloud (blue) overlaid 

with the as-planned mesh (red) (ii), and voxel-based analysis (iii) showing overlapping (green) and non-

overlapping (red) voxels. 

 

Figure 17: Convex analysis results for the TBE component shown in Figure 16.Error! Reference source not found. 

On the other hand, the components that led to incorrect classification by our automatic analysis framework were 

those with a high degree of occlusion or very densely built-up neighboring components, which are partially 

included in the analysis as a result of the object-based point cloud segmentation and distort the result. In particular, 

components that are installed directly at the walls are affected by this, as it is not possible to capture such 

components in their entirety in the scanning process. The sum of these components represents a significant 

proportion of the dataset. Due to the missing parts of the geometric representation of these components in the as-

built point cloud, our geometric analysis consequently reveals deviations between the as-planned and as-built data. 

The voxel-based approach is the only method that offers greater robustness against occlusions during geometry-

based analysis. However, it does not make sense to rely exclusively on the results of this approach for classification. 
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Therefore, as in other related work, the disruptive factor of occlusion cannot be compensated for by applying our 

methodology. In contrast, we have compensated for the interference factor of the partial inclusion of nearby 

neighboring elements by integrating the entire content of the as-planned BIM that lies within the bounding box of 

a component into the analysis. However, this compensation is only possible to the extent that the elements that are 

represented in the as-built point cloud apart from the actual object under investigation are also present in the as-

planned BIM.  

Another finding of the results analysis is that large-scale components are more often misclassified, whereas small-

scale components are more often correctly classified. This fact can partially be explained by the fact that the degree 

of integration of other objects apart from the component under investigation increases with the larger size of the 

respective component. As a result, the risk of misclassification also increases, as more outliers of the point cloud 

are included in the analysis. Furthermore, significant deviations of neighboring components can also influence the 

classification depending on the degree of their integration into the analysis by the object-based point cloud 

segmentation. Figure 18 shows a corresponding example of such a case and its point cloud segmentation in 

superposition with the optimized as-planned mesh generation as well as the resulting voxel analysis. 

 

Figure 18: Complex TBE component in a densely built-up area in its initial position (i), segmented object point 

cloud (blue) overlaid with the optimized as-planned mesh (red) (ii), and voxel-based analysis (iii) showing 

overlapping (green) and non-overlapping (red) voxels. 

 To verify whether the method can be applied in practice to a real dataset with an imperfect point cloud, a subset 

of the TBE system was isolated from the center of the room. This test was carried out to evaluate the method`s 

performance on a real world dataset without being affected by the previously identified limitation regarding the 

integration of wall-mounted components that are only partially captured during the scanning process. This subset 

comprises 81 components, to which the method was applied again. The results of this second study show a 

significant improvement in the correct classification of the TBE components. Of the 81 components, 72 (88.89%) 

were reliably classified as correctly installed by the method, which confirms its functionality and effectiveness. 

Compared to the holistic approach, the correct classification rate was thus increased by 26.99%. A summary of the 

analysis results is shown below in Figure 19. 

 

Figure 19: Summary of the results for the subset of the real-world dataset, showing the confusion matrix 

parameters (left) and the derived evaluation metrics (right). 
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6. CONCLUSIONS AND OUTLOOK 

We have presented an automated decision-making framework for the comparison of as-planned and as-built data 

for TBE components. TBE systems pose a major challenge due to their complex geometries and densely built 

structures, which often lead to limited accessibility.  The framework applies four consecutive geometry-based 

analyses combined with threshold comparisons and statistical evaluation methods to classify components as 

identically installed, rotated, displaced, both rotated and displaced, missing or replaced by another component. By 

evaluating the application of our method on various datasets with different geometric complexities of the TBE 

systems, scales and numbers of potential interfering factors, we examined the strengths and limitations of the 

presented methodology. 

