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SUMMARY: Technical building equipment (TBE) systems offer significant potential for energy savings that can
be realized through digital twins and simulations. Digital twins require a precise virtual representation of the real
object. Geometric-semantic models originating from Building Information Modeling (BIM)-based planning can
be a valuable basis for this. However, due to unavoidable deviations between planning and construction, a high-
quality comparison of as-planned and as-built data is crucial. This study presents a geometric and statistical
analysis framework for component-specific validation of TBE systems using as-planned BIM models and as-built
point clouds. The framework was evaluated on datasets of increasing complexity, from simulations to real-world
projects. Results show that with sufficient data quality, the framework enables the validation of up to 88% of
components, significantly reducing manual effort, cost, and time. However, as a geometry-based approach, its
performance is affected by data quality issues such as point cloud noise and occlusions.
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1. INTRODUCTION

The construction industry has struggled to keep up with other sectors regarding the adoption of digital technologies.
Despite this delay, the transformative potential of digital approaches is increasingly being recognized. Key
technological developments include Building Information Modeling (BIM) and Digital Twins (DTw), which have
proven to be key components in the digitization of the construction industry. BIM provides a structured
methodology for the design, construction, and management of buildings using integrated digital models, and
promotes collaboration and efficiency among stakeholders. DTw, on the other hand, extend this idea by providing
dynamic, real-time representations of buildings that enable advanced monitoring and optimization capabilities
(Tao & Qi, 2019). In addition, DTw integrate various data sources and models and establish a close connection
between the physical and virtual representations. Particularly with regard to energy efficiency and sustainability,
the linking of digital working methods and energy system optimizations resulting in the creation of a DTw of the
technical building equipment (TBE) offers great potential by enabling simulations and the identification of
optimization opportunities (Becker et al., 2022; Blut et al., 2024). TBE encompasses all technical systems that
enable the operation of a building. Among other systems, this includes heating, ventilation, and water systems. As
all of these systems are interconnected, a change or failure in one subsystem can have an impact on the other
systems. The resulting complexity emphasizes the need for systematic evaluation and inspection methods to ensure
the reliable operation of the entire construction.

In the context of developing a DTw, as well as in the broader application of BIM in the lifecycle, accurate and
continuous alignment between design data (as-planned) and the data representing the actual implementation (as-
built) is essential (Arayici et al., 2012). Comparing planned and actual data not only ensures compliance with
design requirements, but also serves as a basis for operational optimization and future modernization efforts. The
quality, and thus the usability, of a DTw depends crucially on the accurate representation of the as-built condition.
Only if the actual situation is accurately reflected in the digital model can it serve as a reliable basis for advanced
applications such as energy optimization, predictive maintenance, or life cycle-oriented modernization. This is
particularly relevant in the area of TBE systems, which are characterized by high complexity and sensitivity to
deviations. Deviations between the planned and installed states can lead to inefficiencies or costly maintenance
work. Furthermore, a comparison between the planning and execution data is necessary to ensure the safety and
functionality of the system. Manual verification of actual conditions is very time-consuming and costly. Automated
or partly automated approaches therefore offer great potential for detecting deviations more efficiently and saving
time and money. For component-specific validation, specialized methods are required that operate within defined
tolerance ranges. In pursuit of a holistic application of BIM, as-planned data include semantically enriched 3D
models. While geometric information describes shape, size, and spatial positions, semantic data contain
information about the type, properties and relationships of the respective objects. Therefore, as-planned BIM
models, containing both semantic and geometric information, can be leveraged to develop algorithms for object
validation and to enhance the efficiency of data processing. By contrast, as-built datasets are progressively derived
from 3D point clouds generated by technologies such as terrestrial (TLS) or mobile laser scanning (MLS), suitable
camera-based systems or depth sensors like built in the Microsoft HoloLens device (Kinnen et al., 2023).

However, as modern buildings increasingly encompass complex structures and vast volumes of data, manual
approaches to data evaluation quickly reach their limitations. Automated or partly automated methods capable of
efficiently processing and analyzing large datasets are therefore gaining increasing importance. Automation,
particularly through the application of Artificial Intelligence (Al), plays a pivotal role in analyzing and comparing
as-planned and as-built data. Al-based approaches offer the potential to process large datasets efficiently and to
classify discrepancies automatically.

From today’s perspective, modern Al approaches are predominantly shaped by deep learning methods, which
require many and diverse datasets for training. In the field of TBE systems, however, there is a lack of publicly
available datasets suitable for such purposes. Consequently, geometry-based analytical models for detecting
discrepancies and validating alignment with design data currently represent a more promising approach for TBE
systems applications.

In this context, this study introduces a method specifically tailored to the comparison of as-planned and as-built
data for TBE systems. The proposed method integrates geometry-based algorithms with rigid statistical evaluations
to enable partly automated classification of TBE objects. Due to the often challenging conditions for creating high-

ITcon Vol. 31 (2026), Kinnen & Blankenbach, pg. 76



quality as-built point clouds in practice for TBE systems, the aim of this work is not to create a comprehensive
and fully automated solution for comparing as-planned and as-built data. Instead, a method is presented that
categorizes the respective TBE system in an automated and component-based manner, symbolically inspired by a
traffic light system. The TBE system is to be divided into areas in which the method determines with a high degree
of certainty whether as-planned and as-built data match (green) or differ (red). In the remaining areas, where the
method delivers uncertain results (yellow), the task of inspection remains with the expert human operator. For this
purpose, each object is automatically categorized to determine whether it has been constructed according to the
design, is rotated or displaced, is missing, or has been replaced by a non-conforming component. Consequently,
this approach not only provides detailed component validation but also establishes a foundation for the further
development of DTw.

This study begins with a review of relevant works and a summary of the current state of research. Subsequently,
the various geometry-based analyses in conjunction with the corresponding statistical evaluation methods are
described in detail. The results obtained from the application of the proposed method are then analyzed using four
different datasets, and the limitations of its application are identified. The final section consolidates and discusses
the findings, offering insights and a perspective on potential future research directions.

2. STATE OF ART

The necessary systematic comparison of as-planned and as-built data within the BIM context can involve
significant manual effort, depending on the complexity of the construction project. Therefore, exploring automated
approaches offers considerable potential for research. A key distinction in this field lies in whether the focus is on
a comparative approach between the reality capture data and the as-planned BIM (Scan-vs-BIM), or whether
(partially) automated methods for direct as-built modeling based on scan data (Scan-to-BIM) are considered. A
detailed literature review on Scan-to-BIM approaches is presented by (Kellner et al., 2024) and (Patraucean et al.,
2015).

For Scan-vs-BIM approaches, (Patraucean et al., 2015) propose that the key to effective methodologies lies in
transforming BIM data into a point cloud, allowing for data analysis with matching data types for both as-planned
and as-built datasets. In this context, geometric analyses for feature extraction from point cloud data can be applied,
as demonstrated by (Gumhold et al., 2001), where a method for geometric comparison was presented that involves
the detection of corners and edges through the examination of local point densities and neighborhood relationships.
Another approach to Scan-vs-BIM is described by (Chen & Yong, 2019), where a column-detection algorithm,
alongside the Random Sample Consensus (RANSAC) method, was used for registering point clouds to a BIM
model. This process included the conversion of the BIM model into a point cloud to facilitate direct point-to-point
comparisons. Conversely, the geometric deviation analysis by (Anil et al., 2013) involved calculating the minimal
Euclidean distance between points in the as-built point cloud and the closest corresponding objects in the as-
planned BIM. The resulting distance was then compared to a threshold value, which varied depending on data
quality, to identify potential errors in data capture, processing, and model creation. In contrast, Scan-vs-BIM can
also be performed by voxel-based (Meyer et al., 2022) or octree-based approaches (Park et al., 2021). Furthermore,
(Tran & Khoshelham, 2019) propose an automated approach for detecting changes for walls and floors of indoor
building environments by comparing BIM data with point clouds using point classification and surface coverage
analysis. Conversely, (Kim et al., 2020) introduced an approach for monitoring project progress by combining 3D
point cloud data with the 4D parameters of BIM through the application of the Scan-vs-BIM method. Another
Scan-vs-BIM approach is presented by (Tan et al., 2024) for quality inspections of walls, floors, and reinforcing
bars in modular construction, in which LiDAR point clouds of the actual condition are compared with as-planned
BIM models in order to segment modular units and components.

Other Scan-vs-BIM approaches have been introduced with a focus on industrial facilities. For instance, (Lin et al.,
2025) showed an approach, in which the precise object axes are extracted from point clouds and used to update
the associated BIM model. In the same context, (Jiang et al., 2022) presented a semi-automated approach to
progress monitoring in infrastructure construction, enabling real-time evaluation of 3D point clouds using
Hausdorff distance and Poisson surface reconstruction. An object-oriented Scan vs BIM method is introduced by
(Chuang and Yang, 2023) comparing local geometries and object similarities. However, none of the presented
approaches specifically focus on the application to complex TBE systems with their diverse range of component
geometries and validation requirements.
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Focusing on TBE systems, (Bosché et al., 2014) introduced a Scan-vs-BIM method in which as-built point clouds
were processed to assign and segment points based on criteria such as distance and normal vector alignment to the
surfaces of TBE components from the as-planned BIM. Points that could not be matched are filtered out, and
occluding point clouds are segmented. Subsequently, object recognition is performed by analyzing the surface
coverage. Another method was presented by (Nguyen & Choi, 2018), specifically designed for inspecting piping
systems in industrial facilities and is based on geometric analysis of object-specific segmented as-built point clouds
and corresponding point clouds generated from as-planned BIM data. The evaluation of the geometric agreement
between as-planned and as-built data is conducted using metrics such as the mean distance error and the point
distance error of individual points. Conversely, (Kawashima et al., 2013; Kawashima et al., 2014) proposed an
approach for the segmentation and identification of piping components through the use of a normal-based region-
growing technique, followed by cylinder fitting. In contrast, (Kalasapudi et al., 2014) introduced a graph-based
framework for automated spatial change analysis of components that links point clouds from 3D laser scans with
as-designed BIM models based on their spatial relations.

