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SUMMARY: Indoor environmental quality (IEQ) monitoring is crucial for occupant well-being and building 
performance optimization, with data collection methods significantly impacting the effectiveness and feasibility of 
monitoring systems. Fixed wireless sensor networks (FWSN) have been widely used for IEQ data collection and 
monitoring; however, they face several challenges, such as tedious installation and maintenance, as well as high 
power consumption. To address these limitations, mobile sensor robots (MSR)-based data collection systems were 
suggested as a viable alternative through various studies. Nonetheless, a comparative analysis of the economic 
feasibility of both indoor data collection methods remains unexplored. In this study, a comprehensive Life Cycle 
Cost Analysis (LCCA) framework was developed to compare the financial viability of FWSN and MSR systems for 
indoor ambient temperature data collection, incorporating building characteristics, cost components of data 
collection methods, as well as both deterministic net present value (NPV) calculations and probabilistic Monte 
Carlo simulations to account for uncertainties. This study, therefore, contributes to a practical methodology to 
guide financial and operational decisions for indoor IEQ monitoring systems through a systematic LCCA 
framework that combines deterministic and probabilistic analyses, along with sensitivity and heatmap 
visualizations. The methodology was validated through a case study involving three commercial complexes of 
varying sizes in Mumbai, India, with sensitivity analysis and heatmap visualization employed to investigate the 
influence of key parameters such as floor space, discount rate, sensor density, and data collection intervals. Results 
revealed that FWSN systems were more feasible for smaller buildings, with an NPV of around 35 million INR 
compared to an NPV of around 90 million INR for MSR, while MSR systems proved more cost-effective for larger 
floor spaces with an NPV of around 90 million INR versus 140 million INR for FWSN. The sensitivity analysis and 
generated heatmaps identified multiple breakeven points between the two systems at different values of investigated 
parameters, highlighting the critical need to accurately identify specific conditions and characteristics of a project 
during the initial stages to employ the most cost-effective system. Some limitations were present in this study, such 
as the assumptions of uniform floor space distribution, fixed labor requirements, and robotic price variability, 
which may not reflect more complex building environments. The developed framework serves as a valuable 
decision-making tool for facility managers to evaluate and select optimal data collection strategies based on 
specific building characteristics and monitoring requirements. 
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1. INTRODUCTION 

Humans usually spend close to 90% of their lifetime in public and private indoor environments such as offices, 

homes, schools, airports, shopping malls, hospitals, and theatres (Klepeis et al., 2001; Cincinelli and Martellini, 

2017). Poor indoor environmental quality (IEQ) has the potential to cause adverse health effects to the occupants, 

thereby affecting productivity. For example, several studies have shown that poor IEQ resulted in reduced 

productivity among workers, as well as impacted the cognitive abilities of students in schools and universities 

(Wargocki et al., 2006; Shan, Melina and Yang, 2018; Mujan et al., 2019). Improving the IEQ has been proven to 

enhance various aspects of humans’ experience, whether at offices, schools, or other establishments, particularly 

when examining the life-cycle impact of such improvements. For instance, Fisk et al., 2012 provided quantitative 

estimates of eventual benefits and costs of providing different amounts of outdoor air ventilation in offices that far 

exceeded energy costs as it significantly improved worker health and performance. Moreover, using a Life Cycle 

Cost Analysis (LCCA) approach, (Shan, Melina and Yang, 2018)  studied the effects of indoor environmental 

quality on students’ wellbeing and performance by comparing two side-by-side tutorial rooms with different 

ventilation settings in Nanyang Technological University, Singapore. Ventilation settings that offered more comfort 

to the students resulted in avoided sick leaves and increased average marks.  

These studies stressed a balanced approach that, along with building energy and resource efficiency, was also 

important to consider humans’ well-being and performance. To improve the comfort of occupants and increase 

building performance, it is important to optimize the IEQ of a building by collecting, managing, and analyzing 

real-time data efficiently. However, collecting data manually limits the capability to collect large amounts of data, 

eventually restricting the performance metrics (Wang et al., 2010; Raftery, Keane and Costa, 2011). Therefore, in 

newer buildings, wired/wireless sensors are installed, calibrated, and integrated with building systems before the 

operation and maintenance phase as part of the building automation system  (Österlind et al., 2007; Hayat et al., 

2019; Messung Group: building automation & controls, 2025). Several studies investigated the use of real-time 

indoor quality monitoring using spatio-temporal data from sensors mounted at different locations in a building 

(Kumar et al., 2016; Van Tran, Park and Lee, 2020). However, few drawbacks to the existing fixed sensor 

techniques include complex design requirements as they can disturb the aesthetics of the building (Raffler, 

Bichlmair and Kilian, 2015), tedious installation and maintenance due to intense calibration, manual supervision 

owing to the threat from rodents chewing off the sensor wires (Wang, Liu and Sun, 2010), extent of space that can 

be monitored (Demirbas, 2005; Vlissidis et al., 2008), as well as power consumption issues and limited information 

storage capacity (Bhadauria, Tekdas and Isler, 2011). 

To eliminate such challenges, novel methods have been developed incorporating the advancement of technology 

in the automation sector. Existing studies in the field of mobile robot-based indoor data collection were performed 

in order to develop a feasible approach (Mantha, Menassa and Kamat, 2016; Lee et al., 2020). Accordingly, a 

mobile platform-based data collection process that uses a mobile indoor robot equipped with onboard sensors was 

proposed by several previous studies (Bhadauria, Tekdas and Isler, 2011; Mantha et al., 2020). As per this proposed 

technique, mobile robots are capable of navigating in a known or unknown indoor environment with the help of 

various sensors and computing capabilities. The major steps in the suggested method involved robotic navigation 

along with localization, data collection, and geotagging. One of the main advantages of this data collection method 

is that it eliminates the need for installing the same set of sensors in different locations of existing buildings 

(Mantha et al., 2020). Even though research has proved the technical feasibility of mobile robot-based data 

collection, for any facility to be deployed in practical applications, it is very important to capture the economic 

feasibility perspective, which has not been explored.  

 To address this gap, the present study compared the LCCA of a fixed wireless sensor network (FWSN) and mobile 

sensor robotic (MSR) data collection methods. Although previous studies involved several similar 

implementations in the context of their technical abilities, such as locomotion, navigation, and localization, none 

of them addressed the financial comparison of these systems. This makes it challenging to evaluate their respective 

implementation potentials. Therefore, this study explicitly poses the research question: Under what conditions 

does an MSR system become more economically feasible than an FWSN for indoor environmental quality 

monitoring? Given the significant emphasis on addressing the challenge of poor IEQ and to achieve a quality 

indoor environment that has optimal human comfort, including minimal noise disturbance, comfortable 

temperature levels, relative humidity, and reduced levels of pollutants (Karanika-Murray et al., 2021), conducting 
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a rigorous life cycle cost comparison is critical. Such comparison helps stakeholders understand variations between 

estimated and actual costs, providing valuable guidance during the programming phase to evaluate alternative 

building features and systems that enhance overall IEQ and building performance, ultimately serving as a robust 

asset management tool. 

The specific objectives of this study were to: (1) develop a comprehensive LCCA framework for comparing the 

financial feasibility between FWSN and MSR systems for indoor ambient temperature data collection, explicitly 

capturing data uncertainties through probabilistic Monte Carlo simulations and providing intuitive results via 

sensitivity analyses and heatmap visualizations; and (2) validate the developed framework through a detailed case 

study involving three commercial building scenarios. Initially, required inputs for the LCCA including initial, 

operational and maintenance (O&M), replacement, and disposal costs, were defined for both data collection 

methods based on literature and market insights. LCCA outputs were computed using both traditional deterministic 

methods and probabilistic Monte Carlo simulations to robustly account for uncertainties in the input data. 

Furthermore, the influence of various parameters on the outputs of the developed LCCA framework was explored 

through sensitivity analysis complemented by heatmap visualizations. The present research significantly advances 

the field by explicitly coupling robust probabilistic modeling with clear visualization techniques, thereby providing 

a unified, transparent, and accessible decision-making framework. Ultimately, this methodological contribution 

aims to assist facility managers and stakeholders in clearly identifying relationships between input variables and 

determining the most economically feasible and practical data collection approach for enhancing the management 

of IEQ parameters in buildings. 

2. LITERATURE REVIEW 

A comprehensive literature review was conducted to examine several key areas relevant to the present study. First, 

the current state and challenges of different data collection methods in building environments are reviewed, 

highlighting the technical characteristics and operational considerations of both FWSN and MSR systems. Second, 

a review of LCCA’s methodology and framework is provided to establish the theoretical foundation for the 

comparative analysis. Third, various applications of LCCA across different infrastructure projects are discussed to 

understand established methodologies and insights. Fourth, the review further investigates specific applications of 

LCCA in building systems and sensor networks, concluding the research gap that is addressed in the present study. 

2.1 Data Collection Methods in Building Environment 

The growing complexity of modern buildings and increasing demands for occupant comfort, energy efficiency, 

and operational optimization have made environmental data collection crucial in building management. Traditional 

building monitoring relies heavily on FWSN to collect various environmental parameters such as temperature, 

humidity, air quality, and occupancy data (Rawat et al., 2014) . These sensor networks typically require careful 

placement planning to ensure adequate coverage while minimizing the number of sensors needed. Studies have 

shown that optimal sensor placement can significantly impact both data quality and system costs (Hassani and 

Dackermann, 2023). However, fixed sensors have inherent limitations in their ability to adapt to changing building 

configurations or monitoring needs, and their installation often requires significant infrastructure modifications 

(Ko and Lau, 2009). 

In recent years, robot-based data collection has emerged as an alternative or complementary approach to fixed 

sensor networks. Mobile robots equipped with environmental sensors offer several advantages, including flexible 

coverage patterns, adaptable monitoring schedules, and the ability to access hard-to-reach areas (Rao et al., 2022). 

These MSR platforms can be programmed to follow optimal paths for data collection, potentially reducing the 

total number of sensors needed while maintaining comprehensive coverage (Fu et al., 2025). Research has 

demonstrated that mobile robots can effectively collect environmental data with comparable accuracy to fixed 

sensors while offering greater spatial resolution through their movement capabilities (Yang et al., 2023). However, 

robot-based systems also present their own challenges, including path planning complexity, battery life limitations, 

and the need for sophisticated navigation systems in dynamic indoor environments (Grzonka, Grisetti and Burgard, 

2012). 

The choice between FWSN and MSR often depends on various factors, including building layout, monitoring 

requirements, and resource constraints. These contextual factors directly correspond to the key quality and 

operational dimensions laid out by center for disease control and prevention (CDC) such as data accuracy, 
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completeness, and resource availability (Kidder et al., 2024).  For e.g., resource constraints such as labor or 

equipment directly relate to the resource availability dimension. Similarly, building layout and monitoring 

requirements such as building zone identification (e.g., building zone segregation based on mechanical, electrical, 

and plumbing (MEP) systems), frequency (e.g., every 30 minutes) and granularity (e.g., zone or room level) relate 

to completeness and timeliness. Further discussion regarding how and why these factors were incorporated into 

the analysis is discussed in detail in the methodology section. Some studies have suggested hybrid approaches that 

combine both methods to leverage their respective advantages (Alsafery, Rana and Perera, 2023). While both 

approaches have demonstrated technical feasibility, their financial implications over the entire life-cycle remain 

poorly understood. The significant differences in initial investment, operational costs, maintenance requirements, 

and system longevity between these two approaches necessitate a comprehensive economic analysis framework. 