As a result, the technical functionality of the individual analysis methods and their practical benefits have been 

proven. If a sufficient scan quality is given, the method reliably identifies identically installed, rotated, and or 

displaced components. Under those conditions, a correct identification rate of over 88% was achieved on a real-

world dataset. This leads to a significant reduction in manual effort, as the inspection process is transformed from 

a complete system check to a targeted validation of the remaining 12% of deviating or unclear cases. This 

optimization not only improves time and cost efficiency but also highlights the method's potential to support the 

creation of DTw within the complex environment of TBE systems. However, the aim of this study was not to 

develop a fully automated workflow for the entire TBE system, but to provide a practical tool to support the 

inspection process. By increasing the degree of automation, the method enables an initial classification of objects 

in terms of their spatial conformity with the planning data. Thereby, a distinction is made between components 

that can be evaluated with a high degree of certainty and those for which automated suggestions are available but 

still need to be validated manually.  

An unavoidable limitation lies in the strong dependence on the quality of the input data, such as the Level of Detail 

(LOD) of the as-planned BIM. Furthermore, environmental factors like occlusions, noise, and multiple reflections, 

which are common in dense, wall-mounted TBE structures or metallic surfaces, can distort the object 

representation. These disruptive factors represent a fundamental limitation of geometry-based Scan-vs-BIM 

methods and set natural limits to the reliability of automated results. Additionally, the ambiguity between rotated 

and displaced components and different components reflects a well-known, fundamental limitation of geometry-

based Scan-vs-BIM methods rather than a framework-specific deficiency. 

However, another crucial factor influencing the framework’s performance is the selection of tolerance values, 

which need to be predefined in practical applications. In this study, these values were approximated in a practice-

oriented manner. While higher tolerances allow components with certain deviations to be classified as identically 

installed, they may also result in smaller components being incorrectly classified as correctly installed despite 

significant deviations from the as-planned BIM specifications. Therefore, tolerance parameters need to be adapted 

in dependence to the quality of the input data, since even identically installed components may show greater 

deviations in practice than in our dataset. The exact reproducibility of the presented results on other real data sets 

is therefore not necessarily guaranteed. 

One optimization potential was identified in the segmentation process. Initially, only the planned component and 

the bounding box of the point cloud were compared, which sometimes included noise or neighboring elements. 

Including all as-planned BIM content within the respective bounding box improved robustness, but further 

advances in segmentation could significantly reduce misclassifications. A promising option in this context would 

be automated extraction of component center lines by skeletonization, to improve convex hull analyses. 

Another improvement could be achieved by harmonization of the input data. Virtual laser scans of the as-planned 

BIM, taken from the same positions as the real scans, could minimize occlusion effects and create more comparable 

datasets. In addition, future work could integrate machine learning techniques, potentially trained on synthetic 

datasets, to enhance the robustness of component classification and better distinguish between complex 

displacement and replacement scenarios.  

By addressing the identified limitations and exploring advanced optimization strategies, this approach could 

provide a powerful tool for the validation of TBE systems and contribute to greater efficiency and accuracy in the 

creation of Dtw. However, we believe that our method already provides an effective advantage for the creation of 

DTw under the conditions presented.  



 

 

 
ITcon Vol. 31 (2026), Kinnen & Blankenbach, pg. 103 

DECLARATION OF COMPETING INTEREST 

The authors declare that they have no known competing financial interests or personal relationships that could 

have appeared to influence the work reported in this paper.  

ACKNOWLEDGMENTS  

The authors gratefully acknowledge the financial support of the German Federal Ministry for Economic Affairs 

and Climate Action in the project “EnOB: EnergyTWIN - Energiediagnosestecker Digitaler Zwilling. Neue 

sensorgestützte und KI-basierte Methoden für die digitale, BIM-basierte Inbetriebnahme von technischen Anlagen 

in Hochbauwerken und deren energetische Systemoptimierung” (reference number 03EN1026) 

DATA AVAILABILITY 

Data will be made available on request.  

REFERENCES 

Abreu, N., Pinto, A., Matos, A. and Pires, M. (2023). Procedural point cloud modelling in Scan-to-BIM and Scan-

vs-BIM applications: A review. ISPRS International Journal of Geo-Information, 12(7), 260. 

https://doi.org/10.3390/ijgi12070260 

Anil, E. B., Tang, P., Akinci, B. and Huber, D. (2013). Deviation analysis method for the assessment of the quality 

of the as-is Building Information Models generated from point cloud data. Automation in Construction, 35, 

507–516. https://doi.org/10.1016/j.autcon.2013.06.003 

Arayici, Y., Onyenobi, T. and Egbu, C. (2012). Building Information Modelling (BIM) for Facilities Management 