However, a key issue that consistently limits the performance of automated approaches for comparing as-planned
and as-built data is the phenomenon of inaccuracies in point cloud data, as well as occlusions and points in empty
space. In the field of TBE in particular, occlusions and multiple reflections often have a significant impact due to
the densely packed environment and the presence of metallic surfaces. The previously named studies show various
methods for dealing with these disruptive factors. In the approach proposed by (Bosché et al., 2014), points that
cannot be assigned to the as-planned model are filtered out, and hidden points between the scanner and model
objects are explicitly identified. On this basis, a theoretically visible area of the planned model is calculated. As
mentioned before, object recognition is then enabled by evaluating the surface coverage, whereby a confidence
value quantifies the reliability of the recognition despite possible occlusions. (Nguyen & Choi, 2018), on the other
hand, described their approach as only applicable to object segments that are not affected by occlusion.
(Kawashima et al., 2013) and (Kawashima et al., 2014) treated occluded sections of the analyzed pipes by
interpolating axis points and performing supplementary fitting. A different way is shown by the approach of
(Kalasapudi et al., 2014), which combines local object features with global spatial contexts. This enables object
recognition via the spatial relationship to neighboring objects, even if the object is partially occluded.

However, all of these approaches are either designed for general deviation detection or optimized for specific
geometric shapes such as pipes and cylindrical elements. Consequently, they do not adequately address the
validation of deviations for the wide variety of part geometries found in TBE systems, nor do they support a
systematic classification of detected deviations based on component-specific characteristics.

In addition to the previously discussed works in the Scan-vs-BIM context, the exploration of the potential of
machine learning approaches, including deep learning, is significantly shaping current research trends. Also, the
construction sector is experiencing an increasing examination of such approaches. For instance, (Kim et al., 2024)
presented a deep learning approach for the Scan-vs-BIM analysis of steel structures. However, despite the strengths
of deep learning in processing large datasets, its practical application in industrial scenarios is often constrained
by the limited availability of representative training data and the associated costs required to achieve sufficient
model accuracy and generalization. (Abreu et al., 2023) highlighted the issue of insufficient representative datasets
in their examination of existing Scan-vs-BIM applications, emphasizing that this gap restricts effective
comparisons of as-planned and as-built data in the context of TBE systems. Nevertheless, some machine learning
approaches do not require comprehensive training datasets. An example of this in the context of Al-based Scan-
vs-BIM for mechanical, electrical, and plumbing (MEP) scenes is presented by (Wang et al., 2025) that uses a few-
shot learning method to overcome the issue of missing training data to automatically recognize components. (Hu
et al.,2024) also presented an Al-based scan-vs-BIM approach that focuses on the semantic segmentation of MEP
components and combines 2D images processed with Faster R-CNN with 3D point clouds from photogrammetry
and LiDAR. Focusing on the concept of semantic segmentation, (Hu & Brilakis, 2024) proposed an approach that
uses PROSAC shape recognition and DBSCAN clustering to enable automatic instance segmentation in complex
construction environments. Another approach was introduced by (Jia et al., 2024), which uses high-dimensional
feature tensors to describe local structures in point clouds and applies a rough-to-fine correspondence strategy to
perform a Scan-vs-BIM comparison.

Another essential part of this work is the application of statistical evaluation methods. Statistical methods are
essential in engineering, especially for reliable data analysis, modeling and decision-making. Commonly used
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techniques include hypothesis testing, correlation analysis and regression methods. These methods are covered in
numerous textbooks and technical literature, such as (Witte et al., 2020) and (Schiefer & Schiefer, 2018), and
enable significant relationships in complex engineering datasets to be identified and informed decisions to be
made.

In conclusion, numerous approaches have been developed in the domain of automatic Scan-vs-BIM processes,
reflecting the extensive and multifaceted interest in this field. In the specific context of TBE systems, existing
methodologies predominantly concentrate on defined geometric structures such as pipes and cylindrical elements.
Despite the potential of Al-based methods, their application remains constrained due to the scarcity of
comprehensive datasets necessary for effective training. Without the feasibility of Al-driven object recognition,
the necessity shifts towards leveraging geometric analysis methods. Prior knowledge from existing planning data,
such as as-planned BIM models, proves to be a valuable asset in this context. With this foundation, the development
of an automated Scan-vs-BIM process tailored for TBE systems holds great potential, since it promises a reduction
in manual effort and contributes to the development of DTw, which can serve for continuous monitoring and
optimization of energy efficiency within TBE sectors.

However, existing approaches for comparing as-planned and as-built data are mostly based on a single dominant
strategy. Each method has its strengths in certain applications. Nevertheless, in particular with complex TBE
systems, appropriate methods often encounter limitations. Challenges arise especially due to occlusions, multiple
reflections caused by metallic surfaces, and variability in the installation of components. Therefore, many studies
focus solely on a specific type of TBE objects, such as pipes. Methods for the holistic analysis of TBE systems,
including systematic quantification of deviations at the component level, are rarely presented.

To address this gap, the present work introduces a geometry-based ensemble framework for the holistic analysis
of as-planned and as-built data of TBE systems. In contrast to a single dominant strategy, four complementary
analysis methods are integrated into the framework. Each method is evaluated using a specific statistical procedure.
This design enables robust detection across different component geometries. Furthermore, by jointly considering
all probabilistic analyses of the results of these four methods, a robust final classification of the respective
component can ultimately be made. Nevertheless, the previously identified limitations remain disruptive factors
that cannot be completely ruled out in the proposed approach. In particular, this concerns the strong influence of
occlusions and multiple reflections on geometry-based analysis methods, as well as the challenge of robustly
distinguishing significantly displaced or rotated components from completely different components. The aim of
this study is therefore to evaluate the performance of the novel framework, which combines geometric analysis
with statistical evaluation methods, under the influence of these key challenges.

3. METHOD

Our goal in the energyTWIN' research project is to develop new methods for the digital, BIM-based
commissioning of technical systems in buildings and their energy system optimization. The main focus is on the
automated generation of a DTw of technical building systems during commissioning following the execution phase
and their continuous enrichment with information during the operating and usage phase. An important basis for
this approach is the development of a methodology for the partly automated comparison of as-planned and as-built
data. The overall goal of this method is to support workers in inspecting the TBE system by automatically detecting
the areas in which automated analysis methods can provide reliable results and those in which manual inspection
remains necessary (traffic light system).For this approach, we first created an initial scenario. This scenario
requires the existence of an as-planned BIM and involves the initial alignment of the as-planned BIM with the
captured as-built point cloud, which represents the actual state of the TBE system after its installation. For our
application, BIM models were always exported in the Industry Foundation Classes (IFC) format, which is the
standard for data exchange within the BIM environment. Also, the registration of the as-planned BIM and the as-
built point cloud serves as a foundation for our analysis, as it forces both data to be in a common coordinate
reference system, which allows us to effectively identify discrepancies. After this alignment, we focus on a detailed
component-level analysis. Specifically, a component from the as-planned model is selected using its Globally

1 https://www.energytwin.org
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Unique Identifier (GUID), which allows for unambiguous identification of the object (buildingSMART Technical,
2024). Subsequently, the bounding boxes of individual TBE components are calculated and transferred from the
as-planned BIM to the point cloud. To account for minor geometric deviations between the planned BIM and the
actual point cloud, an empirically determined fill of 10% of the bounding box dimensions was applied. This value
was chosen to ensure complete segmentation of the correct instance and proportional coverage across components
with different dimensions, while keeping the risk of including points from neighboring objects as minimal as
possible. By applying the padded bounding box, the corresponding points in the point cloud are segmented,
yielding an object-specific point cloud for further analysis. The process of segmenting the point cloud based on
individual objects is illustrated in Figure 1.

Figure 1: Object-based Point Cloud Segmentation.

The application of this methodology enables the identification of whether each element within a TBE system has
been constructed in accordance with the planning data. Specifically, components can be categorized into three
distinct groups. The first two groups assess whether a component from the planning model has been installed (1)
or not (2). If a component has been installed (1), it is further examined to determine if it is rotated or displaced
relative to the planned design. The third category (3) considers the possibility of a component being built, but it is
significantly different. This could involve the installation of an entirely different component, such as a pipe in
place of a pump, or a component that is functionally equivalent but varies in dimensions, such as a pump from an
alternative manufacturer. The outlined approach is presented schematically in Figure 2Error! Reference source
not found..

Initial situation Analysis Results
) I |

not rotated or
As-planned Model g (el displaced
(1A)
i i Component not
Registration ‘Common coordinate . rotated
| Registration | |
reference system ——» Component analysis » ms:g;led (1B)

As-built Point Cloud ,| Different component displaced
3 (1c)
rotated and
displaced

(1D)
Figure 2: Schematic overview of the methodological analysis (Blut et al., 2024).