Therefore, the LCCA emerges as a suitable tool for this comparison, as it can account for both immediate and long-

term financial implications of each system while considering various cost components throughout their operational 

life. 

2.2 LCCA Methodology 

As the title suggests, LCCA is a method to assess the total cost of any project facility ownership by considering 

the costs involved in various life cycle phases. It is used to compare various options capable of performing similar 

tasks by analyzing the economic impact over the life of each option (Lu et al., 2023). For example, in the context 

of this study, LCCA considers all costs such as recurring costs, non-recurring costs, salvage value, and fixed costs. 

LCCA is especially beneficial when project alternatives that fulfil the same performance requirements but differ 

with respect to initial, O&M, as well as replacement and disposal costs have to be compared in order to select the 

one that maximizes net savings (Shankar Kshirsagar, El-Gafy and Sami Abdelhamid, 2010; Bochare, Dagliya and 

Kadam, 2024). In general, O&M costs are annually recurring costs, and replacement and disposal costs are incurred 

at the end-of-life cycle of the facility. These costs, also referred to as cash flows, are incurred at different times 

during the life cycle phase of a facility. To make cash flows time-equivalent, the LCCA method converts them to 

effective values by discounting them to a common point in time, typically to the present date (a.k.a. present value). 

Once all the costs are estimated, the Net Present Value (NPV) can be obtained for each alternative, and further 

conclusions can be drawn. Conventionally, costs resulting in the outflow of cash are taken to be negative, and the 

inflow of cash is taken to be positive (Fuller, 2010). The potential of such an analysis has been significant in 

evaluating different technologies and applications, considering that an owner's perspective on building design has 

gone beyond design and construction facilities. To better understand how LCCA can be applied, it is valuable to 

first examine its successful applications across various infrastructure projects. 

2.3 Applications of LCCA in Infrastructure and Built Environment 

Application of LCCA can be found in various fields of infrastructural projects such as transportation (Chan et al., 

2008), water pipelines (Thomas, Mantha and Menassa, 2016), and commercial and institutional buildings 

(Ozsariyildiz and Tolman, 1998). Results from these studies illustrated that even though a specific alternative has 

initial economic benefits due to lower procurement costs, over the long run, it could tend to get costlier and vice 

versa. (Dandy et al., 2007)  evaluated optimizing water distribution systems by conducting a case study to minimize 

the present value of capital and operating costs of the design of the distribution system of an irrigation scheme in 

New South Wales. The study produced an alternative design that reduced the mass of Polyvinyl Chloride (PVC) 

pipes used and associated it with a 26.6% reduction in total energy and greenhouse gas emissions. In a similar 

context,   (Thomas, Mantha and Menassa, 2016) presented a model to evaluate the total LCCA of a water 

transmission pipeline that helps determine the operation, maintenance, and planning of the pipeline over its service 

life and also identifies its associated environmental impacts at various life cycle phases. More specifically, this 

paper conducted the LCCA of using an 8” and 24” PVC pipe versus the Ductile Iron (DI) pipe for water distribution 

and identified that overall, DI pipes turned out to be more cost-effective in the long run and comparatively 

environmentally friendly.  

LCCA has also been applied in fields related to commercial flooring, building integrated photovoltaics, and 

optimum wall insulation thickness, among others. The sustainable building technical manual shows that the initial 

procurement cost of commercial buildings accounts for just 10-20% of the total cost, whereas the remaining 80% 

is due to the O&M and financing (Osso and Gottfried, 1996). D. Kumar et al., 2020 utilized the LCCA approach 

to determine the optimum thickness of insulation required for different construction materials. The research 
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considered 4 insulation materials and 15 building construction materials to optimize the life-cycle cost that is 

influenced by decision making variables like thickness and thermal conductivity of the insulation and wall. One 

of their major outcomes was that materials with high thermal mass and conductivity, such as concrete, have higher 

LCCA saving potential compared to lightweight wall materials. Hence, from the reviewed studies, it was important 

to understand that conducting a detailed LCCA of multiple design and material alternatives provided robust 

feedback on understanding the effect of material alternatives on the overall project from design up to end of service. 

This understanding can be particularly valuable when examining LCCA’s specific applications in building systems 

and sensor networks. 

2.4 LCCA in Building Systems and Sensor Networks 

In the domain of sensors and smart building, T. Kumar & Mani, 2017 utilized LCCA as a tool to study the use of 

occupancy sensors installed in an office building for energy neutrality assessment. This study highlighted the 

importance of comprehending the influence of any sensor on energy savings to be evaluated from the life-cycle 

energy framework to understand the overall energy conservation. Using an existing LCCA simulation tool, the 

study highlighted that occupancy sensors that help in the initial reduction of energy were an ineffective strategy 

for net energy reduction. The detailed LCCA highlighted the fact that these sensors had high costs and higher 

environmental impacts due to their packaging contents and the use of rare-earth metals for sensor manufacturing. 

Moreover, the study also highlighted the fact that the lack of availability of data and standardization of 

methodology in LCCA studies were some limitations that need to be addressed in this domain (Kumar and Mani, 

2017) . Furthermore, (Fang et al., 2020)  assessed the life cycle cost of the condition monitoring sensors of a smart 

distribution room. The data was provided by the Guangzhou power supply bureau and included equipment 

purchase, operation, failure, recycling, along other life cycle management data. Conducting such a detailed LCCA 

analysis helped identify that operating cost accounted for 55 to 77% of the total cost, but most of that is accounted 

towards manual detection is highly influenced by salary growth and inflation rate. This helped confirm that 

optimizing the inspection process and inspection efficiency improvements can reduce the overall life cycle cost. 

The analysis also identified methods to help optimize the maintenance costs and reduce the cost of sensor failure.  

Table 1 provides an overview of the reviewed studies, highlighting the adopted LCCA approaches. This overview 

highlights that LCCA has been significantly adopted in a wide range of applications over many years for 

infrastructure and built environment applications. While some of these studies demonstrated the value of LCCA 

in evaluating building systems and sensor networks independently, there remains a critical need to adopt this 

approach in comparing different approaches to buildings’ indoor data collection, particularly between fixed sensor 

networks and emerging robot-based solutions. 

Table 1: Overview of Adopted LCCA Approaches and Framework in Different Studies. 

Reference Characteristics/ Limitations 

Chan et al. (2008) Present value analysis for transportation infrastructure evaluation with emphasis on long-term economic 

impacts 
Dandy et al. (2007) Economic optimization framework incorporating both capital and operational costs for infrastructure 

systems 
Thomas et al. (2016) Comprehensive life-cycle framework considering initial investment, operational costs, and environmental 

impacts over service life 
Kumar et al. (2020) Multi-parameter LCCA optimization framework incorporating material properties and performance 

characteristics 
T. Kumar & Mani (2017) Integration of energy performance metrics into LCCA framework for building automation systems 

Fang et al. (2020) Holistic LCCA approach incorporating procurement, operation, maintenance, and end-of-life costs for 

monitoring systems 

2.5 Need for Probabilistic LCCA and Decision-Friendly Visualization in Building 
Systems 

Most deterministic Life Cycle Cost Analysis (LCCA) approaches typically evaluate the economic feasibility of 

building projects using static input data, such as net present values, without adequately accounting for uncertainties 

(Giuseppe, Massi and D’Orazio, 2017). Such uncertainties arise from external factors, including financial risks, 

market fluctuations, timing of investments, and broader socio-economic considerations. Hence, integrating 

probabilistic methodologies into the LCCA framework can significantly enhance the robustness of cost 

assessments (Fregonara, Ferrando and Pattono, 2018). Several recent studies in the domain of building 
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technologies have underscored the importance of addressing these uncertainties. For instance, a study by Fregonara 

et al. focused on supporting initial design decisions highlighted that deterministic models often neglect variations 

and risks inherent in building lifecycle management, particularly in early stages of design and technology selection 

(Fregonara, Ferrando and Pattono, 2018). This work utilized a stochastic approach, employing probabilistic risk 

analysis and simulation methods to capture the range of possible economic outcomes associated with different 

design and technology options. The primary goal was to equip investors and decision-makers with clearer insights 

into cost risks and uncertainties, thus providing greater flexibility and decision-making support. Specifically, this 

study presented a stochastic LCCA applied to a multifunctional building with a glass façade project located in 

northern Italy and demonstrated how probabilistic methods revealed significant variabilities in cost outcomes due 

to flexible input parameters, variations in component service life, and economic and environmental barriers. 

Importantly, this probabilistic approach provided outcomes that could substantially diverge from deterministic 

estimates, illustrating that ignoring uncertainties could lead to suboptimal or misinformed investment decisions. 

Consequently, the authors strongly recommended complementing deterministic analyses with probabilistic 

methods to improve the accuracy and reliability of life cycle cost evaluations, thereby enhancing decision-makers’ 

confidence and flexibility. 

The findings of such studies clearly justify the necessity of moving beyond traditional deterministic LCCA 

approaches and incorporating probabilistic modeling to better support informed and strategic decision-making in 

building systems and technology investments. Further emphasizing the significance of addressing uncertainty 

within LCCA frameworks, another study highlighted that ISO 15686-5:2008 standard ("Buildings and Constructed 

Assets - Service-Life Planning - Life-Cycle Costing"), explicitly recommends conducting lifecycle cost analyses 

under conditions of uncertainty or risk (ISO, 2017). According to this standard, statistical methodologies, such as 

Monte Carlo analysis, should be utilized, explicitly evaluating probabilities at levels of 10%, 50%, and 90%. 

Recognizing this critical recommendation, Plebankiewicz et al. developed a comprehensive model for estimating 

the whole-life costs of buildings, explicitly incorporating additional cost factors related to risk and uncertainty, 

thus enabling investors to compare investment options across multiple economic criteria (Plebankiewicz et al., 

2019). The developed model was initially grounded in a fuzzy logic approach, and subsequent stages of model 

refinement were extensively documented in various related publications. A key objective of their research was to 

validate the model’s structural assumptions by comparing outcomes from the original fuzzy logic-based approach 

against those obtained from probabilistic analysis methods. In particular, the authors explored the complementary 

role of probabilistic modeling implemented using Oracle Crystal Ball software, a well-established application for 

predictive modeling, forecasting, simulation, and optimization in enhancing and validating fuzzy logic 

assumptions. Their findings clearly demonstrated the significant advantages of probabilistic approaches in 

explicitly quantifying risks and uncertainties, reinforcing the necessity of integrating these methodologies into 

LCCA frameworks, as advocated by internationally recognized ISO standards. 

Another important aspect, beyond incorporating probabilistic analysis into lifecycle cost assessment, is ensuring 

that the developed tools are user-friendly and accessible to decision-makers, thereby maximizing their practical 

utility in real-world case studies. In this context, (Baldoni et al., 2021) developed a specialized software tool for 

stochastic lifecycle assessment (LCA) and lifecycle costing (LCC) of building energy-efficiency measures. Their 

study introduced a comprehensive decision-support tool explicitly designed to assist stakeholders during the early 

design phases of building retrofit interventions. The central objective was to enable users to evaluate the long-term 

trade-offs between the economic and environmental performance of energy-efficiency projects, while explicitly 

accounting for uncertainties within input parameters and economic scenarios. Specifically, the authors 

implemented lifecycle assessment using Monte Carlo methods and modeled lifecycle costing via probabilistic 

interdependencies among key macroeconomic variables. The major novelty highlighted in their work was the 

software’s intuitive functionality, allowing stakeholders to define uncertainties explicitly, perform robust 

sensitivity analyses, and explore multidimensional trade-offs systematically. This user-centric approach effectively 

bridges the gap between complex probabilistic modeling and practical decision-making, enhancing the 

framework’s applicability for both new constructions and retrofitting projects. 

