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SUMMARY: Indoor environmental quality (IEQ) monitoring is crucial for occupant well-being and building
performance optimization, with data collection methods significantly impacting the effectiveness and feasibility of
monitoring systems. Fixed wireless sensor networks (FWSN) have been widely used for IEQ data collection and
monitoring; however, they face several challenges, such as tedious installation and maintenance, as well as high

power consumption. To address these limitations, mobile sensor robots (MSR)-based data collection systems were
suggested as a viable alternative through various studies. Nonetheless, a comparative analysis of the economic
feasibility of both indoor data collection methods remains unexplored. In this study, a comprehensive Life Cycle
Cost Analysis (LCCA) framework was developed to compare the financial viability of FWSN and MSR systems for
indoor ambient temperature data collection, incorporating building characteristics, cost components of data
collection methods, as well as both deterministic net present value (NPV) calculations and probabilistic Monte
Carlo simulations to account for uncertainties. This study, therefore, contributes to a practical methodology to
guide financial and operational decisions for indoor IEQ monitoring systems through a systematic LCCA
framework that combines deterministic and probabilistic analyses, along with sensitivity and heatmap
visualizations. The methodology was validated through a case study involving three commercial complexes of
varying sizes in Mumbai, India, with sensitivity analysis and heatmap visualization employed to investigate the
influence of key parameters such as floor space, discount rate, sensor density, and data collection intervals. Results
revealed that FWSN systems were more feasible for smaller buildings, with an NPV of around 35 million INR
compared to an NPV of around 90 million INR for MSR, while MSR systems proved more cost-effective for larger
floor spaces with an NPV of around 90 million INR versus 140 million INR for FWSN. The sensitivity analysis and
generated heatmaps identified multiple breakeven points between the two systems at different values of investigated
parameters, highlighting the critical need to accurately identify specific conditions and characteristics of a project
during the initial stages to employ the most cost-effective system. Some limitations were present in this study, such
as the assumptions of uniform floor space distribution, fixed labor requirements, and robotic price variability,

which may not reflect more complex building environments. The developed framework serves as a valuable
decision-making tool for facility managers to evaluate and select optimal data collection strategies based on
specific building characteristics and monitoring requirements.

KEYWORDS: indoor environmental quality, fixed wireless sensors, mobile sensor robots, life cycle cost analysis,

net present value, monte carlo simulation.
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1. INTRODUCTION

Humans usually spend close to 90% of their lifetime in public and private indoor environments such as offices,
homes, schools, airports, shopping malls, hospitals, and theatres (Klepeis et al., 2001; Cincinelli and Martellini,
2017). Poor indoor environmental quality (IEQ) has the potential to cause adverse health effects to the occupants,
thereby affecting productivity. For example, several studies have shown that poor IEQ resulted in reduced
productivity among workers, as well as impacted the cognitive abilities of students in schools and universities
(Wargocki et al., 2006; Shan, Melina and Yang, 2018; Mujan et al., 2019). Improving the IEQ has been proven to
enhance various aspects of humans’ experience, whether at offices, schools, or other establishments, particularly
when examining the life-cycle impact of such improvements. For instance, Fisk et al., 2012 provided quantitative
estimates of eventual benefits and costs of providing different amounts of outdoor air ventilation in offices that far
exceeded energy costs as it significantly improved worker health and performance. Moreover, using a Life Cycle
Cost Analysis (LCCA) approach, (Shan, Melina and Yang, 2018) studied the effects of indoor environmental
quality on students’ wellbeing and performance by comparing two side-by-side tutorial rooms with different
ventilation settings in Nanyang Technological University, Singapore. Ventilation settings that offered more comfort
to the students resulted in avoided sick leaves and increased average marks.

These studies stressed a balanced approach that, along with building energy and resource efficiency, was also
important to consider humans’ well-being and performance. To improve the comfort of occupants and increase
building performance, it is important to optimize the IEQ of a building by collecting, managing, and analyzing
real-time data efficiently. However, collecting data manually limits the capability to collect large amounts of data,
eventually restricting the performance metrics (Wang et al., 2010; Raftery, Keane and Costa, 2011). Therefore, in
newer buildings, wired/wireless sensors are installed, calibrated, and integrated with building systems before the
operation and maintenance phase as part of the building automation system (Osterlind et al., 2007; Hayat et al.,
2019; Messung Group: building automation & controls, 2025). Several studies investigated the use of real-time
indoor quality monitoring using spatio-temporal data from sensors mounted at different locations in a building
(Kumar et al., 2016; Van Tran, Park and Lee, 2020). However, few drawbacks to the existing fixed sensor
techniques include complex design requirements as they can disturb the aesthetics of the building (Raffler,
Bichlmair and Kilian, 2015), tedious installation and maintenance due to intense calibration, manual supervision
owing to the threat from rodents chewing off the sensor wires (Wang, Liu and Sun, 2010), extent of space that can
be monitored (Demirbas, 2005; Vlissidis et al., 2008), as well as power consumption issues and limited information
storage capacity (Bhadauria, Tekdas and Isler, 2011).

To eliminate such challenges, novel methods have been developed incorporating the advancement of technology
in the automation sector. Existing studies in the field of mobile robot-based indoor data collection were performed
in order to develop a feasible approach (Mantha, Menassa and Kamat, 2016; Lee et al., 2020). Accordingly, a
mobile platform-based data collection process that uses a mobile indoor robot equipped with onboard sensors was
proposed by several previous studies (Bhadauria, Tekdas and Isler, 2011; Mantha et al., 2020). As per this proposed
technique, mobile robots are capable of navigating in a known or unknown indoor environment with the help of
various sensors and computing capabilities. The major steps in the suggested method involved robotic navigation
along with localization, data collection, and geotagging. One of the main advantages of this data collection method
is that it eliminates the need for installing the same set of sensors in different locations of existing buildings
(Mantha et al., 2020). Even though research has proved the technical feasibility of mobile robot-based data
collection, for any facility to be deployed in practical applications, it is very important to capture the economic
feasibility perspective, which has not been explored.

To address this gap, the present study compared the LCCA of a fixed wireless sensor network (FWSN) and mobile
sensor robotic (MSR) data collection methods. Although previous studies involved several similar
implementations in the context of their technical abilities, such as locomotion, navigation, and localization, none
of'them addressed the financial comparison of these systems. This makes it challenging to evaluate their respective
implementation potentials. Therefore, this study explicitly poses the research question: Under what conditions
does an MSR system become more economically feasible than an FWSN for indoor environmental quality
monitoring? Given the significant emphasis on addressing the challenge of poor IEQ and to achieve a quality
indoor environment that has optimal human comfort, including minimal noise disturbance, comfortable
temperature levels, relative humidity, and reduced levels of pollutants (Karanika-Murray et al., 2021), conducting
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arigorous life cycle cost comparison is critical. Such comparison helps stakeholders understand variations between
estimated and actual costs, providing valuable guidance during the programming phase to evaluate alternative
building features and systems that enhance overall IEQ and building performance, ultimately serving as a robust
asset management tool.