(FM). International Journal of 3-D Information Modeling, 1(1), 55–73. 

https://doi.org/10.4018/ij3dim.2012010104 

Becker, R., Blut, C., Emunds, C., Frisch, J., Heidermann, D., Kinnen, T., Lenz, A., Möller, M., Pauen, N., 

Rettig, T., Schlütter, D., Wenthe, M., Blankenbach, J., Bleimann-Gather, G., Fütterer, J., Jungedeitering, J. 

and van Treeck, C. (2022). BIM-assisted, automated processes for commissioning in building services 

engineering. In Proceedings of the 39th International Symposium on Automation and Robotics in 

Construction, Bogotá, Colombia (pp. 558–565). https://doi.org/10.22260/ISARC2022/0079 

Besl, P. J., & McKay, N. D. (1992). Method for registration of 3-D shapes. In Sensor fusion IV: control paradigms 

and data structures (Vol. 1611, pp. 586-606). Spie. 

Blut, C., Becker, R., Kinnen, T., Schluetter, D., Emunds, C., Frisch, J., Heidermann, D., Wenthe, M., Rettig, T., 

Baranski, M., van Treeck, C. and Blankenbach, J. (2024). Optimizing building energy systems through 

BIM-enabled georeferenced digital twins. The International Archives of the Photogrammetry, Remote 

Sensing and Spatial Information Sciences, XLVIII-4/W11-2024, 1–8. https://doi.org/10.5194/isprs-

archives-xlviii-4-w11-2024-1-2024 

Bosché, F., Guillemet, A., Turkan, Y., Haas, C. T. and Haas, R. (2014). Tracking the built status of MEP works: 

Assessing the value of a Scan-vs-BIM System. Journal of Computing in Civil Engineering, 28(4), Article 

05014004. https://doi.org/10.1061/(asce)cp.1943-5487.0000343 

buildingSMART Technical. (2024, November 10). IFC GUID - buildingSMART Technical. 
https://technical.buildingsmart.org/resources/ifcimplementationguidance/ifc-guid/ 

Chen, J., Jönsson, P., Tamura, M., Gu, Z., Matsushita, B. and Eklundh, L. (2004). A simple method for 

reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sensing 

of Environment, 91(3-4), 332–344. https://doi.org/10.1016/j.rse.2004.03.014 

Chen, J. and Yong K. C. (2018). Point-to-point comparison method for automated scan-vs-bim deviation detection. 

In Proceedings of the 2018 17th International Conference on Computing in Civil and Building Engineering, 

Tampere, Finland (Vol. 2018, pp. 5–7). 

Chuang, T.‑Y. and Yang, M.‑J. (2023). Change component identification of BIM models for facility management 

based on time-variant BIMs or point clouds. Automation in Construction, 147, 104731. 

https://doi.org/10.1016/j.autcon.2022.104731 



 

 

 
ITcon Vol. 31 (2026), Kinnen & Blankenbach, pg. 104 

Fisher, R. A. (1915). Frequency distribution of the values of the correlation coefficient in samples from an 

indefinitely large population. Biometrika, 10(4), 507. https://doi.org/10.2307/2331838 

German Institute for Standardization (DIN) (2024-05). DIN 18710-1: "Engineering geodesy: Part 1: General 

requirements" (18710-1). 

Gumhold, S., Wang, X. and MacLeod, R. S.  (2001). Feature extraction from point clouds. IMR, 2001, pp. 293–

305. 

Hoffmann, R. and Wolff, M. (2014). Intelligente Signalverarbeitung 1: Signalanalyse (2nd ed.). Springer-Verlag.  

Hu, Z., & Brilakis, I. (2024). Matching design-intent planar, curved, and linear structural instances in point clouds. 

Automation in Construction, 158, 105219. https://doi.org/10.1016/j.autcon.2023.105219 

Hu, Z., Pan, Y., Brilakis, I., & Borrmann, A. (2024). Complex Instance Segmentation in Point Clouds with Images 

and 3D Models. https://doi.org/10.17863/CAM.110935 

International Organization for Standardization (ISO) (2023, July 24). ISO 5725-1:2023-07 "Accuracy (trueness 

and precision) of measurement methods and results. General principles and definitions". 