For the validation of the individual TBE components, careful consideration of specific spatial or geometric
tolerances is essential to ensure the most accurate assessment of construction quality. The tolerance limits are based
on two primary factors. First, an appropriate construction tolerance 7, must be included in the analysis. This
construction tolerance reflects possible deviations that can inevitably occur during the execution phase. Typically,
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this value must be defined specifically for the respective application and scenario and is determined in advance by
the client or in accordance with applicable standards and guidelines. On the other hand, the as-built data is based
on 3D scan data. Every quantity determined by measurement is subject to measurement deviations that affect the
precision and accuracy (ISO, 2023). Precision is defined as the degree of agreement between several measured
values obtained under the same conditions. In contrast, accuracy defines the degree of agreement between the
measured value and the actual or reference value. The precision and accuracy of scan data depends on the method
used for data acquisition, meaning that a specific measurement tolerance 7,,, must also be permitted in the analysis.
Therefore, based on the predefined tolerance value by the client, it is the responsibility of the surveyor, for example,
to select a suitable measuring device to ensure compliance with the specified tolerances. The maximum permissible
standard deviation and thus the required precision of the measurement method can be derived from this tolerance.
The correlation between the standard deviation and the tolerance is according to (Witte et al., 2020) approximated
as

Im (1)

However, Equation 1 assumes that there are only random (noise) and no systematic (bias) or gross deviations (e.g.
outliers) in the data.

Since our theoretical approach cannot incorporate a client’s specified tolerance, we adopted a different strategy.
Instead of the common practice, we determined the measurement tolerance backwards via the standard deviation
respectively the accuracy of the particular measuring instrument. By transforming Equation 1, the relation arises

Tm = 50, 2)

However, as unknown systematic deviations may still be present in the measured values, an additional amount 4,,
can be taken into account to cover additional systematic deviations, which represents a benchmark for the
correctness of the measurement result (Witte et al., 2020). Those unknown systematic deviations represent
consistent measurement biases that shift results. These biases may arise from factors such as remaining instrument
calibration errors, unaccounted temperature or other environmental influences, including reflections from metallic
surfaces. Data processing procedures, such as model errors, can also contribute to these biases. Therefore, these
kinds of deviations differ from random errors since they do not average out over repeated measurements. As a
result, the total measurement tolerance to be taken into account is

Ty =50, + 4y 3)

The overall tolerance, as a test criterion for classifying the components, is determined through a combined
calculation of the two influencing factors of the construction tolerance and the measurement tolerance. For this
calculation, we used the Euclidean L2 norm, as execution and measurement errors are considered independent and
random sources of error. The quadratic combination takes into account that statistically independent deviations
sum up according to the amount of their variances and not linearly, resulting in a consistent estimate of the overall
tolerance. Therefore, and according to the German Standard DIN 18710-1 (German Institute for Standardization
[DIN], 2024) and (Witte et al., 2020), the overall tolerance t;,4; is calculated as

Ttotal = ¢ +1h “)

3.1 Geometry-based approaches for as-planned vs. as-built component comparison

This chapter initially presents the analytical methods used for the validation and classification of TBE components,
along with their respective automated statistical evaluations. Subsequently, the process chain is outlined,
demonstrating how these individual methods can be interconnected to generate a robust, automated assessment.
This assessment aims to determine whether the components installed during the execution phase align with the as-
planned data or if discrepancies are present, such as rotation, displacement, combined rotation and displacement,
absence, or the installation of an alternative component at the anticipated location. Figure 3 indicates which
framework approaches can be used for the cases defined in Figure 2. Nevertheless, the targeted classification is
limited to the segmented object point cloud. Displaced or rotated and displaced objects can only be correctly
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identified if the extent of the displacement still ensures sufficient representation of the actual object point cloud

within the area segmented by the bounding box.

Framework

:

Approach A

Approach B

or displaced
(1A)

Component not rotated

Component installed

(1)

Component not
installed

(2)

!

Approach C

:

Approach D

Component installed

(1

Component not rotated
or displaced
(1A)

I

Component not
installed

(2)

Component rotated

(1B)

I I

Different component Component displaced

(3) (1C)

Component rotated
and displaced
(1D)

Different component

3)

Figure 3: Assignment of the possible cases defined in Figure 2 to the individual approaches of the framework.

3.1.1 Approach A: Two-step co-registration

According to the initial situation described above, the raw data for the analysis network consists of the as-planned
BIM model and the as-built scan data in the form of a 3D point cloud. (Patraucean et al., 2015), who presented
relevant work from the fields of computer vision, geometric processing, and civil engineering, claimed that the
core of the as-built and as-planned comparison lies in the registration of the point cloud sampled from the as-
planned BIM with the as-built point cloud. Therefore, we first followed the approach of aligning the data formats
of the as-planned and as-built data by converting the as-planned BIM component into a mesh in order to create a
point cloud with the points of the resulting vertices. For our study, an empirical evaluation showed that the mesh
vertices provided sufficient density and no sparsity issues occurred. However, with regard to reproducibility and
applicability to other datasets, upsampling can be considered by adding randomly selected points to the mesh to
further increase the density.

On this basis, the two object point clouds are analyzed using a two-step co-registration process. First, a coarse
registration is performed. This step is aimed at optimally pre-adjusting the objects in cases where there is
significant rotation or displacement. To perform this coarse registration, we use the Fast Point Feature Histogram
method as described in (Rusu et al., 2009).

Firstly, the relationships to its direct neighbors are calculated for each point in both point clouds, resulting in a
simplified histogram (Simplified Point Feature Histogram, SPFH). Next, the SPFH is weighted with the SPFH
values of the neighbors and merged to obtain a histogram (Fast Point Feature Histogram, FPFH), which
summarizes the geometric relationships between a point and its neighbors and serves as a clear description of the
local environment of a point. A schematic representation of this operation is shown in Figure 4. The figure shows
how a point (red) is connected to its direct k-neighbors. Each direct neighbor is connected to its own neighbors
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and the resulting histograms are weighted with the histogram of the query point to form the FPFH. (Rusu et al.,
2009)

Figure 4: Areas of influence for creating Fast Feature Point Histograms (Xie et al., 2020).

Following the FPFH calculation, features of the points in both point clouds are compared in order to find possible
point correspondences. For this purpose, FPFH values are checked for similarity. Meanwhile, points whose FPFH
values are close to each other are considered potential correspondences. The identified correspondences can
subsequently be used to estimate a transformation that aligns the two point clouds as closely as possible. In order
of further improvement of the registration, the described coarse registration is followed by a fine registration using
the method of Iterative Closest Point (ICP) (Besl & McKay, 1992; Zhang, 2021). Here, Point-to-Plane ICP is
applied, which minimizes distances along surface normals rather than direct point-to-point distances, providing
faster and more accurate convergence for structured or planar surfaces. Additionally, a multi-scale refinement is
performed, where ICP is applied sequentially at decreasing voxel resolutions, optionally using a robust kernel to
reduce the influence of outliers. This step further refines the transformation and ensures high alignment accuracy.

The result of the estimated transformations from the coarse and fine registrations is presented as a 4x4
transformation matrix A. This matrix comprises a rotation matrix 7;; and a translation vector t,,,, and is extended
for 3D operations by employing homogeneous coordinates.

i1 Tz Tz Uy
Tor Ty Toz t
A= 21 22 23 y (7)
T31 T3z T33 U
0 0 0

The product of multiplying the transformation matrices obtained from the coarse and fine registrations yields a
matrix that reflects the spatial relationship between the as-planned and as-built point clouds. From the rotation
matrix and translation vector contained within this resultant matrix, it is thus possible to infer the extent to which
the installed TBE component has been rotated or displaced. Ideally, the resulting transformation matrix A would
be identical to the identity matrix I if the component were installed precisely according to the as-planned BIM.
Consequently, for the automated evaluation of this approach, the difference matrix D between T and I is computed.

D=A-1 (8)

Subsequently, a hypothesis test in the form of a paired t-test (Witte et al., 2020) is conducted to determine whether
the mean deviations of the difference matrix D are statistically significantly different from zero. The null
hypothesis (HO) thus posits that the mean of the deviations in D is equal to zero. For this purpose, the mean value
d (Equation 9) and the standard deviation s, (Equation 10) of the total number n of the values d; ; in the difference
matrix D are determined, followed by the calculation of the test statistic t (Equation 11).
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Next, the value of the test statistic ¢t is used to determine the probability p from the t-distribution, which assesses
the likelihood of the observed data to be occurring under the null hypothesis. The assertion that the TBE component
is constructed in accordance with the as-planned data is accepted if the transformation matrix A does not
statistically significantly differ from the identity matrix, thereby satisfying the condition

p > (12)

Otherwise, the null hypothesis is rejected if the following applies
p <« (13)

If it is certain that the as-built and planning data pertain to the same TBE component, the transformation matrix
resulting from the two-stage co-registration can also be used for the automated modeling of an as-is BIM model
(Figure SError! Reference source not found.).

Input Data Two-step Co-Registration
| )
[ 1 1
| o Transformation
_ Coarse Registration Matrix Multiplied
| Transformation
as-planned Point ' : Matrices
Cloud : g ; L Transformation
¥ Fine Registration Matrix
Mesh
i .
as-planned BIM -~ » as-is Modeling

Figure 5: Conceptual Diagram of the Approach.

3.1.2 Approach B: Median-based Evaluation

Analogously to the technique presented in chapter 3.1.1, in the second approach we aim to perform a TBE
component analysis based on identical data types for as-built and as-planned datasets represented as point clouds.
The primary objective of our second approach was to determine the distances between the as-planned and as-built
point clouds to gain insights into the alignment between planning data and real-world data. In the first phase, we
aimed to calculate the distances between all points in the as-built point cloud and the as-planned point cloud.
However, it is crucial to ensure that corresponding points from both point clouds are accurately matched.
Otherwise, the analysis would not result in the actual distance between the point clouds, but rather the shortest
possible distance. Figure 6 illustrates this with an example of a slightly displaced component.