The specific objectives of this study were to: (1) develop a comprehensive LCCA framework for comparing the
financial feasibility between FWSN and MSR systems for indoor ambient temperature data collection, explicitly
capturing data uncertainties through probabilistic Monte Carlo simulations and providing intuitive results via
sensitivity analyses and heatmap visualizations; and (2) validate the developed framework through a detailed case
study involving three commercial building scenarios. Initially, required inputs for the LCCA including initial,
operational and maintenance (O&M), replacement, and disposal costs, were defined for both data collection
methods based on literature and market insights. LCCA outputs were computed using both traditional deterministic
methods and probabilistic Monte Carlo simulations to robustly account for uncertainties in the input data.
Furthermore, the influence of various parameters on the outputs of the developed LCCA framework was explored
through sensitivity analysis complemented by heatmap visualizations. The present research significantly advances
the field by explicitly coupling robust probabilistic modeling with clear visualization techniques, thereby providing
a unified, transparent, and accessible decision-making framework. Ultimately, this methodological contribution
aims to assist facility managers and stakeholders in clearly identifying relationships between input variables and
determining the most economically feasible and practical data collection approach for enhancing the management
of [EQ parameters in buildings.

2. LITERATURE REVIEW

A comprehensive literature review was conducted to examine several key areas relevant to the present study. First,
the current state and challenges of different data collection methods in building environments are reviewed,
highlighting the technical characteristics and operational considerations of both FWSN and MSR systems. Second,
a review of LCCA’s methodology and framework is provided to establish the theoretical foundation for the
comparative analysis. Third, various applications of LCCA across different infrastructure projects are discussed to
understand established methodologies and insights. Fourth, the review further investigates specific applications of
LCCA in building systems and sensor networks, concluding the research gap that is addressed in the present study.

2.1 Data Collection Methods in Building Environment

The growing complexity of modern buildings and increasing demands for occupant comfort, energy efficiency,
and operational optimization have made environmental data collection crucial in building management. Traditional
building monitoring relies heavily on FWSN to collect various environmental parameters such as temperature,
humidity, air quality, and occupancy data (Rawat et al., 2014) . These sensor networks typically require careful
placement planning to ensure adequate coverage while minimizing the number of sensors needed. Studies have
shown that optimal sensor placement can significantly impact both data quality and system costs (Hassani and
Dackermann, 2023). However, fixed sensors have inherent limitations in their ability to adapt to changing building
configurations or monitoring needs, and their installation often requires significant infrastructure modifications
(Ko and Lau, 2009).

In recent years, robot-based data collection has emerged as an alternative or complementary approach to fixed
sensor networks. Mobile robots equipped with environmental sensors offer several advantages, including flexible
coverage patterns, adaptable monitoring schedules, and the ability to access hard-to-reach areas (Rao et al., 2022).
These MSR platforms can be programmed to follow optimal paths for data collection, potentially reducing the
total number of sensors needed while maintaining comprehensive coverage (Fu et al., 2025). Research has
demonstrated that mobile robots can effectively collect environmental data with comparable accuracy to fixed
sensors while offering greater spatial resolution through their movement capabilities (Yang et al., 2023). However,
robot-based systems also present their own challenges, including path planning complexity, battery life limitations,
and the need for sophisticated navigation systems in dynamic indoor environments (Grzonka, Grisetti and Burgard,
2012).

The choice between FWSN and MSR often depends on various factors, including building layout, monitoring
requirements, and resource constraints. These contextual factors directly correspond to the key quality and
operational dimensions laid out by center for disease control and prevention (CDC) such as data accuracy,
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completeness, and resource availability (Kidder et al., 2024). For e.g., resource constraints such as labor or
equipment directly relate to the resource availability dimension. Similarly, building layout and monitoring
requirements such as building zone identification (e.g., building zone segregation based on mechanical, electrical,
and plumbing (MEP) systems), frequency (e.g., every 30 minutes) and granularity (e.g., zone or room level) relate
to completeness and timeliness. Further discussion regarding how and why these factors were incorporated into
the analysis is discussed in detail in the methodology section. Some studies have suggested hybrid approaches that
combine both methods to leverage their respective advantages (Alsafery, Rana and Perera, 2023). While both
approaches have demonstrated technical feasibility, their financial implications over the entire life-cycle remain
poorly understood. The significant differences in initial investment, operational costs, maintenance requirements,
and system longevity between these two approaches necessitate a comprehensive economic analysis framework.
Therefore, the LCCA emerges as a suitable tool for this comparison, as it can account for both immediate and long-
term financial implications of each system while considering various cost components throughout their operational
life.

2.2 LCCA Methodology

As the title suggests, LCCA is a method to assess the total cost of any project facility ownership by considering
the costs involved in various life cycle phases. It is used to compare various options capable of performing similar
tasks by analyzing the economic impact over the life of each option (Lu et al., 2023). For example, in the context
of this study, LCCA considers all costs such as recurring costs, non-recurring costs, salvage value, and fixed costs.
LCCA is especially beneficial when project alternatives that fulfil the same performance requirements but differ
with respect to initial, O&M, as well as replacement and disposal costs have to be compared in order to select the
one that maximizes net savings (Shankar Kshirsagar, El-Gafy and Sami Abdelhamid, 2010; Bochare, Dagliya and
Kadam, 2024). In general, O&M costs are annually recurring costs, and replacement and disposal costs are incurred
at the end-of-life cycle of the facility. These costs, also referred to as cash flows, are incurred at different times
during the life cycle phase of a facility. To make cash flows time-equivalent, the LCCA method converts them to
effective values by discounting them to a common point in time, typically to the present date (a.k.a. present value).
Once all the costs are estimated, the Net Present Value (NPV) can be obtained for each alternative, and further
conclusions can be drawn. Conventionally, costs resulting in the outflow of cash are taken to be negative, and the
inflow of cash is taken to be positive (Fuller, 2010). The potential of such an analysis has been significant in
evaluating different technologies and applications, considering that an owner's perspective on building design has
gone beyond design and construction facilities. To better understand how LCCA can be applied, it is valuable to
first examine its successful applications across various infrastructure projects.

2.3 Applications of LCCA in Infrastructure and Built Environment

Application of LCCA can be found in various fields of infrastructural projects such as transportation (Chan et al.,
2008), water pipelines (Thomas, Mantha and Menassa, 2016), and commercial and institutional buildings
(Ozsariyildiz and Tolman, 1998). Results from these studies illustrated that even though a specific alternative has
initial economic benefits due to lower procurement costs, over the long run, it could tend to get costlier and vice
versa. (Dandy et al., 2007) evaluated optimizing water distribution systems by conducting a case study to minimize
the present value of capital and operating costs of the design of the distribution system of an irrigation scheme in
New South Wales. The study produced an alternative design that reduced the mass of Polyvinyl Chloride (PVC)
pipes used and associated it with a 26.6% reduction in total energy and greenhouse gas emissions. In a similar
context, (Thomas, Mantha and Menassa, 2016) presented a model to evaluate the total LCCA of a water
transmission pipeline that helps determine the operation, maintenance, and planning of the pipeline over its service
life and also identifies its associated environmental impacts at various life cycle phases. More specifically, this
paper conducted the LCCA of using an 8” and 24” PVC pipe versus the Ductile Iron (DI) pipe for water distribution
and identified that overall, DI pipes turned out to be more cost-effective in the long run and comparatively
environmentally friendly.