Jia, S., Liu, C., Wu, H., Guo, Z., & Peng, X. (2024). Towards accurate correspondence between BIM and 

construction using high-dimensional point cloud feature tensor. Automation in Construction, 162, 105407. 

https://doi.org/10.1016/j.autcon.2024.105407 

Jiang, Z., Shen, X., Ibrahimkhil, M. H., Barati, K. and Linke, J. (2022). Scan-vs-BIM for real-time progress 

monitoring of bridge construction project. ISPRS Annals of the Photogrammetry, Remote Sensing and 

Spatial Information Sciences, X-4/W3-2022, 97–104. https://doi.org/10.5194/isprs-annals-x-4-w3-2022-

97-2022 

Kalasapudi, V. S., Turkan, Y. and Tang, P. (2014). Toward automated spatial change analysis of MEP components 

using 3D point clouds and as-designed BIM models. In 2014 2nd International Conference on 3D Vision 

(pp. 145–152). IEEE. https://doi.org/10.1109/3dv.2014.105 

Kawashima, K., Kanai, S. and Date, H. (2013). Automatic recognition of piping system from laser scanned point 

clouds using normal-based region growing. ISPRS Annals of the Photogrammetry, Remote Sensing and 
Spatial Information Sciences, II-5/W2, 121–126. https://doi.org/10.5194/isprsannals-ii-5-w2-121-2013 

Kawashima, K., Kanai, S., & Date, H. (2014). As-built modeling of piping system from terrestrial laser-scanned 

point clouds using normal-based region growing. Journal of Computational Design and Engineering, 1(1), 

13–26. https://doi.org/10.7315/JCDE.2014.002 

Kellner, M., Vassilev, H., Busch, A., Blaskow, R., Ferrandon Cervantes, M., Poku-Agyemang, K. N., Schmitt, A., 

Weisbrich, S., Maas, H.‑G., Neitzel, F., Reiterer, A. and Blankenbach, J. (2024). Scan2bim - A review on 

the automated creation of semantic-aware geometric as-is models of bridges. Allgemeine Vermessungs-

Nachrichten : AVN. Advance online publication. https://doi.org/10.14627/avn.2024.3.4 

Kim, B., Jo, I., Ham, N. and Kim, J. (2024). Simplified Scan-vs-BIM frameworks for automated structural 

inspection of steel structures. Applied Sciences, 14(23), 11383. https://doi.org/10.3390/app142311383 

Kim, S., Kim, S. and Lee, D.‑E. (2020). 3d point cloud and BIM-based reconstruction for evaluation of project by 

as-planned and as-built. Remote Sensing, 12(9), 1457. https://doi.org/10.3390/rs12091457 

Kinnen, T., Blut, C., Effkemann, C. and Blankenbach, J. (2023). Thermal reality capturing with the Microsoft 

HoloLens 2 for energy system analysis. Energy and Buildings, 288, 113020. 

https://doi.org/10.1016/j.enbuild.2023.113020 

Lehmann, R. (2023). Geodätische und statistische Berechnungen. Springer Spektrum. https://doi.org/10.1007/978-

3-662-66464-3 

Lin, S., Duan, L., Jiang, B., Liu, J., Guo, H. and Zhao, J. (2025). Scan vs. BIM: Automated geometry detection 

and BIM updating of steel framing through laser scanning. Automation in Construction, 170, 105931. 

https://doi.org/10.1016/j.autcon.2024.105931 

https://doi.org/10.1016/j.autcon.2023.105219
https://doi.org/10.17863/CAM.110935
https://doi.org/10.1016/j.autcon.2024.105407


 

 

 
ITcon Vol. 31 (2026), Kinnen & Blankenbach, pg. 105 

Martens, J. and Blankenbach, J. (2023). Vox2bim+ - A fast and robust approach for automated indoor point cloud 

segmentation and building model generation. PFG – Journal of Photogrammetry, Remote Sensing and 

Geoinformation Science, 91(4), 273–294. https://doi.org/10.1007/s41064-023-00243-1 

Meyer, T., Brunn, A. and Stilla, U. (2022). Change detection for indoor construction progress monitoring based 

on BIM, point clouds and uncertainties. Automation in Construction, 141, 104442. 