To determine the corresponding point pairs, the two point clouds are aligned with each other using the registration
method described in detail in chapter 3.1.1. Thereupon, the nearest neighbor is determined for each point of the
as-built point cloud and its corresponding point in the as-planned point cloud is recorded. Subsequently, the actual
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distances between the two point clouds can be calculated in their original pre-registration positions using the
logged point pairs.

In the next step, the median ¥ is determined from all distances between the corresponding point pairs of both point
clouds. In this context, the median is more meaningful than the mean value X as it is less sensitive to outliers
(Lehmann, 2023). In a point cloud, individual points can be significantly distanced from the majority of the data
due to measurement errors or other disturbances, which would distort the mean value. The median, on the other
hand, remains stable even if individual points (less than 50%) are widely spaced, providing a more robust measure
of the central tendency of distances.

Figure 6: Illustration of the shortest distance calculation between two point clouds (left) and the determination of
actual distances between corresponding point pairs (right).

However, since the generation of point clouds is always subject to a randomized point distribution, the distance
between point pairs can only be zero by chance, even if the TBE component was installed precisely according to
the planning specifications. For this reason, we decided to calculate the shortest distances between each point of
the as-built point cloud and the mesh of the as-planned data instead of the distances between the point pairs. In
this way, the confounding factor of the randomized point distribution of a point cloud is excluded, and a more
precise analysis of the correspondence between the planned and actually implemented components is made
possible.

For the automated classification of the TBE component, the determined median value is finally compared with the
permissible tolerance threshold using the statistical evaluation method of a hypothesis test (Witte et al., 2020).
Meanwhile, the null hypothesis (HO) asserts that the component was installed within the permitted construction
tolerances and is confirmed if

¥<t )
applies. Conversely, the null hypothesis is rejected if

x>t (6)
applies.

3.1.3 Approach C: Voxel-based Analysis

In a further approach, we pursued the goal of identifying component-specific sub-areas of the as-built data that do
not significantly deviate from the as-planned data, considering the applicable tolerances. This was done to facilitate
predictions regarding the classification of the respective TBE component, based on the identified overlapping sub-
areas as well as the overall percentage distribution. A voxel-based approach was chosen for this, as voxel-based
techniques have the advantage of speeding up processing and improving robustness to noise, occlusions and
density variations (Martens & Blankenbach, 2023).

For the voxel-based analysis, both the as-planned point cloud of a component, generated as described in 3.1.1, and
the corresponding segment of the as-built point cloud are transferred into a voxel grid. In this process, the multitude
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of points is aggregated based on the defined size of individual grid cells (voxels), creating the organized structure
of a regular 3D grid. The level of detail of the 3D grid, and thus the resulting analysis, is significantly influenced
by the chosen voxel size. Since the planned and realized states of the TBE components are to be evaluated taking
into account a defined tolerance as described above, we have adapted the tolerance value determined according to
Equation 4 as a voxel size in this approach. In this way, compliance with the specified tolerance can be ensured
for overlapping voxels from the as-planned and as-built datasets. Subsequently, a neighborhood analysis identifies
only the voxels within the voxel grid of the as-planned data that represent the surfaces of the components, while
the remaining voxels are discarded. This step is essential because, during the voxelization of the components from
the design model, the entire volume of the components is divided into voxels, whereas the as-built data only
includes voxels located on the component surfaces. In this way, the voxel grids of the point clouds in the as-built
and in the as-planned state can be directly compared, which are aligned in a uniform coordinate reference system
according to the predefined initial situation. For each voxel in the as-built point cloud, it is checked whether there
are overlaps with any voxel from the as-planned voxel grid, which leads to a corresponding categorization of each
voxel. Figure 7 illustrates a visual example of the described voxel analysis.

As mentioned earlier, point clouds are inherently subject to random distribution, which also affects the
automatically generated voxel grids. To address this issue, we refined the previously described method by
voxelizing only the as-built point cloud instead of transforming both the as-built and the as-planned data into voxel
grids. The resulting voxels are then checked for overlaps with the mesh of the as-planned component.

I E
Figure 7: Voxel-based analysis of the as-planned (yellow) and as-built (blue) point cloud for voxel categorization
as overlapping (green) or non-overlapping (red).

The results of the voxel-based analysis provide a detailed representation of reality. Not only do they enable the
identification and visualization of overlapping and non-overlapping areas between the as-planned and as-built data,
but they also form the basis for the classification of the TBE component. This classification is carried out by means
of a subsequent statistical analysis and categorization of the entire voxel distribution. For this purpose, the number
and percentage of overlapping voxels (p,) and non-overlapping voxels (pyo) is determined and then evaluated
using predefined assumptions thresholds (y;) as exemplified in Table 1Table 1.

Table 1: Categorization of the voxel-based analysis results.

Analysis results Assessment

Po = Vi The TBE component is assumed to be correctly installed

V2 S Po < Vi: The TBE component may be rotated, displaced or a different component may have been installed
Po < VYa: The TBE component is probably missing or displaced or another component has been installed

3.1.4 Approach D: Iterative Analysis of Convex Hulls

Our fourth method for analyzing as-planned versus as-built data of TBE components focuses on an iterative convex
hull analysis of the respective point cloud data. Previous approaches yield results only for individual classification
possibilities of the TBE components. In contrast, this method offers a holistic classification, enabling assignment
to all categories illustrated in Figure 2. Consequently, the approach is designed to identify positional and structural
deviations, enabling the detection of whether the constructed object conforms to its planned specifications or
exhibits discrepancies, such as translation and rotation.
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To initiate the process, the spatial extent of the as-planned an as-built point clouds is determined by identifying the
minimum and maximum coordinates along the X, Y, and Z axes. Following that, the principal axis is identified by
comparing the span of coordinates across each dimension in both datasets, selecting the dimension with the largest
overall range. The identified principal axis serves as the directional reference for the following systematic
segmentation of the as-planned and the as-built point clouds into cross-sectional slices, ensuring that the spatial
orientation of each iteration is consistent. The thickness of each segment is controlled by an iteration size. The
iteration size can either be calculated individually by dividing the maximum range of the principal axis by a
specified number of iterations or set uniformly with a constant value. Within each iteration, all points that fall
within the limit of the current slice are collected. This process of creating matching regions across both point
clouds allows for a localized comparison, isolating changes within each segment independently.

For each segment in both point clouds, the algorithm constructs a convex hull by generating a triangular mesh that
represents the surface and boundary of the slice. In order to detect structural deviations, the volume is then
calculated and logged for both convex hulls of each iteration. In addition, the coordinates of the centroids of both
convex hulls are determined and recorded. These centroids provide a center of mass for each segmented volume,
which is key for identifying any spatial offset between the as-planned and as-built point clouds. An example of the
data to be logged for each iteration step is visualized in Figure 8.

e \J

Figure 8: Exemplary iterative convex hull analysis of an as-planned point cloud (yellow) and an as-built point
cloud (blue), with the convex hull volumes (V1, V2) shown in subfigure (i) and the centroids (P1, P2) illustrated
in subfigure (ii).

All calculated volumes and centroid coordinates are then aggregated across each segment for both point clouds.
This collection of data enables a robust comparison of corresponding geometric features, which can be used to
reveal trends or anomalies. Significant differences in volume between corresponding segments, for instance,
suggest inconsistencies in construction and potential structural mismatches, pointing to construction deviations
from the planned specifications under the assumption of a low-occlusion acquisition of the as-built data. Shifts in
centroid positions may indicate rotational or translational misalignments. More specific, linear shifts in centroid
positions along the principal axis point toward translation, while non-linear shifts suggest rotational deviation.

Based on the aggregate results, two hypothesis tests are conducted to evaluate the conformity between as-planned
and as-built data. The application of hypothesis tests in this approach follows the structure of a t-test. The initial
hypothesis test assesses whether the differences in volume at each iteration step are statistically significant, serving
as a method for detecting structural deviations. To account for the defined tolerances, any deviations falling below
the tolerance threshold are rounded down to zero. The null hypothesis (HO) posits that the as-planned and as-built
data are identical. Following the procedure outlined in 3.1.1, the probability (p-value) of the null hypothesis being
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true is subsequently calculated. The p-value is then compared against the established significance level, accepting
the null hypothesis if Equation 12 is satisfied and rejecting it if Equation 13 applies. The second hypothesis test
follows the same methodology as the first, with the distinction that it evaluates the differences in the XYZ
coordinates of the centroids rather than volume discrepancies. This test is conducted individually for each axis to
detect potential translational shifts.

Finally, it needs to be checked if the as-planned and the as-built component are uniform in their basic geometry,
even if they are dimensioned differently in both datasets. Such is often the case, for example, with pipes in the
TBE that are planned without a corresponding covering in the course of the planning process, but are recorded
with a covering in the course of reality capturing after the installation has been realized. In this case, the
documented volumes of the iteratively determined volumes would differ greatly from each other, which would
result in an incorrect categorization of the component by the automated method.