LCCA has also been applied in fields related to commercial flooring, building integrated photovoltaics, and
optimum wall insulation thickness, among others. The sustainable building technical manual shows that the initial
procurement cost of commercial buildings accounts for just 10-20% of the total cost, whereas the remaining 80%
is due to the O&M and financing (Osso and Gottfried, 1996). D. Kumar et al., 2020 utilized the LCCA approach
to determine the optimum thickness of insulation required for different construction materials. The research
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considered 4 insulation materials and 15 building construction materials to optimize the life-cycle cost that is
influenced by decision making variables like thickness and thermal conductivity of the insulation and wall. One
of their major outcomes was that materials with high thermal mass and conductivity, such as concrete, have higher
LCCA saving potential compared to lightweight wall materials. Hence, from the reviewed studies, it was important
to understand that conducting a detailed LCCA of multiple design and material alternatives provided robust
feedback on understanding the effect of material alternatives on the overall project from design up to end of service.
This understanding can be particularly valuable when examining LCCA’s specific applications in building systems
and sensor networks.

2.4 LCCA in Building Systems and Sensor Networks

In the domain of sensors and smart building, T. Kumar & Mani, 2017 utilized LCCA as a tool to study the use of
occupancy sensors installed in an office building for energy neutrality assessment. This study highlighted the
importance of comprehending the influence of any sensor on energy savings to be evaluated from the life-cycle
energy framework to understand the overall energy conservation. Using an existing LCCA simulation tool, the
study highlighted that occupancy sensors that help in the initial reduction of energy were an ineffective strategy
for net energy reduction. The detailed LCCA highlighted the fact that these sensors had high costs and higher
environmental impacts due to their packaging contents and the use of rare-earth metals for sensor manufacturing.
Moreover, the study also highlighted the fact that the lack of availability of data and standardization of
methodology in LCCA studies were some limitations that need to be addressed in this domain (Kumar and Mani,
2017) . Furthermore, (Fang et al., 2020) assessed the life cycle cost of the condition monitoring sensors of a smart
distribution room. The data was provided by the Guangzhou power supply bureau and included equipment
purchase, operation, failure, recycling, along other life cycle management data. Conducting such a detailed LCCA
analysis helped identify that operating cost accounted for 55 to 77% of the total cost, but most of that is accounted
towards manual detection is highly influenced by salary growth and inflation rate. This helped confirm that
optimizing the inspection process and inspection efficiency improvements can reduce the overall life cycle cost.
The analysis also identified methods to help optimize the maintenance costs and reduce the cost of sensor failure.

Table 1 provides an overview of the reviewed studies, highlighting the adopted LCCA approaches. This overview
highlights that LCCA has been significantly adopted in a wide range of applications over many years for
infrastructure and built environment applications. While some of these studies demonstrated the value of LCCA
in evaluating building systems and sensor networks independently, there remains a critical need to adopt this
approach in comparing different approaches to buildings’ indoor data collection, particularly between fixed sensor
networks and emerging robot-based solutions.

Table 1: Overview of Adopted LCCA Approaches and Framework in Different Studies.

Reference Characteristics/ Limitations

Chan et al. (2008) Present value analysis for transportation infrastructure evaluation with emphasis on long-term economic
Dandy et al. (2007) Economic optimization framework incorporating both capital and operational costs for infrastructure
Thomas et al. (2016) Comprehensive life-cycle framework considering initial investment, operational costs, and environmental
Kumar et al. (2020) Multi-parameter LCCA optimization framework incorporating material properties and performance

T. Kumar & Mani (2017) Integration of energy performance metrics into LCCA framework for building automation systems

Fang et al. (2020) Holistic LCCA approach incorporating procurement, operation, maintenance, and end-of-life costs for

2.5 Need for Probabilistic LCCA and Decision-Friendly Visualization in Building
Systems

Most deterministic Life Cycle Cost Analysis (LCCA) approaches typically evaluate the economic feasibility of
building projects using static input data, such as net present values, without adequately accounting for uncertainties
(Giuseppe, Massi and D’Orazio, 2017). Such uncertainties arise from external factors, including financial risks,
market fluctuations, timing of investments, and broader socio-economic considerations. Hence, integrating
probabilistic methodologies into the LCCA framework can significantly enhance the robustness of cost
assessments (Fregonara, Ferrando and Pattono, 2018). Several recent studies in the domain of building
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technologies have underscored the importance of addressing these uncertainties. For instance, a study by Fregonara
et al. focused on supporting initial design decisions highlighted that deterministic models often neglect variations
and risks inherent in building lifecycle management, particularly in early stages of design and technology selection
(Fregonara, Ferrando and Pattono, 2018). This work utilized a stochastic approach, employing probabilistic risk
analysis and simulation methods to capture the range of possible economic outcomes associated with different
design and technology options. The primary goal was to equip investors and decision-makers with clearer insights
into cost risks and uncertainties, thus providing greater flexibility and decision-making support. Specifically, this
study presented a stochastic LCCA applied to a multifunctional building with a glass facade project located in
northern Italy and demonstrated how probabilistic methods revealed significant variabilities in cost outcomes due
to flexible input parameters, variations in component service life, and economic and environmental barriers.
Importantly, this probabilistic approach provided outcomes that could substantially diverge from deterministic
estimates, illustrating that ignoring uncertainties could lead to suboptimal or misinformed investment decisions.
Consequently, the authors strongly recommended complementing deterministic analyses with probabilistic
methods to improve the accuracy and reliability of life cycle cost evaluations, thereby enhancing decision-makers’
confidence and flexibility.

The findings of such studies clearly justify the necessity of moving beyond traditional deterministic LCCA
approaches and incorporating probabilistic modeling to better support informed and strategic decision-making in
building systems and technology investments. Further emphasizing the significance of addressing uncertainty
within LCCA frameworks, another study highlighted that ISO 15686-5:2008 standard ("Buildings and Constructed
Assets - Service-Life Planning - Life-Cycle Costing"), explicitly recommends conducting lifecycle cost analyses
under conditions of uncertainty or risk (ISO, 2017). According to this standard, statistical methodologies, such as
Monte Carlo analysis, should be utilized, explicitly evaluating probabilities at levels of 10%, 50%, and 90%.
Recognizing this critical recommendation, Plebankiewicz et al. developed a comprehensive model for estimating
the whole-life costs of buildings, explicitly incorporating additional cost factors related to risk and uncertainty,
thus enabling investors to compare investment options across multiple economic criteria (Plebankiewicz et al.,
2019). The developed model was initially grounded in a fuzzy logic approach, and subsequent stages of model
refinement were extensively documented in various related publications. A key objective of their research was to
validate the model’s structural assumptions by comparing outcomes from the original fuzzy logic-based approach
against those obtained from probabilistic analysis methods. In particular, the authors explored the complementary
role of probabilistic modeling implemented using Oracle Crystal Ball software, a well-established application for
predictive modeling, forecasting, simulation, and optimization in enhancing and validating fuzzy logic
assumptions. Their findings clearly demonstrated the significant advantages of probabilistic approaches in
explicitly quantifying risks and uncertainties, reinforcing the necessity of integrating these methodologies into
LCCA frameworks, as advocated by internationally recognized ISO standards.