Further supporting the importance of intuitive visualization methods, a survey conducted among LCA practitioners 

found that approximately 70% prefer heatmap-based representations for interpreting and presenting analytical 

results to broader audiences (Konnovitch and Guglielmi, 2024). Heatmaps intuitively differentiate favorable and 

unfavorable scenarios through simple color coding, significantly easing stakeholders’ interpretation of complex 

analytical outputs. Such visualization enables decision-makers to quickly grasp how varying input assumptions or 
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alternative design decisions can impact lifecycle costs at a glance, thereby facilitating informed, confident 

decision-making. Collectively, these studies reinforce the critical need not only for probabilistic approaches such 

as Monte Carlo simulations to address uncertainties inherent in lifecycle cost analyses but also for intuitive, 

decision-maker–friendly visualization tools. While these prior studies individually emphasize the value of 

probabilistic analysis and intuitive visualization, none integrate both aspects comprehensively. In this light, the 

methodology developed in our research integrates Monte Carlo-based probabilistic modeling, sensitivity analysis, 

and heatmap visualizations, offering a transparent, robust, and accessible decision-support framework. This 

integrated approach, aligning closely with practical requirements and real-world decision contexts, is 

comprehensively detailed in the following section. 

3. METHODOLOGY 

The objective of the present study was to conduct a comprehensive LCCA to compare the financial feasibility of 

FWSN and MSR for indoor environmental data collection. The methodology consisted of presenting and 

discussing the different stages of the developed framework. Following, a detailed elaboration of each stage of the 

framework was thoroughly explained, which included identifying building characteristics and assumptions, 

discussing different cost components of the two data collection methods, as well as discussing the LCCA analysis 

methods, i.e., deterministic and probabilistic measures of NPV. Moreover, the methodology of the sensitivity 

analysis and heatmap visualization, conducted to investigate the influence of different parameters on the LCCA, 

was discussed. 

Figure 1 shows a business process modelling notation (BPMN) flowchart that summarizes the developed LCCA-

based framework. The framework outlines a high-level process for identifying the most cost-effective data 

collection and monitoring method for an existing building. This process begins by assessing whether the building 

has any service requirements, such as renovation, building certification, performance monitoring, or maintenance. 

Once a need is identified, the next step involves determining the specific data requirements and their 

characteristics. For example, to evaluate the structural performance or energy efficiency of a building, a facility 

manager may require data on vibration levels, energy consumption patterns, air pressure, airflow rates, and 

equipment operational status (Burak Gunay, Shen and Newsham, 2019). Following, the LCCA is conducted for 

the two data collection and monitoring methods and the most economic option is selected. The flowchart provides 

a framework for systematically defining data needs and evaluating options, laying the foundation for the detailed 

LCCA comparison between the two methods.  

 

Figure 1: Developed LCCA-based Framework for Building Service Request and Evaluating Financial Viability of 

Indoor Data Collection Methods. 

Figure 2 shows another BPMN flowchart that illustrates the different steps within the LCCA sub-process in the 

general framework. This flowchart outlines a structured methodology for conducting an LCCA to compare two 

methods for data collection and monitoring in buildings. While this methodology is applied in this paper 

specifically to evaluate FWSN versus MSR, it is versatile and can be adapted to compare any two approaches or 

technologies in similar contexts. The process begins by defining building characteristics and assumptions, 

followed by identifying all necessary cost components for both data collection approaches. Using these inputs, 

NPV calculations are performed for both solutions through a deterministic approach, followed by probabilistic 

Monte Carlo simulations to evaluate cost variations under different scenarios. An iterative mechanism is 
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incorporated to enable repeated comparisons, if adjustments to input parameters or configurations are necessary. 

The results are then evaluated and validated by conducting sensitivity analysis and heatmap visualizations, which 

highlight the cost-effectiveness of the solutions across different configurations. By thoroughly analyzing data 

characteristics, such as collection frequency, quality, and location-specific sensitivity, this methodology ensures a 

comprehensive comparison. 

 

Figure 2: Flowchart of Stages Involved in the LCCA Sub-process. 

4. BUILDING CHARACTERISTICS AND ASSUMPTIONS  

The first step in the developed LCCA methodology involved defining the key building parameters and assumptions 

that influence cost and performance evaluation. These parameters are critical for accurately estimating the total 

costs and ensuring the reliability of data collection models. For instance, building floor space serves as a 

fundamental metric, as it directly impacts the cost estimation, particularly in systems where expenses are often 

expressed on a per-square-foot basis (Fuller and Petersen, 1995; Fissore et al., 2024). Data quality and reliability 

are governed by sensor density and the temporal intervals of data collection. For example, denser sensor placement 

and more frequent sampling, both improve detection of spatial variation and dynamic changes in common metrics 

such as CO2, temperature, and humidity (Saini, Dutta and Marques, 2020; Corona et al., 2024; Fissore et al., 2024). 

Hence, sensor distribution and data collection intervals were prioritized in this methodology, reflecting norms 

outlined in contemporary sensor deployment studies. The discount rate, meanwhile, remains a foundational aspect 

of financial evaluation, as validated by seminal and current LCCA literature  (Fuller and Petersen, 1995; Kneifel 

and Webb, 2022). Therefore, these parameters, namely indoor floor space, sensor density, data collection intervals, 

and discount rate, were selected as critical for constructing a robust, reliable framework to compare life cycle costs 

and performance across distinct data collection models. 

5. COST COMPONENTS AND NPV COMPUTATIONS 

 To accurately conduct an LCCA of a facility, it is necessary to identify different cost components namely, initial, 

O&M, replacement, and disposal costs consistent with the definition provided by the National Institute of 

Standards and Technology (NIST) Handbook 135 (2022), which describes Life Cycle Cost (LCC) as “the total 

discounted dollar cost of owning, operating, maintaining, and disposing of a building or a building system” over 

a designated period of time (Kneifel and Webb, 2022). This approach allows for a thorough comparison of the 

financial implications of different data collection and monitoring methods, ultimately guiding decision-makers in 

selecting the most economical and efficient solution. The detailed cost components for each data collection and 

monitoring method, i.e., FWSN and MSR, are discussed in the subsequent subsections. After obtaining the 

different cost components of both methods, the NPV was computed, which involved a detailed examination of all 

costs incurred throughout the facility’s life cycle. The deterministic computation of NPV for each cost component 

was carried out as follows, with the help of Eq. (1) and Eq. (2) shown below, consistent with the life cycle costing 

practices (Fuller and Petersen, 1995; Sieglinde Fuller, 2010). 

𝑁𝑃𝑉 = 𝑃𝐴 ∗ (𝑑 + 𝑓) ∗
(1 − (

1 + 𝑓
1 + 𝑑

)
𝑛

)

(𝑑 − 𝑓)
 (1) 
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𝑁𝑃𝑉 = ∑

𝑃𝐹 ∗ (1 + 𝑓)⌊
𝑖∗𝑀
12 ⌋ ∗ (1 +

𝑓
12 ∗ ((𝑖 ∗ 𝑀)𝑚𝑜𝑑12))

(1 + 𝑑)⌊
𝑖∗𝑀
12 ⌋ ∗ (1 +

𝑑
12

∗ ((𝑖 ∗ 𝑀)𝑚𝑜𝑑12))

𝑖=𝑘<
𝑛
𝑀

𝑖=1

 
(2) 

Where PA represents annually recurring costs estimated at the base year, d is the discount rate, f is the inflation 

rate, n is the study period, PF is the future cash amounts occurring at the end-of-life stage valued at the base year, 

M is the lifespan in months, and k is an integer denoting the frequency of cost occurrences. The importance of 

calculating the NPV lies in evaluating the costs at a similar scale, i.e., at the base year. This approach ensured that 

all costs are brought to a comparable baseline, allowing for accurate and fair comparison between the FWSN and 

MSR data collection and monitoring approaches. Once the NPV of all cost components is computed, the total cost 

of each data collection method can be computed as shown in Eq. (3) below. 

𝐿𝐶𝐶𝐴 = 𝑁𝑃𝑉𝐼𝐶 + 𝑁𝑃𝑉𝑂&𝑀 + 𝑁𝑃𝑉𝑅𝐶 + 𝑁𝑃𝑉𝐷𝐶 
(3) 

Where IC is the initial costs, while NPVO&M, NPVRC, and NPVDC are the NPVs of O&M, replacement, and disposal 

costs, respectively. It should be noted that for initial costs, the NPV was equivalent to the actual costs, as these 

costs are already incurred in the base year. Also, disposal costs represented the only positive cashflow in the LCCA 

computation. 

5.1 FWSN 

FWSNs consist of sensors strategically installed at various locations within a building to collect critical 

information for building automation systems. These sensors are centrally controlled through a server, enabling 

efficient data acquisition and management to support automation processes. The LCCA of FWSN involves 

evaluating its different cost components, summarized in Table 2, incurred throughout its lifespan. The initial costs 

of FWSNs encompass several key elements, primary among these are sensor procurement and installation costs 

(including tools and equipment necessary for setup), as well as labor charges (Fuller, 2005). The total sensor cost, 

as expressed in Eq. (4), is usually determined during the installation stage by estimating the number of sensors 

required. This was calculated by dividing the total floor area (in square feet) by the coverage density of each sensor 

(sqft/sensor). Once the sensor quantity was determined, the total procurement cost was computed accordingly. It 

should be noted that initial costs also include infrastructure components such as gateway devices and network 

setup. However, these costs were excluded as they were considered constant factors necessary for both FWSN and 

MSR systems, which do not affect the relative LCCA comparison. Moreover, labor costs for installation were 

calculated using Eq. (5), which considered the proportional relationship between total floor area and installation 

duration. The calculation applies a standard industry “all-in” daily labor rate widely used in construction cost 

estimation tools that includes both direct wages and indirect costs such as payroll taxes, insurance, equipment 

usage, and safety compliance (Melkonyan & Muradyan, 2025). The authors considered daily rates more 

appropriate than hourly rates in this context, as the modeled installation tasks are assumed to span full working 

days and would typically be executed by third-party contractors under lump-sum or daily agreements. For 

simplicity, the number of installation days was assumed to scale with floor area, with the labor quantity remaining 

constant. However, industry standards also recognize that in larger or more complex projects, additional installers 

are often deployed in parallel rather than extending a single team’s duration  (NenPower, 2024). While this study 

does not explicitly model installation complexity, the assumption is informed by industry guidance, which 

indicates that factors such as sensor location (e.g., ground level versus high-rise), limited access, and safety 

requirements typically increase labor duration and associated costs (NenPower, 2024). These aspects are noted as 

limitations of the present model and are identified as areas for future refinement. 