Therefore, we recorded the volumes of the as-planned and as-built component iterations in a diagram, with the
iterations plotted on the x-axis and the volumes on the y-axis. The corresponding values were entered and
connected linearly to create a graph. Subsequently, the as-planned and as-built volume graphs of a component are
analyzed for similarity. This analysis examines whether the as-built volume graph increases in the same segments
as the corresponding as-planned graph or exhibits an opposite trend. Specifically, the concept of a normalized
cross-correlation is used for this purpose, which measures the similarity between two datasets as a function of a
temporal shift (lag) (Hoffmann and Wolft, 2014). For this purpose, the linear correlation coefficient r between two
discrete data series x; and y; is calculated by

20 =) Yisk — )
0,0y N

Txy (k) = (14)

(Hoffmann and Wolff, 2014; Witte et al., 2020) . In this case x; and y; are the volume values of the iterations of
the as-planned and as-built components, k is the lag, X and y are the mean values of all respective volume values,
o, and g, are the standard deviations of the volume values and N is the number of values considered. We then
determine the lag with the largest linear correlation coefficient. The value of the resulting linear correlation
coefficient serves as a measure of the linear dependence of the two data series and is always between the fixed
limit values

1<y (k) < 1. (14b)

In this context, a resulting value of minus one or one stands for a strict linear dependence and a value of zero, on
the contrary, has no stochastic linear dependence.

Due to the existing possibility of significant influence by outliers or scattering of the measurements, which can
decisively influence the cross-correlation, we have previously applied a Savitzky-Golay filter (Savitzky & Golay,
1964) to the data in order to exclude such deviations. The Savitzky-Golay filter reduces the noise in the data while
retaining important trends. This filter is based on a local polynomial fit of the data within a defined window and
thus enables smoothing without distorting significant features of the original data. Mathematically, this means that
a polynomial of a certain order is fitted for each pair of data points within a sliding window, whereby the
coefficients of the polynomial are determined by weighted least squares fitting. Smoothing is performed according
to the formula

m

Vi = Z CiXitj, (15)

j==m

where y; is the smoothed value, x;, ; is the original values within the smoothing window, ¢; is the coefficient of
the polynomial fit and m is the half of the smoothing window (Chen et al., 2004; Savitzky & Golay, 1964). This
ensures that short-term fluctuations in the data are minimized while the general structure of the data is preserved.
The coefficients c; are determined in such a way that the sum of squared errors is minimized
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min Z (x; — P(i))2

k (16)
with P(i) = Z ci ik,

k=0

where P (i) is the approximated polynomial (Savitzky & Golay, 1964). The application of the Savitzky-Golay filter
thus contributes to improving the robustness of the normalized cross-correlation analysis by reducing systematic
measurement deviations. As a result, the reliability of the determined correlations increases, which enables a more
precise assessment of the similarity between the volume curves of the as-planned and as-built components.

For the classification of the TBE component, a threshold value A is defined for the correlation factor, above which
there is sufficient agreement between the volume graphs to assume that the corresponding as-planned component
was installed in reality. In order to include correlation factors that deviate slightly from this threshold value, a
hypothesis test is used to check whether correlation factors that are smaller than the defined threshold value
A actually deviate statistically from the threshold value. Therefore, the null hypothesis of the hypothesis test states
that the actual correlation reaches or exceeds at least a specified threshold value. The alternative hypothesis
postulates that the correlation is below this threshold value. As correlation factors for small sample sizes n; cannot
assumed to be normally distributed, the Fisher Z-transformation (Fisher, 1915) is used for the hypothesis test with
a probability of error ¢, which first transforms the observed correlation 7y, into an approximately normally
distributed variable z; by the formula

L 1 147,
Zp = E Tll_—rxy (17)
(Fisher, 1915; Witte et al., 2020). The standard deviation of the variable z; can be estimated as
! 18
0, = ————
Z n, — 3 ( )
(Fisher, 1915; Witte et al., 2020). Similarly, the threshold value is also transformed by
1 1+2
=_1 19
=27 1
(Fisher, 1915; Witte et al., 2020). Finally, the standardized test statistic Z can be calculated by
zi — 2z}
21 = A (20)
O-Z{

(Fisher, 1915; Witte et al., 2020). To decide whether to accept or reject the null hypothesis, the critical value of the
standard normal distribution z, ¢ must first be determined in relation to the selected probability of error ¢. On
this basis, the null hypothesis is accepted if

12| < z 1_% (21)
is fulfilled. By contrast, if
12l =2z, _o (22)

applies, the null hypothesis is rejected. Due to the increased level of complexity, the workflow of the approach
presented is shown as pseudo code in Listing 1.
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3.1.5 Combined classification framework

We previously introduced four different approaches for object-based geometric analysis of as-planned and as-built
data of TBE components in combination with statistical hypothesis tests for automatic evaluation. For the final
classification of the individual TBE components according to the categories defined in Figure 2, the individual
approaches need to be merged into a combined classification framework.

Listing 1: Pseudocode for the analysis of convex hulls.

function: IterativeConvexHullAnalysis (P_plan, P_build, N): {D}
input: P plan - As-planned Point Cloud
P build - As-built Point Cloud
N - Number of Iterations

output: D - Classification Outcome

1 for P_plan, P_build do
2
3 Determine principal_axis with maximal spatial extent
4 Divide principal axis into N slices {S;, ..., Sy}
5
6 for each slice S;, do
7 Compute Convex Hull
8 Compute Volume
9 Compute Centroid
10 end-for each
11 end-for
12

13 Calculate Volume Differences for all k
14 Calculate Centroid Differences for all k
15 AV conf, AZ conf € Compute Confidence Interval
16  Perform hypothesis tests on AV _conf'and AZ _conf

18  V_plan_smooth, V_build smooth < Apply Savitzky Golay Filter

19 Compute Cross Correlation R between V_plan_smooth and V_build_smooth
20 R_norm < Apply Fisher-Z-Transform to R

21 Evaluate significance of R_norm

22

23 Determine classification outcome D based on statistical tests and correlation

24 return {D}

The first category for classifying the TBE components comprises the analytical result that the respective
component was installed in reality according to the planning specifications (1A). This classification is made under
some constraints. For approach A, the transformation matrix of the two-stage co-registration must not deviate
significantly from the identity matrix. In the case of approach B, the median of the distances should show no
significant deviation. Approach C requires that the proportion of overlapping voxels reaches at least the value of
v:1. Finally, in approach D, neither the volumes nor the differences and variances of the XYZ-coordinates of the
centroids of the iteration steps may deviate significantly, taking the tolerance into account. In addition, the
correlation factor of the volume graphs must be higher than the defined threshold value.

Conversely, a component is classified as rotated (1B) when a significant deviation is detected in Approaches A and
B, while less than the value of y; of all voxels are categorized as overlapping in Approach C. For Approach D, no
deviation in the center coordinates is detected in this context, but there is a significant deviation in the volumes
and a lower correlation factor in the volume graphs, as the defined threshold value is detected.
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A component is classified as displaced (1C) when the criteria for Approaches A, B, and C align with those for the
rotated category. In Approach D, however, significant deviations are found only for the centroid coordinates of the
iterations, but no deviations in volumes, which also results in a higher correlation factor value than the defined
threshold.

Table 2: Classification framework combined by all approaches and their hypothesis tests.

Component exists (1)

Different
Component component
Not Rotated does not exist . tl;l d
rotated or Rotated Displaced and dis- 2) 125 alle
dis-placed (1B) ao placed A
>1A) (D)
p > True False False False False False
Approach
A h
p =« False True True True True True
X< True False False False False True/
False
gpproach T,
x>z False True True True True True/
False
Po =YV True False False False False True/
0o =n False
Y2
Approach True/ True/ True/ True/
<
C Ty = I;/O < False False False False False False
1
< False True/ True/ True/ True True/
Po = V2 False False False False
Pror > X True False True False False False
T,
Prot £ X False True False True True True
Dpiff > X True True False False False True/
biff False
T5‘6,7
True/
<
Poiff < False False True True True False
Approach
D k) > 1 True True
rxy( ) = (False) False (False) False False False
Ty
False False
Ty (k) <2 (True) True (True) True True True
[2] < Zl_% True False True False False False
Ty
2] = 21_% False True False True True True

A combination of rotation and translation (1D) is identified when significant deviations are found in each of
Approaches A, B, and D, and Approach C shows that the proportion of overlapping voxels in the total voxel grid
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is less than the value of y,. If a component from the planning model is missing in reality, this is indicated either
by the inability to perform the analyses due to a completely absent as-built dataset or by an overlap percentage of
less than the value of y, in Approach C, combined with significant deviations in the respective evaluation metrics
across all other approaches.

The scenario in which a component differing from the planning model is installed in its place (3) cannot be clearly
identified by this type of analysis, as also shown by related publications above. The diverse geometric
characteristics and the uncertainty regarding the orientation of the differing component preclude the assumption
of significant deviations across various tests in an automated analysis. Nevertheless, in such cases, it is anticipated
that Approach A will produce a transformation matrix that significantly deviates from the identity matrix, while
Approach D will reveal a volume difference during the iterative steps. For other analytical approaches, no
conclusive observations can be made. Consequently, this scenario cannot be clearly distinguished from other
classifications, particularly the "Rotated and Displaced" category, and must always be considered as a potential
outcome. The outlined decision-making framework is summarized in Table 2.

In summary, this methodology provides a systematic, segment-wise comparison between the as-planned and as-
built models, supporting precise quality assurance by revealing positional and structural discrepancies. This
process ensures that any deviation, whether a minor misalignment or a major structural inconsistency, can be
detected, quantified, and visualized, providing critical insights into the accuracy of construction in relation to
planned designs. Based on these results, the TBE system can be divided into areas where the methodology can
reliably identify either a match or a validated discrepancy between the as-planned and the as-built data, and areas
where no valid statement can be made and manual verification is therefore required. Furthermore, the methodology
presented forms a fundamental benefit for the generation of DTw, provided that the specified initial situation is
adhered to and, in particular, an as-built detection with limited occlusion is achieved.