Another important aspect, beyond incorporating probabilistic analysis into lifecycle cost assessment, is ensuring
that the developed tools are user-friendly and accessible to decision-makers, thereby maximizing their practical
utility in real-world case studies. In this context, (Baldoni et al., 2021) developed a specialized software tool for
stochastic lifecycle assessment (LCA) and lifecycle costing (LCC) of building energy-efficiency measures. Their
study introduced a comprehensive decision-support tool explicitly designed to assist stakeholders during the early
design phases of building retrofit interventions. The central objective was to enable users to evaluate the long-term
trade-offs between the economic and environmental performance of energy-efficiency projects, while explicitly
accounting for uncertainties within input parameters and economic scenarios. Specifically, the authors
implemented lifecycle assessment using Monte Carlo methods and modeled lifecycle costing via probabilistic
interdependencies among key macroeconomic variables. The major novelty highlighted in their work was the
software’s intuitive functionality, allowing stakeholders to define uncertainties explicitly, perform robust
sensitivity analyses, and explore multidimensional trade-offs systematically. This user-centric approach effectively
bridges the gap between complex probabilistic modeling and practical decision-making, enhancing the
framework’s applicability for both new constructions and retrofitting projects.

Further supporting the importance of intuitive visualization methods, a survey conducted among LCA practitioners
found that approximately 70% prefer heatmap-based representations for interpreting and presenting analytical
results to broader audiences (Konnovitch and Guglielmi, 2024). Heatmaps intuitively differentiate favorable and
unfavorable scenarios through simple color coding, significantly easing stakeholders’ interpretation of complex
analytical outputs. Such visualization enables decision-makers to quickly grasp how varying input assumptions or
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alternative design decisions can impact lifecycle costs at a glance, thereby facilitating informed, confident
decision-making. Collectively, these studies reinforce the critical need not only for probabilistic approaches such
as Monte Carlo simulations to address uncertainties inherent in lifecycle cost analyses but also for intuitive,
decision-maker—friendly visualization tools. While these prior studies individually emphasize the value of
probabilistic analysis and intuitive visualization, none integrate both aspects comprehensively. In this light, the
methodology developed in our research integrates Monte Carlo-based probabilistic modeling, sensitivity analysis,
and heatmap visualizations, offering a transparent, robust, and accessible decision-support framework. This
integrated approach, aligning closely with practical requirements and real-world decision contexts, is
comprehensively detailed in the following section.

3. METHODOLOGY

The objective of the present study was to conduct a comprehensive LCCA to compare the financial feasibility of
FWSN and MSR for indoor environmental data collection. The methodology consisted of presenting and
discussing the different stages of the developed framework. Following, a detailed elaboration of each stage of the
framework was thoroughly explained, which included identifying building characteristics and assumptions,
discussing different cost components of the two data collection methods, as well as discussing the LCCA analysis
methods, i.e., deterministic and probabilistic measures of NPV. Moreover, the methodology of the sensitivity
analysis and heatmap visualization, conducted to investigate the influence of different parameters on the LCCA,
was discussed.

Figure 1 shows a business process modelling notation (BPMN) flowchart that summarizes the developed LCCA -
based framework. The framework outlines a high-level process for identifying the most cost-effective data
collection and monitoring method for an existing building. This process begins by assessing whether the building
has any service requirements, such as renovation, building certification, performance monitoring, or maintenance.
Once a need is identified, the next step involves determining the specific data requirements and their
characteristics. For example, to evaluate the structural performance or energy efficiency of a building, a facility
manager may require data on vibration levels, energy consumption patterns, air pressure, airflow rates, and
equipment operational status (Burak Gunay, Shen and Newsham, 2019). Following, the LCCA is conducted for
the two data collection and monitoring methods and the most economic option is selected. The flowchart provides
a framework for systematically defining data needs and evaluating options, laying the foundation for the detailed
LCCA comparison between the two methods.

Service

Required?

Identify Existing
Building

Yes Conduct LCCA

Identify Most
Economic Option

Compare Two
Methods

Figure 1: Developed LCCA-based Framework for Building Service Request and Evaluating Financial Viability of
Indoor Data Collection Methods.

Figure 2 shows another BPMN flowchart that illustrates the different steps within the LCCA sub-process in the
general framework. This flowchart outlines a structured methodology for conducting an LCCA to compare two
methods for data collection and monitoring in buildings. While this methodology is applied in this paper
specifically to evaluate FWSN versus MSR, it is versatile and can be adapted to compare any two approaches or
technologies in similar contexts. The process begins by defining building characteristics and assumptions,
followed by identifying all necessary cost components for both data collection approaches. Using these inputs,
NPV calculations are performed for both solutions through a deterministic approach, followed by probabilistic
Monte Carlo simulations to evaluate cost variations under different scenarios. An iterative mechanism is
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incorporated to enable repeated comparisons, if adjustments to input parameters or configurations are necessary.
The results are then evaluated and validated by conducting sensitivity analysis and heatmap visualizations, which
highlight the cost-effectiveness of the solutions across different configurations. By thoroughly analyzing data
characteristics, such as collection frequency, quality, and location-specific sensitivity, this methodology ensures a
comprehensive comparison.

Building Cost Components
Characteristics and NPV
and Assumptions Computations

Monte Carlo
Simulation

Sensitivity Analysis
and Heatmap
Visualization

Figure 2: Flowchart of Stages Involved in the LCCA Sub-process.

4. BUILDING CHARACTERISTICS AND ASSUMPTIONS

The first step in the developed LCCA methodology involved defining the key building parameters and assumptions
that influence cost and performance evaluation. These parameters are critical for accurately estimating the total
costs and ensuring the reliability of data collection models. For instance, building floor space serves as a
fundamental metric, as it directly impacts the cost estimation, particularly in systems where expenses are often
expressed on a per-square-foot basis (Fuller and Petersen, 1995; Fissore et al., 2024). Data quality and reliability
are governed by sensor density and the temporal intervals of data collection. For example, denser sensor placement
and more frequent sampling, both improve detection of spatial variation and dynamic changes in common metrics
such as CO2, temperature, and humidity (Saini, Dutta and Marques, 2020; Corona et al., 2024; Fissore et al., 2024).
Hence, sensor distribution and data collection intervals were prioritized in this methodology, reflecting norms
outlined in contemporary sensor deployment studies. The discount rate, meanwhile, remains a foundational aspect
of financial evaluation, as validated by seminal and current LCCA literature (Fuller and Petersen, 1995; Kneifel
and Webb, 2022). Therefore, these parameters, namely indoor floor space, sensor density, data collection intervals,
and discount rate, were selected as critical for constructing a robust, reliable framework to compare life cycle costs
and performance across distinct data collection models.