https://doi.org/10.1016/j.autcon.2022.104442 

Nguyen, C. H. P. and Choi, Y. (2018). Comparison of point cloud data and 3D CAD data for on-site dimensional 

inspection of industrial plant piping systems. Automation in Construction, 91, 44–52. 

https://doi.org/10.1016/j.autcon.2018.03.008 

Park, S., Ju, S., Yoon, S., Nguyen, M. H. and Heo, J. (2021). An efficient data structure approach for BIM-to-point-

cloud change detection using modifiable nested octree. Automation in Construction, 132, 103922. 

https://doi.org/10.1016/j.autcon.2021.103922 

Pătrăucean, V., Armeni, I., Nahangi, M., Yeung, J., Brilakis, I. and Haas, C. (2015). State of research in automatic 

as-built modelling. Advanced Engineering Informatics, 29(2), 162–171. 

https://doi.org/10.1016/j.aei.2015.01.001 

Riegl. (2017). DataSheet VZ-400. http://www.riegl.com/uploads/tx_pxpriegldownloads/10_DataSheet_VZ-

400_2017-06-14.pdf 

Rusu, R. B., Blodow, N. and Beetz, M. (2009). Fast point feature histograms (FPFH) for 3D registration. 2009 

IEEE International Conference on Robotics and Automation, Kobe, Japan (2009 IEEE International 

Conference on Robotics and Automation, Kobe, Japan), 3212–3217. 

https://doi.org/10.1109/robot.2009.5152473 (Original work published 2009) 

Savitzky, A. and Golay, M. J. E. (1964). Smoothing and differentiation of data by simplified least squares 

procedures. Analytical Chemistry, 36(8), 1627–1639. https://doi.org/10.1021/ac60214a047 

Schiefer, H. and Schiefer, F. (2018). Statistik für Ingenieure. Springer Fachmedien Wiesbaden. 

https://doi.org/10.1007/978-3-658-20640-6 

Tan, Y., Chen, L., Huang, M., Li, J. and Zhang, G. (2024). Automated geometric quality inspection for modular 

boxes using BIM and LiDAR. Automation in Construction, 164, 105474. 

https://doi.org/10.1016/j.autcon.2024.105474 

Tao, F. and Qi, Q. (2019). Make more digital twins. Nature, 573(7775), 490–491. https://doi.org/10.1038/d41586-

019-02849-1 

Tran, H. and Khoshelham, K. (2019). Building. change detection through comparison of a LiDAR scan with a 

building information model. The International Archives of the Photogrammetry, Remote Sensing and 

Spatial Information Sciences, XLII-2/W13, 889–893. https://doi.org/10.5194/isprs-archives-xlii-2-w13-

889-2019 

Wang, B., Lin, F., Li, M., Liang, Z., Chen, Z., Wang, M. Cheng, J. C. (2025). Informative as-built modeling as a 

foundation for digital twins based on fine-grained object recognition and object-aware Scan-vs-BIM for 

MEP scenes. Advanced Engineering Informatics, 65, 103382. https://doi.org/10.1016/j.aei.2025.103382 

Xie, W., Zhang, Z., Wang, Y., Zhang, Y. and Zhu, L. (2020). The new fast point feature histograms algorithm based 

on adaptive selection. Journal of Applied Science and Engineering, 23(2), 225–232. 

https://doi.org/10.6180/jase.202006_23(2).0006 

Witte, B., Sparla, P., & Blankenbach, J. (2020). Vermessungskunde für das Bauwesen mit Grundlagen des 

Building Information Modeling (BIM) und der Statistik (9., neu bearbeitete und erweiterte Auflage). 

Wichmann. http://www.content-select.com/index.php?id=bib_view&ean=9783879076581  

Zhang, Z. (2021). Iterative Closest Point (ICP). In Computer Vision (2nd ed., pp. 718–720). Springer International 

Publishing. https://doi.org/10.1007/978-3-030-63416-2_179  



 

 

 
ITcon Vol. 31 (2026), Kinnen & Blankenbach, appx. 1 

APPENDIX 

 

Table A1: Representation of the object categories of the real-world dataset with IFC model objects and the 

corresponding segmented point clouds, annotated with object volumes (V). 
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Figure A1: As-built point cloud of the real world dataset. 
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