4. IMPLEMENTATION

In this chapter, the practical implementation of the methodology described above is presented. First, we introduce
the datasets on which the methodology was applied. Next, we outline the implementation in detail, including the
technical application and the selected parameter values.

4.1 Datasets

For the initial performance analysis of the proposed method, a manually generated simulated dataset with simple
geometric shapes was created. Using the BIM authoring software Autodesk Revit?, a simple geometric model was
constructed, consisting of a wall and a column, both represented as cuboids (Figure 9). Those objects were selected
to verify that the method performs well for simple geometric shapes before applying it on complex geometries of
TBE systems. Each object was then modified by controlled rotations, translations, or a combination of both.
Uniform translations of one meter were applied, while rotations of 45° were performed on the column and 20° on
the wall. These transformation parameters were selected randomly, ensuring that the resulting spatial change was
significant. To establish the required baseline conditions all modeled objects were first converted into meshes and
then transformed into object point clouds, which served as as-built data. To ensure a realistic representation, the
point clouds were also augmented with a noise factor of 5 mm, corresponding to the accuracy of the geodetic
terrestrial laser scanner Riegl VZ-400i used for the other datasets, as specified by the manufacturer (Riegl, 2017).
This enabled the simulation of various scenarios for the wall and the column, including cases where the objects
were realized without deviation and where rotations or translations were introduced. To simulate the case where
an object was absent, an empty point cloud was used as the as-built data. A further scenario involved the installation
of an incorrect component, represented by using the wall object as the as-planned dataset and the column object
as the as-built dataset. During the manual creation of this dataset, care was taken to exclude potential sources of
interference, such as occlusions in the point clouds representing the as-built data. In this way, it was ensured that
the analysis methods could be validated under idealized conditions, focusing solely on their fundamental
functionality.

2 https://www.autodesk.com/products/revit/
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The second dataset consists of a physical TBE demonstrator designed to represent typical TBE geometries. The
structure includes eleven components made up of plastic pipes, cuboid and cylindrical elements simulating TBE
components, as well as metal pipes. The demonstrator has a width of approximately 1 m, a height of 1.5 m, and a
depth of 0.4 m. It was suspended from the ceiling using nylon threads and stabilized with weights on the floor to
minimize movement during the scanning process. The data was collected under controlled laboratory conditions
using again the Riegl VZ-400i laser scanner with an accuracy of 5 mm. The scanning process covered 360 degrees
from multiple heights to prevent occlusions. In addition, obvious outliers were removed by means of manual post-
processing, whereby points located in empty space around the objects were roughly cropped. However, only points
that could clearly distort the analysis were removed, while noise on the object surfaces remained unchanged. Based
on the resulting point cloud, a digital model of the demonstrator was manually modeled to accurately reflect the
real structure. To evaluate the methodology’s ability to detect deviations, a second version of the digital model was
manually modified. In this manipulated model, individual components were shifted by 20 centimeters, rotated by
35 degrees as well as rotated and shifted with the same values. In addition, one component representation was
removed from the as-built point cloud (Figure 10). This dataset serves as a functional test for the methodology in
a physical environment under laboratory conditions. The demonstrator includes TBE-relevant geometries and
surfaces, and the scanning setup ensured a complete, occlusion-free acquisition. By applying the methodology to
both the unmodified and the manipulated model, the dataset enables an evaluation of its performance on a real-
world structure while minimizing external disturbances.

(i) (i)

Figure 9: Point clouds of the simulated dataset showing (i) a column (0.5 % 0.5 % 3.0 m) and (ii) a wall (5.0 x 0.2
x 3.0 m), each illustrated in its original position (red), rotated (blue), displaced (turquoise), and rotated and
displaced (pink).

() (i) (iii)

Figure 10: TBE demonstrator (i) and the non-manipulated (ii) and manipulated (iii) digital model with overlaid
point cloud.
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Finally, the third dataset consisted of a real technical installation located within a large hall, which was captured
using TLS. More specifically, the data acquisition was again performed with the laser scanner Riegl VZ-400i from
45 scanning positions, which were subsequently registered into a single as-built point cloud. The registration of
the 45 scan positions was performed using a MultiStation Adjustment in RiISCAN Pro?, utilizing a total of 961,308
plane patches. The resulting standard deviation of the residual distances between corresponding plane patches was
7.6 mm. Although the scans were planned to minimize occlusions, this could not be fully achieved due to the dense
arrangement of the components. The resulting colored as-built point cloud of the dataset is shown in the appendix
in Figure Al. The technical installation comprises a wide variety of 315 objects with complex geometries,
including pumps, pipes, valves, control cabinets, and a steel framework. Pipes, for example, show high complexity
due to different categories, varying diameters, long and slender runs, non-standard layouts, and interactions with
surrounding components. A detailed representation of the included component types of the dataset is illustrated in
Table A1 in the appendix. Consequently, the dataset represents diverse geometric forms and scales that characterize
intricate TBE systems. Based on the resulting point cloud, the installation was initially reconstructed through a
detailed manual modeling process (Figure 11). Each object was modeled directly from the point cloud data,
capturing its geometry with as much detail and accuracy as the data allowed, so that the anticipated outcome of
applying our analysis method to this dataset was the identification of all components as neither displaced nor
rotated. This allowed for the evaluation of the method’s functionality under real-world conditions, given the wide
range of geometric forms and variations present within the components. The point cloud for this dataset was not
manually refined, preserving the inherent characteristics of point clouds generated via laser scanning techniques.
As aresult, the dataset included noise and residual occlusions. These challenges are typical of point clouds obtained
from laser scanning in the context of TBE systems. Specifically, laser scanning often leads to multiple reflections
due to the numerous metallic surfaces of the components. Additionally, the complex structure and dense
arrangement of TBE systems make it impossible to capture them entirely without occlusions. This dataset was
therefore instrumental in testing the method's robustness and effectiveness in handling realistic data with typical
imperfections arising from laser scanning processes.

Figure 11: Dataset of a Field2BIM project.

4.2 Technical Implementation

For the technical implementation of the methodology, the as-planned and as-built BIM models were exported to
IFC and converted into geometric mesh representations using the open-source library IfcOpenShell*. Each IFC
element was meshed using IfcOpenShell's standard BRep triangulation, whereby world coordinates were used to
ensure consistent positioning. The resulting meshes consist of vertices and triangular faces that represent the
geometry of the elements. For further conversion into a point cloud, the mesh surfaces were uniformly sampled

3 https://www.riegl.com/products/detail/riscan-pro
4 https://ifcopenshell.org/
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using the open-source library Open3D?®. The number of points per triangular face was selected proportionally to
its area, resulting in an even distribution of points across the surface. The total number of points per element was
set at one million in order to capture sufficient geometric detail. To approximate measurement uncertainty, additive
Gaussian noise was applied to the point cloud, modeled as isotropic and independently distributed in all spatial
directions, with a standard deviation corresponding to the specified measurement precision of the Riegl VZ-400i
laser scanner. Following this, the generation of convex hulls could be generated using the open-source library
SciPy®.

As mentioned above, the tolerances, including the execution tolerance, which serve as the basis for the analysis,
are usually specified in advance by the client or in accordance with applicable standards and guidelines in practice.
Based on those defined values, it is the task of the surveyor, for example, to select a suitable measuring instrument
in order to comply with these tolerances. Here, in order to be able to evaluate our methodology in practice, we
defined realistic tolerances ourselves in order to use these values to check how our methodology performs under
those conditions. Also, we defined all necessary thresholds by either empirically evaluated values or common
application values. On the one hand, we have defined a tolerance value of 0.10 m for the execution tolerance ..
On the other hand, for the measurement tolerance t,,, a standard deviation g,, of 0.005 m results from the
manufacturer's specifications of the TLS used. However, since the observed standard deviation of the residual
distances after registration was 0.0076 m for the real-world dataset, we adopted a more realistic standard deviation
0 of 0.008 m. To take account of unknown systematic measurement deviations, we have set the value of 4,, to
0.01 m. According to Equation 3, this results in a measurement tolerance of 0.05 m. Hence, the total tolerance
Trotqq Tesults in a value of 0.1118 m according to Equation 4.

Further to implement our methodology practically we defined a common a-value of 5% for the hypothesis test
that determine whether the obtained transformation matrix significantly deviates from the identity matrix in
Approach A.

In Approach C the threshold y,, which defines the percentage distribution of overlapping voxels beyond which the
TBE component is assumed to be correctly installed, was set at 80%. Conversely, the threshold y,, beyond which
it is assumed that the TBE component is probably missing, displaced, or replaced by another component, was set
at 20%.

The number of iterations for the iterative analysis of convex hulls in Approach D was set to 50 in order to ensure
a robust approximated normal distribution of the correlation factors within the Fisher-Z transformation. However,

before conducting statistical assessments, a preprocessing step was applied in which the 20% of the distribution
of the XYZ-coordinates of the centroids with the highest deviation was identified and excluded to mitigate the
influence of outliers. The same exclusion criterion was applied to the analysis of volume differences and cross-
correlation, ensuring that the remaining 80% of the distribution formed the basis for further analysis. In the
subsequent t-tests on the distributions of the recorded XYZ-coordinate differences of the centroids as well as on
the volume differences across iterations, we again set the a-value to 5%. For the classification of components
based on cross-correlation, the threshold A for the resulting correlation factor, beyond which as-planned and as-
built components are considered identical, was set at 0.8. Finally, for the Fisher-Z transformation, an error
probability ¢ of 5% was chosen, yielding a critical value Z 1-¢ of 1.96 for the standard normal distribution.