5. COST COMPONENTS AND NPV COMPUTATIONS

To accurately conduct an LCCA of a facility, it is necessary to identify different cost components namely, initial,

O&M, replacement, and disposal costs consistent with the definition provided by the National Institute of
Standards and Technology (NIST) Handbook 135 (2022), which describes Life Cycle Cost (LCC) as “the total
discounted dollar cost of owning, operating, maintaining, and disposing of a building or a building system” over
a designated period of time (Kneifel and Webb, 2022). This approach allows for a thorough comparison of the
financial implications of different data collection and monitoring methods, ultimately guiding decision-makers in
selecting the most economical and efficient solution. The detailed cost components for each data collection and
monitoring method, i.e., FWSN and MSR, are discussed in the subsequent subsections. After obtaining the
different cost components of both methods, the NPV was computed, which involved a detailed examination of all
costs incurred throughout the facility’s life cycle. The deterministic computation of NPV for each cost component
was carried out as follows, with the help of Eq. (1) and Eq. (2) shown below, consistent with the life cycle costing
practices (Fuller and Petersen, 1995; Sieglinde Fuller, 2010).

a-(TH))

NPV = PAx(d+ f) = @=n ()
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Where PA represents annually recurring costs estimated at the base year, d is the discount rate, f'is the inflation
rate, n is the study period, PF is the future cash amounts occurring at the end-of-life stage valued at the base year,
M is the lifespan in months, and £ is an integer denoting the frequency of cost occurrences. The importance of
calculating the NPV lies in evaluating the costs at a similar scale, i.e., at the base year. This approach ensured that
all costs are brought to a comparable baseline, allowing for accurate and fair comparison between the FWSN and
MSR data collection and monitoring approaches. Once the NPV of all cost components is computed, the total cost
of each data collection method can be computed as shown in Eq. (3) below.

LCCA = NPVIC + NPVO&M + NPVRC + NPVDC (3)

Where IC is the initial costs, while NPVogu, NPVrc, and NPVpc are the NPVs of O&M, replacement, and disposal
costs, respectively. It should be noted that for initial costs, the NPV was equivalent to the actual costs, as these
costs are already incurred in the base year. Also, disposal costs represented the only positive cashflow in the LCCA
computation.

5.1 FWSN

FWSNs consist of sensors strategically installed at various locations within a building to collect critical
information for building automation systems. These sensors are centrally controlled through a server, enabling
efficient data acquisition and management to support automation processes. The LCCA of FWSN involves
evaluating its different cost components, summarized in Table 2, incurred throughout its lifespan. The initial costs
of FWSNs encompass several key elements, primary among these are sensor procurement and installation costs
(including tools and equipment necessary for setup), as well as labor charges (Fuller, 2005). The total sensor cost,
as expressed in Eq. (4), is usually determined during the installation stage by estimating the number of sensors
required. This was calculated by dividing the total floor area (in square feet) by the coverage density of each sensor
(sqft/sensor). Once the sensor quantity was determined, the total procurement cost was computed accordingly. It
should be noted that initial costs also include infrastructure components such as gateway devices and network
setup. However, these costs were excluded as they were considered constant factors necessary for both FWSN and
MSR systems, which do not affect the relative LCCA comparison. Moreover, labor costs for installation were
calculated using Eq. (5), which considered the proportional relationship between total floor area and installation
duration. The calculation applies a standard industry “all-in” daily labor rate widely used in construction cost
estimation tools that includes both direct wages and indirect costs such as payroll taxes, insurance, equipment
usage, and safety compliance (Melkonyan & Muradyan, 2025). The authors considered daily rates more
appropriate than hourly rates in this context, as the modeled installation tasks are assumed to span full working
days and would typically be executed by third-party contractors under lump-sum or daily agreements. For
simplicity, the number of installation days was assumed to scale with floor area, with the labor quantity remaining
constant. However, industry standards also recognize that in larger or more complex projects, additional installers
are often deployed in parallel rather than extending a single team’s duration (NenPower, 2024). While this study
does not explicitly model installation complexity, the assumption is informed by industry guidance, which
indicates that factors such as sensor location (e.g., ground level versus high-rise), limited access, and safety
requirements typically increase labor duration and associated costs (NenPower, 2024). These aspects are noted as
limitations of the present model and are identified as areas for future refinement.

Sensors cost = (Cost of each sensor) * ((Floor Space)/(Space Range Density)) @)
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Labor cost = daily labor wages * total days * no.of labor

Furthermore, operational costs for FWSN were primarily driven by the battery-powered energy consumption of
the sensors. According to Zachary Denning (2016), typical building monitoring systems allocate 60%-70% of their
O&M expenses to energy usage, while the remaining 30%-40% is attributed to maintenance activities. Given that
the total number of sensors in the building remained constant over time, the O&M costs were identical for both
deterministic and probabilistic computations in the LCCA methodology. On the other hand, replacement costs
included expenses for purchasing new sensors and reinstallation when needed. The replacement cycle is primarily
driven by sensor battery life and technology obsolescence rather than mechanical failure. Finally, disposal costs
for FWSN systems were excluded from the analysis, as these sensors generally lack salvage value at the end of
their life cycle, are small in size, and currently fall outside the scope of any specific e-waste disposal regulations
set by the Government of India (A R, 2019; BV Recyclers, 2016).

Table 2: Cost Components of FWSN for Data Collection and Monitoring.

Cost Component NPV Computation Contributing Parameters

. Sensors’ procurement and installation
Initial Cost -
. Labour charges

. Power consumption charges

O&M Costs Eq. (1)
. Periodic repair and service charges
e Re-procurement of sensors
Replacement Cost Eq. (2)
. Re-installation charges
5.2 MSR

A mobile robotic platform for sensor networks comprises a robot equipped with on-board components such as a
Netbook, iCreate Base, RGB camera, and sensors, which navigate the floor space using stationary markers installed
at strategic locations. These robots traverse the entire floor area, collecting data at designated sites through a built-
in navigation framework (Mantha et al., 2020). The initial costs included the main cost-incurring parameters in an
MSR-based data collection system, namely procurement of robots and their on-board sensors, as well as additional
equipment costs encompassing the Netbook, iCreate Base, and RGB camera. These components enable efficient
data collection and storage during operation.

To estimate the number of robots required for a given floor space, the approach proposed by Mantha et al. (2020)
was adopted in the present study (Mantha et al., 2020). Their study highlighted that a typical floor plan of 3000
sqft necessitated three robots and three depots to complete ambient data collection tasks. Each depot served as a
base location for the robots, functioning as a start/end point or a charging station. The time taken by each robot to
complete a tour and return to its respective depot, termed “tour time,” was determined by the distance traversed
and the robot’s velocity. Table 3 provides the adopted tour lengths and times for each robot starting from its
designated depot at a velocity of 0.22 m/s. If the required data collection period is denoted as 7, the number of
robots required at each depot i can be calculated as ¢/7, where ¢; represents the tour time for the robot. This approach
ensures efficient deployment of robots based on the specific requirements of the floor plan. The method described
by Mantha et al. (2020) offered a practical framework for determining the optimal number of robots needed for
effective data collection in an MSR network. It enables scalable deployment and efficient resource utilization,
tailored to varying floor plans and operational needs.

Table 3: Base Case Values for Each MSR Tour Length and Time (adopted from Mantha et al. (2020)).