𝑆𝑒𝑛𝑠𝑜𝑟𝑠 𝑐𝑜𝑠𝑡 = (𝐶𝑜𝑠𝑡 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑠𝑒𝑛𝑠𝑜𝑟) ∗ ((𝐹𝑙𝑜𝑜𝑟 𝑆𝑝𝑎𝑐𝑒)/(𝑆𝑝𝑎𝑐𝑒 𝑅𝑎𝑛𝑔𝑒 𝐷𝑒𝑛𝑠𝑖𝑡𝑦)) 
(4) 
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𝐿𝑎𝑏𝑜𝑟 𝑐𝑜𝑠𝑡 = 𝑑𝑎𝑖𝑙𝑦 𝑙𝑎𝑏𝑜𝑟 𝑤𝑎𝑔𝑒𝑠 ∗ 𝑡𝑜𝑡𝑎𝑙 𝑑𝑎𝑦𝑠 ∗ 𝑛𝑜. 𝑜𝑓 𝑙𝑎𝑏𝑜𝑟 
(5) 

Furthermore, operational costs for FWSN were primarily driven by the battery-powered energy consumption of 

the sensors. According to Zachary Denning (2016), typical building monitoring systems allocate 60%-70% of their 

O&M expenses to energy usage, while the remaining 30%-40% is attributed to maintenance activities. Given that 

the total number of sensors in the building remained constant over time, the O&M costs were identical for both 

deterministic and probabilistic computations in the LCCA methodology. On the other hand, replacement costs 

included expenses for purchasing new sensors and reinstallation when needed. The replacement cycle is primarily 

driven by sensor battery life and technology obsolescence rather than mechanical failure.  Finally, disposal costs 

for FWSN systems were excluded from the analysis, as these sensors generally lack salvage value at the end of 

their life cycle, are small in size, and currently fall outside the scope of any specific e-waste disposal regulations 

set by the Government of India (A R, 2019; BV Recyclers, 2016). 

Table 2: Cost Components of FWSN for Data Collection and Monitoring. 

Cost Component NPV Computation Contributing Parameters 

Initial Cost - 
• Sensors’ procurement and installation 

• Labour charges 

O&M Costs Eq. (1) 
• Power consumption charges 

• Periodic repair and service charges 

Replacement Cost Eq. (2) 
• Re-procurement of sensors 

• Re-installation charges 

5.2 MSR 

A mobile robotic platform for sensor networks comprises a robot equipped with on-board components such as a 

Netbook, iCreate Base, RGB camera, and sensors, which navigate the floor space using stationary markers installed 

at strategic locations. These robots traverse the entire floor area, collecting data at designated sites through a built-

in navigation framework (Mantha et al., 2020). The initial costs included the main cost-incurring parameters in an 

MSR-based data collection system, namely procurement of robots and their on-board sensors, as well as additional 

equipment costs encompassing the Netbook, iCreate Base, and RGB camera. These components enable efficient 

data collection and storage during operation.  

To estimate the number of robots required for a given floor space, the approach proposed by Mantha et al. (2020) 

was adopted in the present study (Mantha et al., 2020). Their study highlighted that a typical floor plan of 3000 

sqft necessitated three robots and three depots to complete ambient data collection tasks. Each depot served as a 

base location for the robots, functioning as a start/end point or a charging station. The time taken by each robot to 

complete a tour and return to its respective depot, termed “tour time,” was determined by the distance traversed 

and the robot’s velocity. Table 3 provides the adopted tour lengths and times for each robot starting from its 

designated depot at a velocity of 0.22 m/s. If the required data collection period is denoted as T, the number of 

robots required at each depot i can be calculated as ti/T, where ti represents the tour time for the robot. This approach 

ensures efficient deployment of robots based on the specific requirements of the floor plan. The method described 

by Mantha et al. (2020) offered a practical framework for determining the optimal number of robots needed for 

effective data collection in an MSR network. It enables scalable deployment and efficient resource utilization, 

tailored to varying floor plans and operational needs.  

Table 3: Base Case Values for Each MSR Tour Length and Time (adopted from Mantha et al. (2020)). 

Depot #1. Depot #2 Depot #3 

Length of tour = 4m Length of tour = 3.4m Length of tour = 76.1m 

Tour time (t1) = 4/0.22 = 0.3min Tour time (t2) = 3.4/0.22 = 0.26min Tour time (t3) = 76.1/0.22 = 5.76min 
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Moreover, the estimation of the total number of robots required for deployment in an indoor environment is based 

on the principle of proportionality. Given that area (A) is proportional to the square of length, the distance (d0) 

covered by a robot for a specific area can be proportionally scaled. For area A, the relationship to the distance d0 

traversed by a robot over a reference area of 3000 sqft is represented by Eq. (6). At a constant robot speed, distance 

and time are directly proportional. This relationship is expressed in Eq. (7), where Ni is the number of robots 

required at the ith depot, ti is the tour time for a robot at that depot, and T is the total time period allocated for data 

collection. 

To maintain continuity in data collection throughout the indoor building, the deployment strategy must account 

for the time robots spend charging. As a result, the total number of robots required was effectively doubled to 

ensure uninterrupted operation. The final estimate of the total number of robots to be deployed was calculated 

using Eq. (8). This approach ensured adequate robot availability to achieve seamless data collection while 

accommodating operational constraints such as charging cycles. 

〖𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 = 𝑑〗_0 √((𝐴𝑟𝑒𝑎(𝑠𝑞𝑓𝑡))/3000 𝑠𝑞𝑓𝑡)  
(6) 

𝑁_𝑖 = ⌈ 𝑡_𝑖/𝑇 ∗ √(𝐴/3000)  ⌉ 
(7) 

 𝑇𝑜𝑡𝑎𝑙 𝑅𝑜𝑏𝑜𝑡𝑠 = 2 × ∑ 𝑁𝑖
3
𝑖=1  

(8) 

In addition to initial costs, operational costs for an MSR platform were primarily driven by power consumption 

charges for both the robots and their onboard sensors. Additionally, maintenance costs included service and 

handling charges associated with the robotic system. This study assumed that a single employee is sufficient to 

oversee the operation and maintenance of the robots and sensors, simplifying the management requirements. 

Replacement costs, which occur at the end of the operational lifespan of the robots and on-board sensors, include 

expenses for re-purchasing and re-installation of new equipment upon obsolescence of previously employed robots 

and/or their on-board sensors. Moreover, disposal costs for the MSR-based system represented the resale value of 

robots, which were estimated based on market trends and conditions, providing a comprehensive evaluation of 

end-of-life expenses associated with the platform. This integrated approach ensured an accurate and practical 

analysis of the operational and replacement costs within the LCCA framework. Table 4 summarizes the different 

cost components of MSR for data collection and monitoring. 

Table 4: Cost Components of MSR for Data Collection and Monitoring. 

Cost Component NPV Computation Contributing Parameters 

Initial Cost - 
• Procurement of robots and on-board sensors 

• Procurement of additional equipment 

O&M Costs Eq. (1) 
• Power consumption charges 

• Service and handling charges 

Replacement Cost Eq. (2) 
• Re-procurement of robots and on-board sensors 

• Re-installation charges 

Disposal Cost Eq. (2) • Re-sale value of robots 

6. MONTE CARLO SIMULATIONS 

In addition to the deterministic approach for estimating the NPVs of FWSN and MSR, a probabilistic method was 

integrated into the LCCA framework to account for uncertainties in the input data, enhancing its alignment with 

real-world applications. This approach incorporates stochastic variations, such as deviations in the lifespan of 

sensors and robots, which are often observed in practice. For example, while a batch of 100 sensors might have a 

nominal lifespan of 10 years, individual sensors could vary, lasting between 9 and 11 years. To model this 

uncertainty effectively, Monte Carlo simulation was employed, which is a well-established technique for 

generating robust probabilistic outcomes across various disciplines. 



 

 

 
ITcon Vol. 30 (2025), Mantha et al., pg. 1691 

Monte Carlo methods simulate random events within a computational model, iterating thousands of times to 

produce a distribution of possible outcomes rather than a single fixed value (Kroese et al., 2014). When applied in 

LCCA, the NPV is no longer a constant but a distribution, reflecting the variability and uncertainty inherent in the 

inputs. This probabilistic approach introduced a reliability metric to validate the results of the deterministic model.  

In the present analysis, a reliability percentage exceeding 90% was adopted as the decision criterion, following 

standard LCCA practices that use confidence or reliability thresholds between 85–9(Morán-Zabala & Cogollo-

Flórez, 2024)n-Zabala & Cogollo-Flórez, 2024). Moreover, the simulations utilized an assumed triangular 

distribution for the input variables, as illustrated in Figure 3, to generate possible values for each scenario which 

is widely used in project risk and cost simulations (Barreras, 2011; Sihombing and Saputra, 2025). The ±10% 

variability range was selected in line with precedent from cost uncertainty modeling in infrastructure studies and 

government guidance (Environmental Management Consolidated Business Center (EMCBC) Office of Cost 

Estimating (OCE), 2023). For each iteration, a corresponding NPV was calculated, and the process was repeated 

10,000 times to ensure statistically significant results a number determined through convergence testing and 

consistent with prior probabilistic cost modeling studies (Heijungs, 2020). This comprehensive approach enabled 

informed decision-making by incorporating both deterministic and probabilistic evaluations.  

Triangular Distribution Random Number 

Lower Range = Mode-Minimum 

Higher Range = Maximum-Mode 

Total Range = Maximum-Minimum 

Cumulative Probability = Rand() 

If CumulativeProbability < (LowerRange/TotalRange) then 

RandomTriangular = Minimum+sqrt(CumulativeProbability*LowerRange*TotalRange) 

Else 

RandomTriangular = Maximum-sqrt((1-CumulativeProbability)*HigherRange*TotalRange) 

Figure 3: Monte Carlo Simulation’s Triangular Distribution for Input Variables. 

In the case of calculating the NPV for replacement costs, i.e., NPVRC; these costs are directly related to the lifespan 

of sensors and/or robots in both FWSN and MSR approaches. To account for uncertainty in sensor life, the 

probabilistic model was employed, assuming the lifespan follows a triangular distribution with a ±10% variation 

around the most probable value. In contrast, in the deterministic model, the most probable value was uniformly 

adopted as the expected lifespan. Figures 4a and 4b illustrate the conducted Monte Carlo Simulation for LCCA of 

FWSN and MSR data collection approaches, respectively. 

7. SENSITIVITY ANALYSIS AND HEATMAP VISUALIZATION  

In the present study, sensitivity analysis and heatmap visualization were employed to evaluate the conducted LCCA 

of different sensor network configurations. Sensitivity analysis was utilized to examine the influence of key 

parameters, namely floor space, discount rate, sensor density, and data collection intervals, on the NPV of data 

collection systems (C. Lee & Lee, 2017; Marenjak & Krstić, 2010; Mobaraki et al., 2021).This analysis enabled 

the identification of parameter dependencies and thresholds, highlighting critical breakeven points that aid in 

economic feasibility assessments. By systematically varying these parameters, the sensitivity analysis provided a 

deterministic understanding of how each factor affects cost outcomes, offering valuable insights into the 

interdependence among variables.  

Moreover, to enhance the robustness of the evaluation, heatmap visualization was incorporated as a complementary 

probabilistic approach. The limitation of performing sensitivity analysis independently lies in its deterministic 

framework, which fails to account for variability and uncertainty in outcomes across different parameter 

modifications (Razavi et al., 2021). However, heatmaps can account for uncertainties and variability in parameter 

values, enabling the simultaneous evaluation of multiple variables and their impact on the LCCA (Zhao, Seppänen 

and Peltokorpi, 2020). Heatmaps presented a matrix-based representation of data, illustrating the probability that 
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one sensor network configuration would be more economical than another under varying conditions (Key, 2012). 

This probabilistic framework provided a clearer understanding of trends, transitions, and patterns, thereby offering 

practical insights into optimal sensor network strategies for specific scenarios. The combination of sensitivity 

analysis and heatmap visualization formed a comprehensive framework for LCCA evaluation in this study. While 

sensitivity analysis provided foundational insights into parameter impacts, heatmaps addressed the stochastic 

nature of real-world conditions, enhancing the reliability and applicability of the findings. This combined approach 

ensured a detailed and nuanced assessment, supporting informed decision-making for facility planning and 

management. 

a) 

 

b) 

 

Figure 4: Monte Carlo Simulation Framework for the LCCA of a) FWSN and b) MSR Data Collection Approaches. 