5. EVALUATION

For the evaluation of our automated and geometry-based analysis method for the comparison of as-planned and
as-built data in the context of TBE systems for component-specific validation using statistical test procedures,
various datasets were considered. The datasets differ in the degree of their potential confounding factors, allowing
the basic functionality to be evaluated, possible application limits and result-distorting factors to be identified and
optimization potential to be recognized. This section presents the results obtained on the various datasets with
increasing complexity.

5 https://www.open3d.org/
¢ https://scipy.org/
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5.1 Simulated dataset

The application of the proposed analysis framework to the simulated test dataset demonstrated the effectiveness
of the method in various scenarios. For components where as-built data matched the as-planned specifications, the
calculated median of the shortest distances between the as-built point cloud and the as-planned component was
negligible and therefore below the tolerance threshold, indicating compliance with the design. The two-stage co-
registration process resulted in a transformation matrix that deviated slightly from the identity matrix due to the
iterative optimization process. However, the marginal deviations did not prove to be significant in the subsequent
hypothesis test. As expected, the voxel-based analysis revealed a complete overlap, while the convex hull analysis
revealed no significant differences in centroid coordinates or volumetric differences. Consequently, the cross-
correlation analysis also resulted in higher correlation factors than the defined threshold value of 0.8, so that the
components were correctly identified as installed according to design specifications.

When the as-built component was rotated relative to the as-planned BIM, the median distance exceeded the
tolerance threshold. Furthermore, the transformation matrix derived from the co-registration significantly deviated
from the identity matrix. The results of the voxel overlap, on the other hand, varied for the two different test
objects. For the wall, the proportion of voxels with an overlap of the mesh of the as-planned data was in the range
between 20 % and 80 %, while for the column it was over 80 %. The convex hull analysis detected no deviations
in centroid coordinates for either component. However, the volumetric analysis revealed discrepancies for the wall
along its representative axis, leading to a lower correlation factor of the cross-correlation analysis, which correctly
classified the wall as rotated. In contrast, no volumetric deviations have been detected for the column along its
representative axis, resulting in its misclassification as correctly installed. This highlighted a limitation of the
method, where rotation is only detected when it does not occur along the analyzed axis.

For the components that have been translated, the median of the calculated distances also exceeded the tolerance
threshold. Similarly, the transformation matrix resulting from the registration process again deviated significantly
from the identity matrix, as the part of the translation vector in particular exhibited a corresponding characteristic.
Furthermore, no overlap was detected in the voxel-based analysis, as anticipated. Nevertheless, the iterative convex
hull analysis identified deviations for the centroids coordinates without volumetric anomalies. In this way, the
component was correctly identified as being translated without any rotation.

In the cases where the components were both rotated and translated, all metrics investigated showed significant
deviations. The difference with the results for the components that were only translated lies in the iterative analysis
of the convex hulls, where significant deviations were found in the center coordinates and volumes. As a result,
the components were either correctly identified as rotated and shifted or as potentially incorrect components.
However, distinguishing between these two possibilities required remains a central issue as also shown by related
works in this field (see Chapter Error! Reference source not found.). Therefore, in such cases manual inspection
is unavoidable.

Proof of this could also be provided using the scenario of an installation of a component deviating from the
planning situation. This case was simulated by using the wall in its initial position as an as-planned component
and the object point cloud of the column as an as-built component. The result showed that all null hypotheses of
the hypothesis tests and threshold comparisons applied to the results of the four different analysis methods were
rejected for this example. With this result, the object could be identified as invalid. However, the obtained result
data does not allow a precise distinction to be made as to whether a deviating component has been installed or
whether the component is severely rotated and displaced. However, the algorithm enables pre-filtering in these
cases. Table 3 summarizes the results of the method on the simulated dataset.

Table 3: Component analysis results for the simulated dataset.

Achieved classification Wall Column
Correctly Installed (1A) True True
Rotated (1B) True False
Displaced (1C) True True
Displaced and Rotated (1D) True True
Different component (3) True /False
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In summary, the results from the test dataset confirmed the robustness of the method in identifying components
installed according to design specifications or those subjected to translation. Rotations were reliably detected when
convex hull analyses were extended to all axes. However, distinguishing between cases that combine rotation and
translation and those where a deviating component has been installed remains a challenge.

5.2 TBE demonstrator

Our method was applied to the TBE demonstrator to evaluate its functionality using a real dataset under controlled
conditions. As described in Section 4.1, the demonstrator was manually modeled both as a faithful representation
of reality and with manipulated components that deviated from the actual structure.

In the first case, where the non-manipulated model was used as the as-planned BIM, the method correctly classified
9 out of the 11 components as identically installed. The components not classified as identical were the two metal
pipes with polished surfaces. Since the scanning process of the TBE demonstrator was conducted in a near-range
setup, the representations of these metal pipes in the point cloud were significantly affected by strong scattering
due to multiple reflections. This pronounced scattering of measurement points led to discrepancies in the
component analysis, as in Approach D the convex hull of the as-built point cloud exhibited substantial deviations
from the convex hull of the as-planned component. Consequently, significant differences in volume metrics were
observed, and the cross-correlation analysis revealed a low correlation factor. This finding indicates that the well-
known problem of multiple reflections has a significant impact on the performance of our method, as also reported
in related work. However, since the high occurrence of multiple reflections in this specific case is greatly increased
by near-range scanning, it cannot be generalized that the method is unsuitable for components with metallic
surfaces. The applicability of the method to such components under different scanning conditions is further
analyzed in Section 5.3. To assess the results, Figure 12 presents the confusion matrix of the classification results
together with the derived evaluation metrics accuracy, precision, recall and specificity. In this context, true
positives (TP) refer to components that were correctly recognized as identically installed. False negatives (FN)
denote components that were not recognized as identical despite being correctly installed. Since in this scenario
only correctly installed components were evaluated, the categories true negatives (TN) and false positives (FP)
remain empty.

s 100.00%
100
20
8 81.82% 81.82%
80
2
€
£ 70
2 g
E 6 by
S $
s £
] @ 50
4 a
E]
1 40
2 30
2 20
10
FP=0 TN=0
nd.
(1] T o
Confusion Matrix Parameters Accuracy Precision Recall Specificity

Figure 12: Summary of the TBE demonstrator results using the non-manipulated model, showing the confusion
matrix parameters (left) and the derived evaluation metrics (right).

For the second use case of the demonstrator, the manipulated model, in which one component was each manually
rotated, shifted, rotated and shifted as well as removed, was used as an as-planned BIM. In this case, the same
results were obtained for the remaining non-manipulated components of the demonstrator as before, meaning that
the two metal pipes were classified as not identically installed and the remaining components were classified as
identically installed. The component whose representation was removed from the as-built point cloud to illustrate
the possible case of a missing component in reality was in fact categorized as a missing or different component by
the method. Through the object-based point cloud segmentation, only outliers and a small number of points of the
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neighboring elements were included in the analysis. As a result, the transformation matrix determined in Approach
A deviated from the identity matrix and the median determined in Approach B deviated significantly from the
defined tolerance limit. Similarly, in Approach C only a marginal number of overlapping voxels could be
determined and in Approach D both the volumes and the centers differed significantly from each other. The
components of the manipulated dataset that were rotated and the component that was shifted could also be correctly
classified by the method. In both cases, the transformation matrix determined in approach A deviated significantly
from the identity matrix, the median determined in approach B significantly exceeded the tolerance limit and the
determined proportion of overlapping voxels in approach C was below the defined threshold y;. For the rotated
component in approach D, on the other hand, a significant deviation of the volume differences and a low correlation
factor of the cross-correlation analysis were diagnosed, but no significant deviation of the centroid coordinates. In
contrast, for the shifted component, a significant deviation of the centroid coordinates, but no significant deviation
of the volume differences, as well as a higher correlation factor than the defined threshold value A was determined.
Finally, in the analysis of the rotated and shifted component, all hypothesis tests of Approaches A, B and D were
rejected. In Approach C a proportion of overlapping voxels between the threshold values y; and y, was determined.
Thus, this component could also be correctly classified as either rotated and shifted or as another component.
Figure 13 and Figure 14 summarize the results of the method on the manipulated TBE demonstrator dataset.

Number of components

1D/2/3

1A=0 1B=0 1C=0

Correct Classification Incorrect Classification Confusion Matrix

Figure 13: Classification results and resulting confusion matrix parameters for the manipulated TBE
demonstrator.

100.00% 100.00%

B1.82%

71.43%

Percentage (%)
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Figure 14: Evaluation metrics for the manipulated TBE demonstrator derived from the confusion matrix
parameters of Figure 13.
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Overall, the results obtained on the demonstrator with the non-manipulated and the manipulated digital model
demonstrated the basic functionality of our method on a real dataset as long as the central requirement of sufficient
scan data quality for geometry-based methods is fulfilled.

5.3 Real-world dataset

The decision-making framework for component-specific comparisons of as-planned and as-built data for TBE
systems was further evaluated using a real-world dataset in which the as-planned BIM model had been manually
modeled based on the as-built point cloud.

By including unprocessed point cloud data with inherent noise, such as occlusions and multi-path reflections, this
approach allowed us to assess the framework's robustness under realistic and imperfect conditions. In addition,
this procedure enables the identification of limitations and areas for optimization.