Depot #1. Depot #2 Depot #3
Length of tour = 4m Length of tour = 3.4m Length of tour = 76.1m
Tour time (t;) = 4/0.22 = 0.3min Tour time (t,) = 3.4/0.22 = 0.26min Tour time (t;) = 76.1/0.22 = 5.76min
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Moreover, the estimation of the total number of robots required for deployment in an indoor environment is based
on the principle of proportionality. Given that area (A) is proportional to the square of length, the distance (do)
covered by a robot for a specific area can be proportionally scaled. For area A, the relationship to the distance do
traversed by a robot over a reference area of 3000 sqft is represented by Eq. (6). At a constant robot speed, distance
and time are directly proportional. This relationship is expressed in Eq. (7), where N; is the number of robots
required at the i depot, ¢ is the tour time for a robot at that depot, and T is the total time period allocated for data
collection.

To maintain continuity in data collection throughout the indoor building, the deployment strategy must account
for the time robots spend charging. As a result, the total number of robots required was effectively doubled to
ensure uninterrupted operation. The final estimate of the total number of robots to be deployed was calculated
using Eq. (8). This approach ensured adequate robot availability to achieve seamless data collection while
accommodating operational constraints such as charging cycles.

[Distance covered = d] _0V((Area(sqft))/3000 sqft) ©)
N_i=[t_i/T *V(A/3000) ] (M
Total Robots = 2 X ¥3_1 N; ®)

In addition to initial costs, operational costs for an MSR platform were primarily driven by power consumption
charges for both the robots and their onboard sensors. Additionally, maintenance costs included service and
handling charges associated with the robotic system. This study assumed that a single employee is sufficient to
oversee the operation and maintenance of the robots and sensors, simplifying the management requirements.
Replacement costs, which occur at the end of the operational lifespan of the robots and on-board sensors, include
expenses for re-purchasing and re-installation of new equipment upon obsolescence of previously employed robots
and/or their on-board sensors. Moreover, disposal costs for the MSR-based system represented the resale value of
robots, which were estimated based on market trends and conditions, providing a comprehensive evaluation of
end-of-life expenses associated with the platform. This integrated approach ensured an accurate and practical
analysis of the operational and replacement costs within the LCCA framework. Table 4 summarizes the different
cost components of MSR for data collection and monitoring.

Table 4: Cost Components of MSR for Data Collection and Monitoring.

Cost Component NPV Computation Contributing Parameters

. Procurement of robots and on-board sensors
Initial Cost -
. Procurement of additional equipment

. Power consumption charges

O&M Costs Eq. (1)

. Service and handling charges

. Re-procurement of robots and on-board sensors
Replacement Cost Eq. (2)

. Re-installation charges
Disposal Cost Eq. (2) . Re-sale value of robots

6. MONTE CARLO SIMULATIONS

In addition to the deterministic approach for estimating the NPVs of FWSN and MSR, a probabilistic method was
integrated into the LCCA framework to account for uncertainties in the input data, enhancing its alignment with
real-world applications. This approach incorporates stochastic variations, such as deviations in the lifespan of
sensors and robots, which are often observed in practice. For example, while a batch of 100 sensors might have a
nominal lifespan of 10 years, individual sensors could vary, lasting between 9 and 11 years. To model this
uncertainty effectively, Monte Carlo simulation was employed, which is a well-established technique for
generating robust probabilistic outcomes across various disciplines.
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Monte Carlo methods simulate random events within a computational model, iterating thousands of times to
produce a distribution of possible outcomes rather than a single fixed value (Kroese et al., 2014). When applied in
LCCA, the NPV is no longer a constant but a distribution, reflecting the variability and uncertainty inherent in the
inputs. This probabilistic approach introduced a reliability metric to validate the results of the deterministic model.
In the present analysis, a reliability percentage exceeding 90% was adopted as the decision criterion, following
standard LCCA practices that use confidence or reliability thresholds between 85-9(Moran-Zabala & Cogollo-
Florez, 2024)n-Zabala & Cogollo-Florez, 2024). Moreover, the simulations utilized an assumed triangular
distribution for the input variables, as illustrated in Figure 3, to generate possible values for each scenario which
is widely used in project risk and cost simulations (Barreras, 2011; Sihombing and Saputra, 2025). The £10%
variability range was selected in line with precedent from cost uncertainty modeling in infrastructure studies and
government guidance (Environmental Management Consolidated Business Center (EMCBC) Office of Cost
Estimating (OCE), 2023). For each iteration, a corresponding NPV was calculated, and the process was repeated
10,000 times to ensure statistically significant results a number determined through convergence testing and
consistent with prior probabilistic cost modeling studies (Heijungs, 2020). This comprehensive approach enabled
informed decision-making by incorporating both deterministic and probabilistic evaluations.

Triangular Distribution Random Number

Lower Range = Mode-Minimum

Higher Range = Maximum-Mode

Total Range = Maximum-Minimum

Cumulative Probability = Rand()

If CumulativeProbability < (LowerRange/TotalRange) then

RandomTriangular = Minimum-+sqrt(CumulativeProbability*LowerRange*TotalRange)

Else

RandomTriangular = Maximum-sqrt((1-CumulativeProbability) *HigherRange*TotalRange)

Figure 3: Monte Carlo Simulation's Triangular Distribution for Input Variables.

In the case of calculating the NPV for replacement costs, i.e., NPVrc; these costs are directly related to the lifespan
of sensors and/or robots in both FWSN and MSR approaches. To account for uncertainty in sensor life, the
probabilistic model was employed, assuming the lifespan follows a triangular distribution with a £10% variation
around the most probable value. In contrast, in the deterministic model, the most probable value was uniformly
adopted as the expected lifespan. Figures 4a and 4b illustrate the conducted Monte Carlo Simulation for LCCA of
FWSN and MSR data collection approaches, respectively.

7. SENSITIVITY ANALYSIS AND HEATMAP VISUALIZATION

In the present study, sensitivity analysis and heatmap visualization were employed to evaluate the conducted LCCA
of different sensor network configurations. Sensitivity analysis was utilized to examine the influence of key
parameters, namely floor space, discount rate, sensor density, and data collection intervals, on the NPV of data
collection systems (C. Lee & Lee, 2017; Marenjak & Krsti¢, 2010; Mobaraki et al., 2021).This analysis enabled
the identification of parameter dependencies and thresholds, highlighting critical breakeven points that aid in
economic feasibility assessments. By systematically varying these parameters, the sensitivity analysis provided a
deterministic understanding of how each factor affects cost outcomes, offering valuable insights into the
interdependence among variables.

Moreover, to enhance the robustness of the evaluation, heatmap visualization was incorporated as a complementary
probabilistic approach. The limitation of performing sensitivity analysis independently lies in its deterministic
framework, which fails to account for variability and uncertainty in outcomes across different parameter
modifications (Razavi et al., 2021). However, heatmaps can account for uncertainties and variability in parameter
values, enabling the simultaneous evaluation of multiple variables and their impact on the LCCA (Zhao, Seppanen
and Peltokorpi, 2020). Heatmaps presented a matrix-based representation of data, illustrating the probability that
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one sensor network configuration would be more economical than another under varying conditions (Key, 2012).
This probabilistic framework provided a clearer understanding of trends, transitions, and patterns, thereby offering
practical insights into optimal sensor network strategies for specific scenarios. The combination of sensitivity
analysis and heatmap visualization formed a comprehensive framework for LCCA evaluation in this study. While
sensitivity analysis provided foundational insights into parameter impacts, heatmaps addressed the stochastic
nature of real-world conditions, enhancing the reliability and applicability of the findings. This combined approach
ensured a detailed and nuanced assessment, supporting informed decision-making for facility planning and

management.
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Figure 4: Monte Carlo Simulation Framework for the LCCA of a) FWSN and b) MSR Data Collection Approaches.