8. RESULTS AND DISCUSSION: CASE STUDY 

The main objective of the present study was to develop an LCCA framework to evaluate and compare the financial 

feasibility of FWSN and MSR systems for indoor environmental data collection. A case study was conducted in 

the present paper to validate the developed methodology, where three distinct scenarios were analyzed, i.e., small, 

medium, and large commercial complexes, to demonstrate the application of the methodology across varying 

building sizes. The results discussed included analyzing the LCCA of each system for the three established 

scenarios. The LCCA was analyzed using both deterministic NPV calculations and Monte Carlo simulations to 

assess the reliability of the findings under varying conditions. Following, results of the conducted sensitivity 

analysis and generated heatmap visualizations for each scenario were discussed. 

 In the selected case study, a building lifespan of 50 years was adopted, consistent with standard lifecycle 

assessment practices such as those recommended by the U.S. General Services Administration (GSA) and the 

University of California LCCA guidelines (University of California, 2023; U.S. GSA, 2025), with the case study 

location set in Mumbai, India. The total floor areas considered were 60,000 sqft, 125,000 sqft, and 250,000 sqft 

for the small, medium, and large complexes, respectively. Although there isn’t a standard area based classification, 

national building code (NBC)’s categorization of low, mid, and high rise buildings closely aligns with the small 

medium and large buildings (L&T Realty, 2024; Ramamirtham, 2025). Moreover, recent commercial 
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developments like the World Trade Center (WTC) Pune feature office towers with built-up areas of approximately 

370,000 square feet (World Trade Center Pune, 2025). All present-value costs associated with the selected study 

area are detailed in Table 5. 

Table 5: Different Costs of FWSN and MSR Components in the Study Area. 

No. Cost Component Value (₹) References 

1 Cost of fixed sensor 6,150 (HOBO, 2024) 

2 Cost of mobile-based indoor robots 41,175 (Robotis, 2024) 

3 Cost of onboard sensors 8,911 (CO2Meter.com, 2015) 

4 Annual charges for sensor maintenance 40% of O&M (Zachary Denning, 2016) 

5 Monthly charges for robot maintenance 30,000 (Payscale, 2024) 

6 Re-sale value of robots 10% of initial cost (Robots Done Right, 2024) 

7 Cost of additional equipment on robot 100,000 (Lenovo India, 2024) 

Moreover, Table 6 summarizes the different input parameters utilized for NPV computations, as well as the brands 

of employed sensors and mobile-based indoor robots. The analysis incorporated a discount rate of 7.5% and an 

inflation rate of 4.3%, based on values reported in the literature (Fang et al., 2020; O’Neill, 2024). Furthermore, 

space range densities of different commercial sensors range significantly from as low as 100 sqft/sensor for small 

areas up to more than a 1,000 sqft/sensor for more advanced sensors utilized in larger areas (VergeSense, 2022; 

Lutron, 2014). In this study, a space range density of 200 sqft/sensor was assumed for the FWSN approach, a value 

closer to commercial values of sensors utilized in indoor spaces with similar areas, and electricity costs were 

calculated using a rate of Rs. 10/unit, reflecting commercial rates in Mumbai (Adani Electricity, 2024). 

Additionally, labor charges for setting up the facility were based on the Government of India’s minimum daily 

wage rate of Rs. 450/day (Chief Labour Commissioner, 2024).  

Table 6: Input Variables Utilized in NPV Computations and Description of Employed Sensors and Mobile-based 

Robots. 

No. Description Input Data References 

1 Discount rate 7.5% (Fang et al., 2020) 

2 Space density of fixed sensors 200sqft/sensor (VergeSense, 2022; Lutron, 2014) 

3 Inflation rate 4.3% (O’Neill, 2024) 

4 Wall-mounted sensor HOBO Temperature Logger UX100-001 (HOBO, 2024) 

5 Mobile-based indoor robot Turtlebot3 Burger (Robotis, 2024) 

6 Robot’s on-board sensor CozIR-A 2000ppm CO2+ RH/T sensor (CO2Meter.com, 2015) 

7 Time period of robotic data collection 30min/reading (Mantha et al., 2020) 

8 Electricity charges per unit 10 Rs/unit (Adani Electricity, 2024) 

9 Labour charges for facility set-up 450 Rs/day 
(Chief Labour Commissioner, 

2024) 

Operational costs were calculated using a 9V lithium battery for the fixed wireless sensors and electricity charges 

for recharging robot batteries. The analysis assumed an employee salary growth rate equal to the inflation rate. 

The expected lifespan values for sensors, robots, and on-board sensors were taken as 10, 7, and 15 years, 

respectively, based on typical market data (CO2Meter.com, 2015; HOBO, 2024; Robotis, 2024). As a baseline, the 

data collection interval was set to 30 minutes per reading, as suggested in previous studies (Mantha et al., 2020). 

However, the developed methodology allows building managers to customize these inputs based on specific 

requirements. The results of this case study aim to provide valuable insights into the comparative LCCA 
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performance of FWSN and MSR systems under different building conditions, supporting informed decision-

making for building automation strategies. 

8.1 LCCA Results 

The NPV of both FWSN and MSR systems was computed using deterministic and probabilistic methods for small, 

medium, and large complexes. Figures 5-7 show the cumulative annual NPVs and Monte Carlo simulations results 

for each complex size. For the small complex with a floor space of 60,000 sqft, deterministic calculations indicated 

that the FWSN was more cost-effective than MSR data collection, as determined by NPV analysis. The total NPV 

after a 50-year operational lifespan was around 35 and 90 million INR for the FWSN and MSR systems, 

respectively. Additionally, Monte Carlo simulations corroborated these results, yielding a 100% reliability index, 

which confirmed that the deterministic conclusion holds true for the given input values. Similarly, for a medium-

sized floor space of 125,000 sqft, deterministic NPV calculations also showed that the FWSN system was more 

feasible with a total NPV of around 70 million INR compared to about 100 million INR for the MSR system. 

However, for this scenario, Monte Carlo simulations revealed a low reliability index of 45.3%, indicating 

significant uncertainty in the results. This observation suggested that the chosen input values for this scenario were 

close to the breakeven point, where slight variations in the parameters could reverse the conclusion. On the other 

hand, in a large complex with a floor space of 250,000 sqft, deterministic calculations showed that MSR data 

collection was more cost-effective than FWSN with total NPVs of around 90 and 140 million Rs, respectively. 

This conclusion was further supported by Monte Carlo simulations, which provided a 100% reliability index. The 

results from the three scenarios highlight the importance of conducting sensitivity analysis to better understand the 

influence of major parameters on the LCCA outcomes. 

a) 

 

b) 

 

Figure 5: LCCA Results for the Small Commercial Complex Scenario: a) Cumulative Annual NPV and b) Monte 

Carlo Simulations. 

a) 

 

b) 

 

Figure 6: LCCA Results for the Medium Commercial Complex Scenario: a) Cumulative Annual NPV and b) Monte 

Carlo Simulations. 
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a) 

 

b) 

 

Figure 7: LCCA Results for the Large Commercial Complex Scenario: a) Cumulative Annual NPV and b) Monte 

Carlo Simulations. 

8.2 Sensitivity Analysis 

Following the evaluation of computed NPVs, sensitivity analysis was conducted to examine the influence of key 

parameters on the NPV for both FWSN and MSR indoor data collection methods. As previously mentioned, 

sensitivity analysis was conducted on the floor space, discount rate, space range density, and time period of data 

collection, by evaluating and analyzing the impact of varying their values on the obtained NPV. Figures 8-11 show 

the change in total NPV due to variations in each of the aforementioned parameters for both FWSN and MSR 

systems for each complex size scenario. The results of sensitivity analysis on discount rate (Figure 8) showed that 

the NPV exhibited a parabolic decrease as the discount rate increased from 1% to 10%. Additionally, the difference 

between the NPVs of FWSN and MSR data collection systems diminished with an increasing discount rate, 

highlighted by a larger gap at smaller discount rates between the NPV of FWSN and MSR compared to the gaps 

at higher discount rates. However, in scenario 2, the initial gap was reduced between the two systems and the 

curves intersected at a discount rate of 6%, indicating a breakeven point for the two alternatives. This suggests that 

a higher discount rate reduced the economic viability of long-term investments for FWSNs. 

The relationship between NPV and floor space (Figure 9) revealed that the FWSN was more feasible for smaller 

areas, but its NPV increased exponentially as the area increased. In contrast, the NPV of MSR increased gradually, 

resulting in a breakeven point with the FWSN system at a floor space area of around 125,000 sqft. Beyond this 

threshold, the MSR system outperformed the fixed network, showing larger gaps between the NPV of both systems 

at larger floor space areas. This observation aligns with the fact that the number of robots is proportional to the 

square root of the area (Eq. 7), whereas the number of sensors is directly proportional to the area (Eq. 4). On the 

other hand, the impact on NPV due to varying the time period of data collection (Figure 10) showed that the FWSN 

remained constant in each scenario because wall-mounted sensors can typically adjust their sensing frequency 

without incurring additional costs. However, for MSR-based data collection, the NPV decreased rapidly at first 

and then declined more gradually. The initial steep decrease was attributed to a significant percentage reduction in 

the number of robots required. For example, based on Eqs. 6-8, the number of robots for a 1-minute reading interval 

is 60, which drops to 30 for a 2-minute interval (a 50% reduction). As the time interval increases further, the 

percentage change becomes smaller, leading to a less steep curve. A breakeven point was observed in scenario 2 

at a time period for data collection of 20 minutes, while the breakeven point in scenario 3 was observed at 5 

minutes. 

Furthermore, for space range density (Figure 11), the MSR system showed a constant NPV because robots are 

capable of traversing the entire floor plan regardless of sensor density. In contrast, the NPV for FWSN decreased 

rapidly at first and then flattened out. This trend was driven by the percentage change in the number of sensors 

required. For example, for densities of 50, 100, and 150 sqft/sensor, the number of sensors required is 1,200, 600, 

and 400, respectively, resulting in percentage reductions of 50% and 33.33%. This led to an initially steep decline 

in the NPV curve, which became more gradual at higher densities. However, the gaps between the NPVs of FWSN 
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and MSR systems were increased as the complex size increased, due to the increased NPV of FWSN at lower 

space range densities utilized in larger areas. Also, breakeven points were observed at values of 100, 200, and 400 

sqft/sensor of space range density for scenario 1, 2, and 3, respectively. Overall, the conducted sensitivity analysis 

results illustrated the impacts of altering different parameters on the appropriate selection of indoor data collection 

methods from the financial perspective. However, in almost all instances, MSR-based data collection systems were 

more feasible for larger complexes, which was aligned with the obtained LCCA results. These findings provide 

critical guidance for selecting the most cost-effective data collection strategy based on the specific conditions and 

parameters of a project. 

a) 

 

b) 

 
c) 

 

Figure 8: Impact of Discount Rate on the NPV of FWSN and MSR Data Collection Systems: a) Small, b) Medium, 

and c) Large Complex Scenarios. 
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c) 

 
Figure 9: Impact of Floor Space on the NPV of FWSN and MSR Data Collection Systems: a) Small, b) Medium, 

and c) Large Complex Scenario. 

a) 

 

b) 

 

c) 

 

Figure 10: Impact of the Time Period of Data Collection on the NPV of FWSN and MSR Data Collection Systems: 

a) Small, b) Medium, and c) Large Complex Scenarios. 
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a) 

 

b) 

 

c) 

 
Figure 11: Impact of Space Range Density of fixed sensors on the NPV of FWSN and MSR Data Collection Systems: 

a) Small, b) Medium, and c) Large Complex Scenarios. 