The dataset includes 315 TBE components, with dimensions ranging from small-scale elements in the lower tens
of centimeters to large-scale components spanning several meters. The holistic application of our method to the
present dataset indicates that 195 out of a total of 315 components were identified as correctly installed, which
corresponds to a reduction in manual effort for system verification of approximately 61.90%. However, 120
components of the dataset remain that were not classified as identical components by our method as expected.
Figure 15 summarizes the results of the holistic approach of our method on the dataset.

100.00%

120 70
61.90% 61.90%

Number of Components
Percentage (%)

FP=0 TN=0 n.d.

Confusion Matrix Parameters Accuracy Precision Recall Specificity

Figure 15: Summary of the real-world dataset results, showing the confusion matrix parameters (left) and the
derived evaluation metrics (right).

A closer examination of the results obtained showed that in particular components that have not been affected by
occlusions or surrounded by closely packed neighboring elements were consistently classified as matching the as-
planned specifications without deviations. Due to the densely installed structure of the TBE system, this
particularly affects the large proportion of the dataset of components that were directly accessible. In these
scenarios, the object-based point cloud segmentation reliably captured the component's geometry, allowing the
subsequent analytical methods to perform effectively due to the high overall data quality. An example of such a
component is shown in Figure 16 in its initial position as well as in the course of the resulting object-based point
cloud segmentation and the performed voxel-based analysis. Additionally, Figure 17 includes a graphical
representation of the recorded XYZ centroid coordinates and volumes over the iterations performed as part of the
convex hull analysis for the example component shown in Figure 16. The graphs demonstrate that while the
method of iterative convex hull analysis is sensitive to outliers in the point cloud segments, the relatively low
frequency and magnitude of such noise in these cases allow for a robust identification of the structural equivalence
between as-planned and as-built data.

@ ITcon Vol. 31 (2026), Kinnen & Blankenbach, pg. 99



(i) (i) (i)

Figure 16: Properly detected TBE component in its initial position (i), segmented object point cloud (blue) overlaid
with the as-planned mesh (red) (ii), and voxel-based analysis (iii) showing overlapping (green) and non-
overlapping (red) voxels.
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Figure 17: Convex analysis results for the TBE component shown in Figure 16.Error! Reference source not found.

On the other hand, the components that led to incorrect classification by our automatic analysis framework were
those with a high degree of occlusion or very densely built-up neighboring components, which are partially
included in the analysis as a result of the object-based point cloud segmentation and distort the result. In particular,
components that are installed directly at the walls are affected by this, as it is not possible to capture such
components in their entirety in the scanning process. The sum of these components represents a significant
proportion of the dataset. Due to the missing parts of the geometric representation of these components in the as-
built point cloud, our geometric analysis consequently reveals deviations between the as-planned and as-built data.
The voxel-based approach is the only method that offers greater robustness against occlusions during geometry-
based analysis. However, it does not make sense to rely exclusively on the results of this approach for classification.
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Therefore, as in other related work, the disruptive factor of occlusion cannot be compensated for by applying our
methodology. In contrast, we have compensated for the interference factor of the partial inclusion of nearby
neighboring elements by integrating the entire content of the as-planned BIM that lies within the bounding box of
a component into the analysis. However, this compensation is only possible to the extent that the elements that are
represented in the as-built point cloud apart from the actual object under investigation are also present in the as-
planned BIM.

Another finding of the results analysis is that large-scale components are more often misclassified, whereas small-
scale components are more often correctly classified. This fact can partially be explained by the fact that the degree
of integration of other objects apart from the component under investigation increases with the larger size of the
respective component. As a result, the risk of misclassification also increases, as more outliers of the point cloud
are included in the analysis. Furthermore, significant deviations of neighboring components can also influence the
classification depending on the degree of their integration into the analysis by the object-based point cloud
segmentation. Figure 18 shows a corresponding example of such a case and its point cloud segmentation in
superposition with the optimized as-planned mesh generation as well as the resulting voxel analysis.

(ii) (iii)

Figure 18: Complex TBE component in a densely built-up area in its initial position (i), segmented object point
cloud (blue) overlaid with the optimized as-planned mesh (red) (ii), and voxel-based analysis (iii) showing
overlapping (green) and non-overlapping (rved) voxels.

To verify whether the method can be applied in practice to a real dataset with an imperfect point cloud, a subset
of the TBE system was isolated from the center of the room. This test was carried out to evaluate the method's
performance on a real world dataset without being affected by the previously identified limitation regarding the
integration of wall-mounted components that are only partially captured during the scanning process. This subset
comprises 81 components, to which the method was applied again. The results of this second study show a
significant improvement in the correct classification of the TBE components. Of the 81 components, 72 (88.89%)
were reliably classified as correctly installed by the method, which confirms its functionality and effectiveness.
Compared to the holistic approach, the correct classification rate was thus increased by 26.99%. A summary of the
analysis results is shown below in Figure 19.
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Figure 19: Summary of the results for the subset of the real-world dataset, showing the confusion matrix
parameters (left) and the derived evaluation metrics (right).
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6. CONCLUSIONS AND OUTLOOK

We have presented an automated decision-making framework for the comparison of as-planned and as-built data
for TBE components. TBE systems pose a major challenge due to their complex geometries and densely built
structures, which often lead to limited accessibility. The framework applies four consecutive geometry-based
analyses combined with threshold comparisons and statistical evaluation methods to classify components as
identically installed, rotated, displaced, both rotated and displaced, missing or replaced by another component. By
evaluating the application of our method on various datasets with different geometric complexities of the TBE
systems, scales and numbers of potential interfering factors, we examined the strengths and limitations of the
presented methodology.

As a result, the technical functionality of the individual analysis methods and their practical benefits have been
proven. If a sufficient scan quality is given, the method reliably identifies identically installed, rotated, and or
displaced components. Under those conditions, a correct identification rate of over 88% was achieved on a real-
world dataset. This leads to a significant reduction in manual effort, as the inspection process is transformed from
a complete system check to a targeted validation of the remaining 12% of deviating or unclear cases. This
optimization not only improves time and cost efficiency but also highlights the method's potential to support the
creation of DTw within the complex environment of TBE systems. However, the aim of this study was not to
develop a fully automated workflow for the entire TBE system, but to provide a practical tool to support the
inspection process. By increasing the degree of automation, the method enables an initial classification of objects
in terms of their spatial conformity with the planning data. Thereby, a distinction is made between components
that can be evaluated with a high degree of certainty and those for which automated suggestions are available but
still need to be validated manually.

An unavoidable limitation lies in the strong dependence on the quality of the input data, such as the Level of Detail
(LOD) of the as-planned BIM. Furthermore, environmental factors like occlusions, noise, and multiple reflections,
which are common in dense, wall-mounted TBE structures or metallic surfaces, can distort the object
representation. These disruptive factors represent a fundamental limitation of geometry-based Scan-vs-BIM
methods and set natural limits to the reliability of automated results. Additionally, the ambiguity between rotated
and displaced components and different components reflects a well-known, fundamental limitation of geometry-
based Scan-vs-BIM methods rather than a framework-specific deficiency.

However, another crucial factor influencing the framework’s performance is the selection of tolerance values,
which need to be predefined in practical applications. In this study, these values were approximated in a practice-
oriented manner. While higher tolerances allow components with certain deviations to be classified as identically
installed, they may also result in smaller components being incorrectly classified as correctly installed despite
significant deviations from the as-planned BIM specifications. Therefore, tolerance parameters need to be adapted
in dependence to the quality of the input data, since even identically installed components may show greater
deviations in practice than in our dataset. The exact reproducibility of the presented results on other real data sets
is therefore not necessarily guaranteed.

One optimization potential was identified in the segmentation process. Initially, only the planned component and
the bounding box of the point cloud were compared, which sometimes included noise or neighboring elements.
Including all as-planned BIM content within the respective bounding box improved robustness, but further
advances in segmentation could significantly reduce misclassifications. A promising option in this context would
be automated extraction of component center lines by skeletonization, to improve convex hull analyses.

Another improvement could be achieved by harmonization of the input data. Virtual laser scans of the as-planned
BIM, taken from the same positions as the real scans, could minimize occlusion effects and create more comparable
datasets. In addition, future work could integrate machine learning techniques, potentially trained on synthetic
datasets, to enhance the robustness of component classification and better distinguish between complex
displacement and replacement scenarios.

By addressing the identified limitations and exploring advanced optimization strategies, this approach could
provide a powerful tool for the validation of TBE systems and contribute to greater efficiency and accuracy in the
creation of Dtw. However, we believe that our method already provides an effective advantage for the creation of
DTw under the conditions presented.
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APPENDIX

Table Al: Representation of the object categories of the real-world dataset with IFC model objects and the
corresponding segmented point clouds, annotated with object volumes (V).

Pipes

V=0,002673 m*

V =0,055355 m?

V =5,83424 m*

V =0,004175 m*

V =0,001880 m*

V = 0,090548 m?

-J

V =0,022490 m*

L

V =0,018561 m?

V =0,465917 m?

Tanks

Valves

——

V =0,000767 m*
Connectors

V =0,005190 m*

V=0,018421 m*

V =0,009371 m?

V=1,157439 m*

r*

V =0,00091 m*

V=0,001277 m*

Control Elements

V=0,121093 m*

V=0,013184 m*

L=

V =0,055089 m?

V =0,053323 m*

T

V =0,001281 m*

O

V =0,000563 m*

V = 0,006965 m*

BY
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Figure Al: As-built point cloud of the real world dataset.
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