8. RESULTS AND DISCUSSION: CASE STUDY

The main objective of the present study was to develop an LCCA framework to evaluate and compare the financial
feasibility of FWSN and MSR systems for indoor environmental data collection. A case study was conducted in
the present paper to validate the developed methodology, where three distinct scenarios were analyzed, i.e., small,
medium, and large commercial complexes, to demonstrate the application of the methodology across varying
building sizes. The results discussed included analyzing the LCCA of each system for the three established
scenarios. The LCCA was analyzed using both deterministic NPV calculations and Monte Carlo simulations to
assess the reliability of the findings under varying conditions. Following, results of the conducted sensitivity
analysis and generated heatmap visualizations for each scenario were discussed.

In the selected case study, a building lifespan of 50 years was adopted, consistent with standard lifecycle
assessment practices such as those recommended by the U.S. General Services Administration (GSA) and the
University of California LCCA guidelines (University of California, 2023; U.S. GSA, 2025), with the case study
location set in Mumbai, India. The total floor areas considered were 60,000 sqft, 125,000 sqft, and 250,000 sqft
for the small, medium, and large complexes, respectively. Although there isn’t a standard area based classification,
national building code (NBC)’s categorization of low, mid, and high rise buildings closely aligns with the small
medium and large buildings (L&T Realty, 2024; Ramamirtham, 2025). Moreover, recent commercial
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developments like the World Trade Center (WTC) Pune feature office towers with built-up areas of approximately
370,000 square feet (World Trade Center Pune, 2025). All present-value costs associated with the selected study
area are detailed in Table 5.

Table 5: Different Costs of FWSN and MSR Components in the Study Area.

No. Cost Component Value ) References

1 Cost of fixed sensor 6,150 (HOBO, 2024)

2 Cost of mobile-based indoor robots 41,175 (Robotis, 2024)

3 Cost of onboard sensors 8,911 (CO2Meter.com, 2015)

4 Annual charges for sensor maintenance 40% of O&M (Zachary Denning, 2016)
5 Monthly charges for robot maintenance 30,000 (Payscale, 2024)

6 Re-sale value of robots 10% of initial cost (Robots Done Right, 2024)
7 Cost of additional equipment on robot 100,000 (Lenovo India, 2024)

Moreover, Table 6 summarizes the different input parameters utilized for NPV computations, as well as the brands
of employed sensors and mobile-based indoor robots. The analysis incorporated a discount rate of 7.5% and an
inflation rate of 4.3%, based on values reported in the literature (Fang et al., 2020; O’Neill, 2024). Furthermore,
space range densities of different commercial sensors range significantly from as low as 100 sqft/sensor for small
areas up to more than a 1,000 sqft/sensor for more advanced sensors utilized in larger areas (VergeSense, 2022;
Lutron, 2014). In this study, a space range density of 200 sqft/sensor was assumed for the FWSN approach, a value
closer to commercial values of sensors utilized in indoor spaces with similar areas, and electricity costs were
calculated using a rate of Rs. 10/unit, reflecting commercial rates in Mumbai (Adani Electricity, 2024).
Additionally, labor charges for setting up the facility were based on the Government of India’s minimum daily
wage rate of Rs. 450/day (Chief Labour Commissioner, 2024).

Table 6: Input Variables Utilized in NPV Computations and Description of Employed Sensors and Mobile-based
Robots.

No. Description Input Data References

1 Discount rate 7.5% (Fang et al., 2020)

2 Space density of fixed sensors 200sqft/sensor (VergeSense, 2022; Lutron, 2014)
3 Inflation rate 4.3% (O’Neill, 2024)

4 Wall-mounted sensor HOBO Temperature Logger UX100-001 (HOBO, 2024)

5 Mobile-based indoor robot Turtlebot3 Burger (Robotis, 2024)

6 Robot’s on-board sensor CozIR-A 2000ppm CO2+ RH/T sensor (CO2Meter.com, 2015)

7 Time period of robotic data collection 30min/reading (Mantha et al., 2020)

8 Electricity charges per unit 10 Rs/unit (Adani Electricity, 2024)

9 Labour charges for facility set-up 450 Rs/day (Chief  Labour  Commissioner,

2024)

Operational costs were calculated using a 9V lithium battery for the fixed wireless sensors and electricity charges
for recharging robot batteries. The analysis assumed an employee salary growth rate equal to the inflation rate.
The expected lifespan values for sensors, robots, and on-board sensors were taken as 10, 7, and 15 years,
respectively, based on typical market data (CO2Meter.com, 2015; HOBO, 2024; Robotis, 2024). As a baseline, the
data collection interval was set to 30 minutes per reading, as suggested in previous studies (Mantha et al., 2020).
However, the developed methodology allows building managers to customize these inputs based on specific
requirements. The results of this case study aim to provide valuable insights into the comparative LCCA
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performance of FWSN and MSR systems under different building conditions, supporting informed decision-
making for building automation strategies.

8.1 LCCA Results

The NPV of both FWSN and MSR systems was computed using deterministic and probabilistic methods for small,
medium, and large complexes. Figures 5-7 show the cumulative annual NPVs and Monte Carlo simulations results
for each complex size. For the small complex with a floor space of 60,000 sqft, deterministic calculations indicated
that the FWSN was more cost-effective than MSR data collection, as determined by NPV analysis. The total NPV
after a 50-year operational lifespan was around 35 and 90 million INR for the FWSN and MSR systems,
respectively. Additionally, Monte Carlo simulations corroborated these results, yielding a 100% reliability index,
which confirmed that the deterministic conclusion holds true for the given input values. Similarly, for a medium-
sized floor space of 125,000 sqft, deterministic NPV calculations also showed that the FWSN system was more
feasible with a total NPV of around 70 million INR compared to about 100 million INR for the MSR system.
However, for this scenario, Monte Carlo simulations revealed a low reliability index of 45.3%, indicating
significant uncertainty in the results. This observation suggested that the chosen input values for this scenario were
close to the breakeven point, where slight variations in the parameters could reverse the conclusion. On the other
hand, in a large complex with a floor space of 250,000 sqft, deterministic calculations showed that MSR data
collection was more cost-effective than FWSN with total NPVs of around 90 and 140 million Rs, respectively.
This conclusion was further supported by Monte Carlo simulations, which provided a 100% reliability index. The
results from the three scenarios highlight the importance of conducting sensitivity analysis to better understand the
influence of major parameters on the LCCA outcomes.
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Figure 5: LCCA Results for the Small Commercial Complex Scenario: a) Cumulative Annual NPV and b) Monte
Carlo Simulations.
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Carlo Simulations.