8.3 Heatmap Visualization 

In addition to the conducted sensitivity analysis, heatmap visualization was conducted to identify the most 

economical data collection strategy across a range of input characteristics. Heatmaps were generated in this study 

to visualize the influence of key parameters on the probability of MSR-based data collection system being more 

cost-effective than FWSN-based data collection. This approach was adopted to facilitate a clearer understanding 

of parameter interactions and simplify decision-making processes for facility managers. For the selected case 

study, heatmaps were generated by varying floor space (sqft) and space range density (sqft/sensor) along the x and 

y axes, respectively. The time period of data collection was systematically varied from 1 to 60 minutes, i.e., 1, 5, 

10, 15, 20, 30, and 60 minute-intervals, based on practical considerations, while the discount rate was fixed at 

7.5%. Other input values were not changed and remained constant, and each heat map was developed using 10,000 

iterations to ensure statistical reliability. Figure 12 shows the heatmaps generated for each time period of data 

collection scenario. 

Based on the generated heatmaps, some key findings were observed. For instance, the heatmaps demonstrated that, 

for a given floor space and space range density, the probability of MSR data collection being more economical 

increased as the time period of data collection extended. For example, for a floor space of 160 sqft and space range 

density of 200 sqft/sensor, the probability of MSR data collection being more financially feasible was 0, 0, 64, and 

100% for 1, 5, 10, and 15-60 minutes time periods, respectively. This trend highlighted the efficiency of robotic 

systems in scenarios requiring less frequent data readings. Additionally, for smaller space range densities (up to 

150 sqft/sensor) and lower floor spaces, an abrupt transition was observed in the probability of robotic data 

collection being cheaper. This was attributed to the significant percentage change in the number of sensors 

required, which directly impacted on the costs incurred. As the space range density increased, these abrupt 

transitions diminished, resulting in smoother heat map gradients for higher values. Moreover, the heatmaps also 

revealed regions where neither alternative had a clear economic advantage, with probabilities ranging from 25% 

to 75%. These regions highlighted conditions under which further analysis or additional parameters may be needed 

to make an informed decision.  
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a) 
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Figure 12: Generated Heatmaps for Different Time Periods of Data Collection Scenarios: a) 1 Minute, b) 5 

Minutes, c) 10 Minutes, d) 15 Minutes, e) 20 Minutes, f) 30 Minutes, and g) 60 Minutes. 

Furthermore, for a specific time period, the space range density corresponding to the breakeven point increased 

with the floor space. This observation is consistent with the conducted sensitivity analysis earlier, which 

highlighted that robotic systems become more favorable as floor space increased. These heatmaps provided 

valuable insights that align with the results of the sensitivity analysis, while also offering a probabilistic perspective 

that is closer to real-world scenarios. Facility managers can utilize these heatmaps to plan data collection strategies 

effectively, tailoring their approach to specific project requirements. By identifying breakeven points and 
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understanding the probability of cost-effectiveness, decision-makers can optimize their choice between FWSN and 

MSR systems based on the unique characteristics of their building projects. 

8.4 Limitations 

While the developed LCCA framework provides a valuable decision-making tool for facility managers and 

stakeholders to identify the most suitable data collection strategy aligned with their building automation system 

(BAS) demands and operational goals it is not without limitations. 

First, the framework is built on several simplifying assumptions to enable tractable comparisons. These include 

uniform floor space distribution, fixed labor requirements, and consistent sensor coverage across all buildings. In 

practice, building environments are rarely uniform, real-world structures often feature irregular layouts, multiple 

levels, and varied environmental conditions that can significantly influence installation feasibility and system 

performance. Moreover, price variability and operational differences represent an important limitation to the 

generalizability of the findings, as costs can vary substantially with operational complexity, payload, application 

type, and navigation requirements. However, the framework is designed to allow further sensitivity analysis or 

recalibration of parameters if applied to more complex or larger-scale case studies, enabling adaptable evaluation 

under varied operational contexts. 

Second, although mobile sensor robots (MSRs) offer operational flexibility in dynamic environments, the study 

does not model the complexities associated with their real-world implementation. Challenges such as obstacle 

avoidance, dynamic path planning, and variable tour times caused by furniture layouts or partitions were not 

accounted for. Additionally, infrastructure requirements related to robot recharging cycles were simplified, and the 

need for real-time routing updates was not explored. 

Third, the case study was conducted in the context of a developing country, specifically India where labor costs, 

electricity tariffs, and equipment procurement rates are generally lower, and environmental regulations such as e-

waste disposal tend to be less stringent or inconsistently enforced. These economic and regulatory conditions are 

reflective of many Global South regions or developing economies that share similar cost structures and governance 

characteristics. For example, countries in the Middle East (e.g., UAE) often rely on a low-cost, predominantly 

South Asian migrant labor force; similarly, parts of Southeast Asia, Africa, and Latin America exhibit comparable 

infrastructure dynamics, regulatory flexibility, and pricing trends. In such settings, the relative cost-effectiveness 

of mobile sensing systems versus fixed networks is likely to remain consistent with our findings, making this 

framework transferable to a broader subset of developing or transition economies without substantial changes to 

key input parameters. However, the assumptions and results may not hold for high-income or highly regulated 

environments where compliance with stricter labor laws, privacy mandates, e-waste handling, and safety 

certifications can significantly alter operational costs and decision-making pathways. Thus, while the study offers 

broad insights for emerging economies, its application in developed regions should be preceded by localized 

contextual adaptation and sensitivity adjustment to align with local market conditions. 

 

Finally, the study assumes a constant operational profile for buildings over a 50-year life span, consistent with 

standard lifecycle assessment practices. However, buildings often undergo functional and technological changes 

over time, including repurposing, renovation, or integration of newer sensing and automation systems. These 

changes may influence the relevance and performance of the initially selected data collection strategy. By 

recognizing these limitations, future research can work toward refining the framework and expanding its 

applicability to a broader range of building types and operational environments. 

9. CONCLUSIONS AND FUTURE WORK 

The study in this paper presented a comprehensive LCCA framework to compare two distinct data collection 

methods for IEQ monitoring, namely FWSN and MSR systems. A novel LCCA-based methodology that combined 

deterministic NPV calculations with probabilistic Monte Carlo simulations to address uncertainties in cost inputs 

was developed. The methodology was further validated through a case study encompassing small, medium, and 

large commercial buildings, which demonstrated the applicability and robustness of the methodology. 

Furthermore, sensitivity analysis and heatmap visualization were employed to offer deeper insights into the 

parameter dependencies and breakeven points between the two data collection systems. 
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The methodology systematically evaluated key cost components, including initial, O&M, replacement, and 

disposal costs, for both systems. Deterministic calculations identified conditions where each alternative was more 

economical, while Monte Carlo simulations quantified the reliability of these findings. The NPV computations 

demonstrated that for smaller buildings, FWSN systems were more economical due to their lower initial setup 

costs. Conversely, for larger floor spaces, MSR systems outperformed FWSN, offering scalability and flexibility 

that reduced per-unit costs as the monitored area increased. In particular, MSR systems were better suited for 

scenarios requiring long data collection intervals, where the operational efficiency of robots became a key 

advantage. These findings highlighted the importance of tailoring data collection strategies to the specific 

characteristics and requirements of the building environment. The conducted sensitivity analysis revealed that 

some key parameters such as the discount rate, floor space, sensor density, and time period of data collection, 

significantly influenced the economic feasibility of the two systems. Moreover, heatmap visualization further 

illustrated the impact of these variables and provided practical tools for decision-making.  

While the proposed methodology proved effective in identifying the cost-effective alternative under different 

scenarios, it also pointed to limitations that warrant further exploration. For instance, assumptions regarding 

uniform floor space distribution, fixed labor requirements, and single-employee supervision may not be valid for 

more complex or dynamic environments, such as industrial facilities or multi-building campuses. Future research 

could extend the developed framework to account for these complexities, incorporating advanced modeling 

techniques or adaptive algorithms that better reflect real-world conditions. Other future directions could include 

integrating advanced machine learning algorithms for optimizing deployment strategies and refining scenario 

modeling. With such integration, future studies could also expand the framework to perform detailed case studies 

for developed countries, where higher labor costs, stricter regulatory environments, and diverse stakeholder needs 

introduce a broader range of variables. This would necessitate more sophisticated probabilistic modeling to 

accommodate the additional uncertainties and interdependencies inherent in such contexts. Additionally, 

incorporating real-time operational data could dynamically refine cost estimates, while extending the analysis to 

consider environmental and social sustainability metrics would further enhance the framework’s 

comprehensiveness. Field validation of the LCCA framework in live operational environments would provide 

critical feedback to enhance its practical applicability and reliability across diverse global contexts. 

In conclusion, the proposed LCCA framework serves as a valuable tool for facility managers and decision-makers 

to systematically evaluate and compare data collection strategies in indoor environments. By addressing economic 

feasibility alongside technical capabilities, this study paves the way for more informed and strategic investments 

in building automation and monitoring technologies. With further refinement and expansion, this LCCA-based 

framework can be universally applied to evaluate the cost-effectiveness of any two competing solutions for 

building data collection and monitoring needs. 

ACKNOWLEDGEMENTS 

The authors acknowledge the use of generative AI tools, e.g., ChatGPT, in the initial exploration of ideas and 

development of preliminary arguments. All AI-generated content underwent thorough review, verification, and 

substantial revision by the authors to ensure academic integrity, accuracy, and originality. 

REFERENCES 

Adani Electricity, 2024. Adani Electricity Tariff Details 2023, Types, Charges & Factors Affecting. [online] 

Adanielectricity.com. Available at: <https://www.adanielectricity.com/tariff> [Accessed 19 May 2024]. 

Alsafery, W., Rana, O. and Perera, C., 2023. Sensing within Smart Buildings: A Survey. ACM Computing Surveys, 

[online] 55(13 s). https://doi.org/10.1145/3596600. 

Baldoni, E., Coderoni, S., Di Giuseppe, E., D’orazio, M., Esposti, R. and Maracchini, G., 2021. A software tool 

for a stochastic life cycle assessment and costing of buildings’ energy efficiency measures. Sustainability 

(Switzerland), [online] 13(14), p.7975. https://doi.org/10.3390/SU13147975/S1. 

Barreras, A.J., 2011. Risk management: Monte Carlo simulation in cost estimating. In: PMI® Global Congress. 

[online] Dallas. Available at: <https://www.pmi.org/learning/library/monte-carlo-simulation-cost-

estimating-6195> [Accessed 6 October 2025]. 



 

 

 
ITcon Vol. 30 (2025), Mantha et al., pg. 1702 

Bhadauria, D., Tekdas, O. and Isler, V., 2011. Robotic data mules for collecting data over sparse sensor fields. 

Journal of Field Robotics, [online] 28(3), pp.388–404. https://doi.org/10.1002/rob.20384. 

Bochare, R., Dagliya, M. and Kadam, M., 2024. Assessment of economic performance of an industrial building 

using life cycle cost & refined benefit-cost analysis – A case study. Journal of Building Engineering, 83, 

p.108397. https://doi.org/10.1016/J.JOBE.2023.108397. 

Burak Gunay, H., Shen, W. and Newsham, G., 2019. Data analytics to improve building performance: A critical 

review. Automation in Construction, 97, pp.96–109. https://doi.org/10.1016/J.AUTCON.2018.10.020. 

Chief Labour Commissioner (Central), 2024. Minimum Wages | Chief Labour Commissioner. [online] Chief 

Labour Commissioner (Central), Government of India. Available at: <https://clc.gov.in/clc/min-wages> 

[Accessed 19 May 2024]. 

Cincinelli, A. and Martellini, T., 2017. Indoor Air Quality and Health. International Journal of Environmental 

Research and Public Health 2017, Vol. 14, Page 1286, [online] 14(11), p.1286. 

https://doi.org/10.3390/IJERPH14111286. 

CO2Meter.com, 2015. GSS Sensor User’s Manual: COZIRTM, SprintIRTM, MISIRTM and MinIRTM Sensors. 

Corona, J., Tondini, S., Gallichi Nottiani, D., Scilla, R., Gambaro, A., Pasut, W., Babich, F. and Lollini, R., 2024. 

Environmental Quality bOX (EQ-OX): A Portable Device Embedding Low-Cost Sensors Tailored for 

Comprehensive Indoor Environmental Quality Monitoring. Sensors 2024, Vol. 24, Page 2176, [online] 

24(7), p.2176. https://doi.org/10.3390/S24072176. 

Dandy, G., Roberts, A., Hewitson, C. and Chrystie, P., 2007. Sustainability Objectives For The Optimization Of 

Water Distribution Networks. 8th Annual Water Distribution Systems Analysis Symposium 2006, [online] 

pp.1–11. https://doi.org/10.1061/40941(247)83. 

Demirbas, M., 2005. Wireless sensor networks for monitoring of large public buildings. Computer Networks, 46, 

pp.605–634. 

Environmental Management Consolidated Business Center (EMCBC) Office of Cost Estimating (OCE), 2023. 

Cost Estimate Development Handbook. 

Fang, J., Zhang, M., Mo, W., Wang, H., Hao, F., Yin, K. and Zhang, Z., 2020. Life Cycle Cost Assessment of 

Condition Monitoring Sensors in Smart Distribution Room. In: 2020 International Conference on Wireless 

Communications and Smart Grid (ICWCSG). [online] IEEE. pp.185–189. 

https://doi.org/10.1109/ICWCSG50807.2020.00049. 

Fisk, W.J., Black, D. and Brunner, G., 2012. Changing ventilation rates in U.S. offices: Implications for health, 

work performance, energy, and associated economics. Building and Environment, 47(1), pp.368–372. 

https://doi.org/10.1016/J.BUILDENV.2011.07.001. 

Fissore, V.I., Arcamone, G., Astolfi, A., Barbaro, A., Carullo, A., Chiavassa, P., Clerico, M., Fantucci, S., Fiori, F., 

Gallione, D., Giusto, E., Lorenzati, A., Mastromatteo, N., Montrucchio, B., Pellegrino, A., Piccablotto, G., 

Puglisi, G.E., Ramirez-Espinosa, G., Raviola, E., Servetti, A. and Shtrepi, L., 2024. Multi-Sensor Device 

for Traceable Monitoring of Indoor Environmental Quality. Sensors 2024, Vol. 24, Page 2893, [online] 

24(9), p.2893. https://doi.org/10.3390/S24092893. 

Fregonara, E., Ferrando, D.G. and Pattono, S., 2018. Economic-environmental sustainability in building projects: 

Introducing risk and uncertainty in LCCE and LCCA. Sustainability (Switzerland), 10(6). 

https://doi.org/10.3390/su10061901. 

Fu, S., Yang, D., Mei, Z. and Zheng, W., 2025. Progress in Construction Robot Path-Planning Algorithms: Review. 

Applied Sciences 2025, Vol. 15, Page 1165, [online] 15(3), p.1165. https://doi.org/10.3390/APP15031165. 

Fuller, S., 2010. Life-Cycle Cost Analysis (LCCA). [online] Available at: <http://www.nist.gov/index.html>. 

Fuller, S.K. and Petersen, S.R., 1995. LIFE-CYCLE COSTING MANUAL for the Federal Energy Management 

Program. 



 

 

 
ITcon Vol. 30 (2025), Mantha et al., pg. 1703 

Giuseppe, E. Di, Massi, A. and D’Orazio, M., 2017. Impacts of Uncertainties in Life Cycle Cost Analysis of 

Buildings Energy Efficiency Measures: Application to a Case Study. In: Energy Procedia. Elsevier Ltd. 

pp.442–451. https://doi.org/10.1016/j.egypro.2017.03.206. 

Grzonka, S., Grisetti, G. and Burgard, W., 2012. A fully autonomous indoor quadrotor. IEEE Transactions on 

Robotics, 28(1), pp.90–100. https://doi.org/10.1109/TRO.2011.2162999. 

Hassani, S. and Dackermann, U., 2023. A Systematic Review of Optimization Algorithms for Structural Health 

Monitoring and Optimal Sensor Placement. Sensors 2023, Vol. 23, Page 3293, [online] 23(6), p.3293. 

https://doi.org/10.3390/S23063293. 

Hayat, H., Griffiths, T., Brennan, D., Lewis, R.P., Barclay, M., Weirman, C., Philip, B. and Searle, J.R., 2019. The 

State-of-the-Art of Sensors and Environmental Monitoring Technologies in Buildings. Sensors 2019, Vol. 

19, Page 3648, [online] 19(17), p.3648. https://doi.org/10.3390/S19173648. 

Heijungs, R., 2020. On the number of Monte Carlo runs in comparative probabilistic LCA. International Journal 

of Life Cycle Assessment, [online] 25(2), pp.394–402. https://doi.org/10.1007/S11367-019-01698-

4/FIGURES/3. 

HOBO, 2024. HOBO Temp Data Logger (UX100-001) User’s Manual | Onset’s HOBO and InTemp Data Loggers. 

[online] HOBO Data Loggers. Available at: 

<https://www.onsetcomp.com/resources/documentation/16208-f-ux100-001-manual> [Accessed 19 May 

2024]. 

ISO, 2017. ISO 15686-5: Buildings and Constructed Assets - Service Life Planning Part 5: Life-Cycle Costing. 

Geneva, Switzerland: International Organization for Standardization. 

Karanika-Murray, M., Biron, C., Hervieux, V., Whysall, Z. and Chen, H., 2021. Managing Presenteeism to 

Optimize Health and Performance. In: The SAGE Handbook of Organizational Wellbeing. 

https://doi.org/10.4135/9781529757187.n16. 

Key, M., 2012. A tutorial in displaying mass spectrometry-based proteomic data using heat maps. BMC 

bioinformatics, [online] 13 Suppl 16(16), pp.1–13. https://doi.org/10.1186/1471-2105-13-S16-

S10/FIGURES/10. 

Kidder, D.P., Fierro, L.A., Luna, E., Salvaggio, H., McWhorter, A., Bowen, S.A., Murphy-Hoefer, R., Thigpen, S., 

Alexander, D., Armstead, T.L., August, E., Bruce, D., Clarke, S.N., Davis, C., Downes, A., Gill, S., House, 

L.D., Kerzner, M., Kun, K., Mumford, K., Robin, L., Schlueter, D., Schooley, M., Valverde, E., Vo, L., 

Williams, D. and Young, K., 2024. CDC Program Evaluation Framework, 2024. MMWR 

Recommendations and Reports, 73(6), pp.1–37. https://doi.org/10.15585/MMWR.RR7306A1. 

Klepeis, N.E., Nelson, W.C., Ott, W.R., Robinson, J.P., Tsang, A.M., Switzer, P., Behar, J. V., Hern, S.C. and 

Engelmann, W.H., 2001. The National Human Activity Pattern Survey (NHAPS): a resource for assessing 

exposure to environmental pollutants. Journal of Exposure Science & Environmental Epidemiology 2001 

11:3, [online] 11(3), pp.231–252. https://doi.org/10.1038/sj.jea.7500165. 

Kneifel, J. and Webb, D., 2022. Life cycle costing manual for the Federal Energy Management Program. [online] 

https://doi.org/10.6028/NIST.HB.135e2022-upd1. 

Ko, A.W.Y. and Lau, H.Y.K., 2009. Intelligent Robot-Assisted Humanitarian Search and Rescue System. 

International Journal of Advanced Robotic Systems, [online] 6(2), pp.121–128. 

https://doi.org/10.5772/6792. 

Konnovitch, T. and Guglielmi, G., 2024. GUIDANCE DOCUMENT Understanding Effective Ways to Visualize 

Life Cycle Assessment Results. 

Kroese, D.P., Brereton, T., Taimre, T. and Botev, Z.I., 2014. Why the Monte Carlo method is so important today. 

Wiley Interdisciplinary Reviews: Computational Statistics, [online] 6(6), pp.386–392. 

https://doi.org/10.1002/WICS.1314. 

Kumar, D., Zou, P.X.W., Memon, R.A., Alam, M.M., Sanjayan, J.G. and Kumar, S., 2020. Life-cycle cost analysis 

of building wall and insulation materials. Journal of Building Physics, [online] 43(5), pp.428–455. 



 

 

 
ITcon Vol. 30 (2025), Mantha et al., pg. 1704 

https://doi.org/10.1177/1744259119857749/ASSET/IMAGES/LARGE/10.1177_1744259119857749-

FIG8.JPEG. 

Kumar, P., Martani, C., Morawska, L., Norford, L., Choudhary, R., Bell, M. and Leach, M., 2016. Indoor air quality 

and energy management through real-time sensing in commercial buildings. Energy and Buildings, 

https://doi.org/10.1016/j.enbuild.2015.11.037. 

Kumar, T. and Mani, M., 2017. Life Cycle Assessment (LCA) to Assess Energy Neutrality in Occupancy Sensors. 

In: Smart Innovation, Systems and Technologies. [online] Springer Science and Business Media 

Deutschland GmbH. pp.105–116. https://doi.org/10.1007/978-981-10-3521-0_9. 

Lee, G., Moon, B.C., Lee, S. and Han, D., 2020. Fusion of the SLAM with Wi-Fi-Based Positioning Methods for 

Mobile Robot-Based Learning Data Collection, Localization, and Tracking in Indoor Spaces. Sensors 2020, 

Vol. 20, Page 5182, [online] 20(18), p.5182. https://doi.org/10.3390/S20185182. 

Lenovo India, 2024. Laptops for Business,Gaming, Students. [online] Available at: 

<https://www.lenovo.com/in/en/laptops/?cid=ww%3Aseo%3A1j6nl4#> [Accessed 9 December 2024]. 

L&T Realty, 2024. Types of Building Classification as per NBC Guidelines | L&T Realty. [online] lntreality.com. 

Available at: <https://www.lntrealty.com/blogs/types-of-building-as-per-nbc/> [Accessed 6 October 2025]. 

Lu, K., Deng, X., Jiang, X., Cheng, B. and Tam, V.W.Y., 2023. A review on life cycle cost analysis of buildings 

based on building information modeling. Journal of Civil Engineering and Management, [online] 29(3), 

pp.268-288–268–288. https://doi.org/10.3846/JCEM.2023.18473. 

Mantha, B.R.K., Jung, M.K., García de Soto, B., Menassa, C.C. and Kamat, V.R., 2020. Generalized task allocation 

and route planning for robots with multiple depots in indoor building environments. Automation in 

Construction, 119, p.103359. https://doi.org/10.1016/J.AUTCON.2020.103359. 

Mantha, B.R.K., Menassa, C.C. and Kamat, V.R., 2016. Ambient data collection in indoor building environments 

using mobile robots. In: ISARC 2016 - 33rd International Symposium on Automation and Robotics in 

Construction. International Association for Automation and Robotics in Construction I.A.A.R.C). pp.428–

436. https://doi.org/10.22260/isarc2016/0052. 

Messung Group: building automation & controls, 2025. Messung Group: Project References. [online] 

https://messungbacd.com/project-references. Available at: <https://messungbacd.com/project-references> 

[Accessed 5 October 2025]. 

Morán-Zabala, J.P. and Cogollo-Flórez, J.M., 2024. A Monte Carlo Simulation Methodology for Uncertainty 

Analysis in Product Recall Management. Communications in Computer and Information Science, [online] 

2033 CCIS, pp.59–70. https://doi.org/10.1007/978-3-031-68438-8_5/FIGURES/9. 

Mujan, I., Anđelković, A.S., Munćan, V., Kljajić, M. and Ružić, D., 2019. Influence of indoor environmental 

quality on human health and productivity - A review. Journal of Cleaner Production, 217, pp.646–657. 

https://doi.org/10.1016/J.JCLEPRO.2019.01.307. 

NenPower, 2024. How do labor costs vary depending on the complexity of the installation | NenPower. [online] 

NenPower. Available at: <https://nenpower.com/blog/how-do-labor-costs-vary-depending-on-the-

complexity-of-the-installation/> [Accessed 15 July 2025]. 

O’Neill, A., 2024. India: Inflation rate from 1987 to 2029. [online] Statista. Available at: 

<https://www.statista.com/statistics/271322/inflation-rate-in-india/> [Accessed 19 May 2024]. 

Osso, A. and Gottfried, D.A., 1996. Sustainable Building Technical Manual: Green Building Design, Construction, 

and Operation | BuildingGreen. [online] Public Technology, Inc. Available at: 

<https://www.buildinggreen.com/newsbrief/sustainable-building-technical-manual-green-building-

design-construction-and-operation> [Accessed 26 August 2024]. 

Österlind, F., Pramsten, E., Roberthson, D., Eriksson, J., Finne, N. and Voigt, T., 2007. Integrating building 

automation systems and wireless sensor networks. IEEE International Conference on Emerging 

Technologies and Factory Automation, ETFA, pp.1376–1379. 

https://doi.org/10.1109/EFTA.2007.4416941. 



 

 

 
ITcon Vol. 30 (2025), Mantha et al., pg. 1705 

Ozsariyildiz, S. and Tolman, F., 1998. IT support for the very early design of buildings and civil engineering works. 

Digital library of construction informatics and information technology in civil engineering and 

construction. 

Payscale, 2024. Average Robotics Engineer Salary in India. [online] 2024. Available at: 

<https://www.payscale.com/research/IN/Job=Robotics_Engineer/Salary> [Accessed 9 December 2024]. 

Plebankiewicz, E., Meszek, W., Zima, K. and Wieczorek, D., 2019. Probabilistic and Fuzzy Approaches for 

Estimating the Life Cycle Costs of Buildings under Conditions of Exposure to Risk. Sustainability 2020, 

Vol. 12, Page 226, [online] 12(1), p.226. https://doi.org/10.3390/SU12010226. 

Raffler, S., Bichlmair, S. and Kilian, R., 2015. Mounting of sensors on surfaces in historic buildings. Energy and 

Buildings, 95, pp.92–97. https://doi.org/10.1016/J.ENBUILD.2014.11.054. 

Raftery, P., Keane, M. and Costa, A., 2011. Calibrating whole building energy models: Detailed case study using 

hourly measured data. Energy and Buildings, 43(12), pp.3666–3679. 

https://doi.org/10.1016/J.ENBUILD.2011.09.039. 

Ramamirtham, A., 2025. National Building Code of India: NBC norms for high rise building and other residential 

buildings. [online] housing.com. Available at: <https://housing.com/news/national-building-code-india-

residential-apartments/> [Accessed 6 October 2025]. 

Rao, A.S., Radanovic, M., Liu, Y., Hu, S., Fang, Y., Khoshelham, K., Palaniswami, M. and Ngo, T., 2022. Real-

time monitoring of construction sites: Sensors, methods, and applications. Automation in Construction, 

[online] 136, p.104099. https://doi.org/10.1016/J.AUTCON.2021.104099. 

Rawat, P., Singh, K.D., Chaouchi, H. and Bonnin, J.M., 2014. Wireless sensor networks: A survey on recent 

developments and potential synergies. Journal of Supercomputing, [online] 68(1), pp.1–48. 

https://doi.org/10.1007/S11227-013-1021-9/FIGURES/20. 

Razavi, S., Jakeman, A., Saltelli, A., Prieur, C., Iooss, B., Borgonovo, E., Plischke, E., Lo Piano, S., Iwanaga, T., 

Becker, W., Tarantola, S., Guillaume, J.H.A., Jakeman, J., Gupta, H., Melillo, N., Rabitti, G., Chabridon, 

V., Duan, Q., Sun, X., Smith, S., Sheikholeslami, R., Hosseini, N., Asadzadeh, M., Puy, A., Kucherenko, S. 

and Maier, H.R., 2021. The Future of Sensitivity Analysis: An essential discipline for systems modeling 

and policy support. Environmental Modelling & Software, 137, p.104954. 

https://doi.org/10.1016/J.ENVSOFT.2020.104954. 

Robotis, 2024. TurtleBot 3 Burger [US] - ROBOTIS. [online] Robotis. Available at: 

<https://www.robotis.us/turtlebot-3-burger-us/> [Accessed 19 May 2024]. 

Robots Done Right, 2024. Scrap Value of Robots. [online] Robots Done Right. Available at: 

<https://robotsdoneright.com/Articles/scrap-value-of-robots.html> [Accessed 19 May 2024]. 

Saini, J., Dutta, M. and Marques, G., 2020. Indoor Air Quality Monitoring Systems Based on Internet of Things: 

A Systematic Review. International Journal of Environmental Research and Public Health 2020, Vol. 17, 

Page 4942, [online] 17(14), p.4942. https://doi.org/10.3390/IJERPH17144942. 

Shan, X., Melina, A.N. and Yang, E.H., 2018. Impact of indoor environmental quality on students’ wellbeing and 

performance in educational building through life cycle costing perspective. Journal of Cleaner Production, 

204, pp.298–309. https://doi.org/10.1016/J.JCLEPRO.2018.09.002. 

Shankar Kshirsagar, A., El-Gafy, M.A. and Sami Abdelhamid, T., 2010. Suitability of life cycle cost analysis 

(LCCA) as asset management tools for institutional buildings. Journal of Facilities Management, 8(3), 

pp.162–178. https://doi.org/10.1108/14725961011058811/FULL/PDF. 

Sieglinde Fuller, 2010. Life-Cycle Cost Analysis (LCCA): Whole Building Design Guide. [online] National 

Institute of Standards and Technology. Available at: <http://www.nist.gov/index.html>. 

Sihombing, L.B. and Saputra, B., 2025. Optimizing contingency cost for mid-scale contractors: an integrated 

Delphi and Monte Carlo method. Engineering, Construction and Architectural Management, [online] pp.1–

16. https://doi.org/10.1108/ECAM-06-2024-0807/1271787/OPTIMIZING-CONTINGENCY-COST-FOR-

MID-SCALE. 



 

 

 
ITcon Vol. 30 (2025), Mantha et al., pg. 1706 

Thomas, A., Mantha, B.R.K. and Menassa, C.C., 2016. A Framework to Evaluate the Life Cycle Costs and 

Environmental Impacts of Water Pipelines. Pipelines 2016: Out of Sight, Out of Mind, Not Out of Risk - 

Proceedings of the Pipelines 2016 Conference, [online] pp.1152–1163. 

https://doi.org/10.1061/9780784479957.107. 

Van Tran, V., Park, D. and Lee, Y.C., 2020. Indoor air pollution, related human diseases, and recent trends in the 

control and improvement of indoor air quality. International Journal of Environmental Research and Public 

Health, https://doi.org/10.3390/ijerph17082927. 

University of California, 2023. University of California: Life Cycle Cost Analysis (LCCA) Guidelines. [online] 

Available at: <https://ucop.edu/> [Accessed 13 July 2025]. 

U.S. GSA, 2025. Life cycle assessment and buildings | GSA. [online] U.S. General Services Adminitration. 

Available at: <https://www.gsa.gov/governmentwide-initiatives/federal-highperformance-

buildings/highperformance-building-clearinghouse/integrative-design-strategies/life-cycle-

perspective/life-cycle-assessment-and-buildings> [Accessed 13 July 2025]. 

Vlissidis, A., Charakopoulos, S., Kolokotsa, D. and Boian, I., 2008. Wireless Sensor Networks Building 

Monitoring Application. WIRELESS SENSOR NETWORKS BUILDING MONITORING 

APPLICATION. 

Wang, F., Liu, J. and Sun, L., 2010. Ambient Data Collection with Wireless Sensor Networks. EURASIP Journal 

on Wireless Communications and Networking 2010 2010:1, [online] 2010(1), pp.1–10. 

https://doi.org/10.1155/2010/698951. 

Wang, W., Wang, N., Jafer, E., Hayes, M., O’Flynn, B. and O’Mathuna, C., 2010. Autonomous wireless sensor 

network based building energy and environment monitoring system design. 2010 2nd Conference on 

Environmental Science and Information Application Technology, ESIAT 2010, 3, pp.367–372. 

https://doi.org/10.1109/ESIAT.2010.5568311. 

Wargocki, P., Seppänen, O., Anderson, J., Boerstra, A., Clements-Croome, D., Fitzner, K. and Hanssen, S.O., 2006. 

Indoor climate and productivity in offices. aivc. org ed. [online] REHVA. Available at: 

<https://www.aivc.org/resource/indoor-climate-and-productivity-offices> [Accessed 29 July 2024]. 

World Trade Center Pune, 2025. World Trade Centers Association: Pune. [online] wtca.org. Available at: 

<https://www.wtca.org/world-trade-center-pune> [Accessed 6 October 2025]. 

Yang, Y., Xu, W., Gao, Z., Yu, Z. and Zhang, Y., 2023. Research Progress of SHM System for Super High-Rise 

Buildings Based on Wireless Sensor Network and Cloud Platform. Remote Sensing 2023, Vol. 15, Page 

1473, [online] 15(6), p.1473. https://doi.org/10.3390/RS15061473. 

Zachary Denning, 2016. Operating Cost Management Systems - The Future of Building Management Article. 

[online] LinkedIn. Available at: <https://www.linkedin.com/pulse/operating-cost-management-systems-

future-building-article-denning/> [Accessed 19 May 2024]. 

Zhao, J., Seppänen, O. and Peltokorpi, A., 2020. Applying Heat Maps to Define Workspace in Construction Based 

on Real-Time Tracking System With Coordinate Positioning Information. IGLC 28 - 28th Annual 

Conference of the International Group for Lean Construction 2020, pp.853–864. 

https://doi.org/10.24928/2020/0014. 

 


	A Life Cycle Cost Analysis Framework to Compare Fixed Sensor Network and On-demand Robot-Based Data Collection in Indoor Building Environments
	1. Introduction
	2. Literature Review
	2.1 Data Collection Methods in Building Environment
	2.2 LCCA Methodology
	2.3 Applications of LCCA in Infrastructure and Built Environment
	2.4 LCCA in Building Systems and Sensor Networks
	2.5 Need for Probabilistic LCCA and Decision-Friendly Visualization in Building Systems

	3. Methodology
	4. Building Characteristics and Assumptions
	5. Cost Components and NPV Computations
	5.1 FWSN
	5.2 MSR

	6. Monte Carlo Simulations
	7. Sensitivity Analysis and Heatmap Visualization
	8. Results and Discussion: Case Study
	8.1 LCCA Results
	8.2 Sensitivity Analysis
	8.3 Heatmap Visualization
	8.4 Limitations

	9. Conclusions and Future Work
	Acknowledgements
	References