(<o), ITeon Vol. 30 (2025), Mantha et al., pg. 1694



a) b)

—Fixed
Monte Carlo Simulation Robotic
35

" IR

25

Millions
8
Millions

20

Value in Rs (in terms of cost)
-
(=)

NPV in Rs.(in terms of cost)

0 5 10 15 20 25 30 35 40 45 50 10
e Fixed Sensors 0 2000 4000 6000 8000 10000

Time in years Robot sensors Iterations

Figure 7: LCCA Results for the Large Commercial Complex Scenario: a) Cumulative Annual NPV and b) Monte
Carlo Simulations.

8.2 Sensitivity Analysis

Following the evaluation of computed NPVs, sensitivity analysis was conducted to examine the influence of key
parameters on the NPV for both FWSN and MSR indoor data collection methods. As previously mentioned,
sensitivity analysis was conducted on the floor space, discount rate, space range density, and time period of data
collection, by evaluating and analyzing the impact of varying their values on the obtained NPV. Figures 8-11 show
the change in total NPV due to variations in each of the aforementioned parameters for both FWSN and MSR
systems for each complex size scenario. The results of sensitivity analysis on discount rate (Figure 8) showed that
the NPV exhibited a parabolic decrease as the discount rate increased from 1% to 10%. Additionally, the difference
between the NPVs of FWSN and MSR data collection systems diminished with an increasing discount rate,
highlighted by a larger gap at smaller discount rates between the NPV of FWSN and MSR compared to the gaps
at higher discount rates. However, in scenario 2, the initial gap was reduced between the two systems and the
curves intersected at a discount rate of 6%, indicating a breakeven point for the two alternatives. This suggests that
a higher discount rate reduced the economic viability of long-term investments for FWSNs.

The relationship between NPV and floor space (Figure 9) revealed that the FWSN was more feasible for smaller
areas, but its NPV increased exponentially as the area increased. In contrast, the NPV of MSR increased gradually,
resulting in a breakeven point with the FWSN system at a floor space area of around 125,000 sqft. Beyond this
threshold, the MSR system outperformed the fixed network, showing larger gaps between the NPV of both systems
at larger floor space areas. This observation aligns with the fact that the number of robots is proportional to the
square root of the area (Eq. 7), whereas the number of sensors is directly proportional to the area (Eq. 4). On the
other hand, the impact on NPV due to varying the time period of data collection (Figure 10) showed that the FWSN
remained constant in each scenario because wall-mounted sensors can typically adjust their sensing frequency
without incurring additional costs. However, for MSR-based data collection, the NPV decreased rapidly at first
and then declined more gradually. The initial steep decrease was attributed to a significant percentage reduction in
the number of robots required. For example, based on Egs. 6-8, the number of robots for a 1-minute reading interval
is 60, which drops to 30 for a 2-minute interval (a 50% reduction). As the time interval increases further, the
percentage change becomes smaller, leading to a less steep curve. A breakeven point was observed in scenario 2
at a time period for data collection of 20 minutes, while the breakeven point in scenario 3 was observed at 5
minutes.

Furthermore, for space range density (Figure 11), the MSR system showed a constant NPV because robots are
capable of traversing the entire floor plan regardless of sensor density. In contrast, the NPV for FWSN decreased
rapidly at first and then flattened out. This trend was driven by the percentage change in the number of sensors
required. For example, for densities of 50, 100, and 150 sqft/sensor, the number of sensors required is 1,200, 600,
and 400, respectively, resulting in percentage reductions of 50% and 33.33%. This led to an initially steep decline
in the NPV curve, which became more gradual at higher densities. However, the gaps between the NPVs of FWSN
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and MSR systems were increased as the complex size increased, due to the increased NPV of FWSN at lower
space range densities utilized in larger areas. Also, breakeven points were observed at values of 100, 200, and 400
sqft/sensor of space range density for scenario 1, 2, and 3, respectively. Overall, the conducted sensitivity analysis
results illustrated the impacts of altering different parameters on the appropriate selection of indoor data collection
methods from the financial perspective. However, in almost all instances, MSR-based data collection systems were
more feasible for larger complexes, which was aligned with the obtained LCCA results. These findings provide
critical guidance for selecting the most cost-effective data collection strategy based on the specific conditions and

parameters of a project.
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Figure 9: Impact of Floor Space on the NPV of FWSN and MSR Data Collection Systems: a) Small, b) Medium,

and c) Large Complex Scenario.
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8.3 Heatmap Visualization

In addition to the conducted sensitivity analysis, heatmap visualization was conducted to identify the most
economical data collection strategy across a range of input characteristics. Heatmaps were generated in this study
to visualize the influence of key parameters on the probability of MSR-based data collection system being more
cost-effective than FWSN-based data collection. This approach was adopted to facilitate a clearer understanding
of parameter interactions and simplify decision-making processes for facility managers. For the selected case
study, heatmaps were generated by varying floor space (sqft) and space range density (sqft/sensor) along the x and
y axes, respectively. The time period of data collection was systematically varied from 1 to 60 minutes, i.e., 1, 5,
10, 15, 20, 30, and 60 minute-intervals, based on practical considerations, while the discount rate was fixed at
7.5%. Other input values were not changed and remained constant, and each heat map was developed using 10,000
iterations to ensure statistical reliability. Figure 12 shows the heatmaps generated for each time period of data
collection scenario.

Based on the generated heatmaps, some key findings were observed. For instance, the heatmaps demonstrated that,
for a given floor space and space range density, the probability of MSR data collection being more economical
increased as the time period of data collection extended. For example, for a floor space of 160 sqft and space range
density of 200 sqft/sensor, the probability of MSR data collection being more financially feasible was 0, 0, 64, and
100% for 1, 5, 10, and 15-60 minutes time periods, respectively. This trend highlighted the efficiency of robotic
systems in scenarios requiring less frequent data readings. Additionally, for smaller space range densities (up to
150 sqft/sensor) and lower floor spaces, an abrupt transition was observed in the probability of robotic data
collection being cheaper. This was attributed to the significant percentage change in the number of sensors
required, which directly impacted on the costs incurred. As the space range density increased, these abrupt
transitions diminished, resulting in smoother heat map gradients for higher values. Moreover, the heatmaps also
revealed regions where neither alternative had a clear economic advantage, with probabilities ranging from 25%
to 75%. These regions highlighted conditions under which further analysis or additional parameters may be needed
to make an informed decision.
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Figure 12: Generated Heatmaps for Different Time Periods of Data Collection Scenarios: a) 1 Minute, b) 5
Minutes, ¢) 10 Minutes, d) 15 Minutes, e) 20 Minutes, f) 30 Minutes, and g) 60 Minutes.

Furthermore, for a specific time period, the space range density corresponding to the breakeven point increased
with the floor space. This observation is consistent with the conducted sensitivity analysis earlier, which
highlighted that robotic systems become more favorable as floor space increased. These heatmaps provided
valuable insights that align with the results of the sensitivity analysis, while also offering a probabilistic perspective
that is closer to real-world scenarios. Facility managers can utilize these heatmaps to plan data collection strategies
effectively, tailoring their approach to specific project requirements. By identifying breakeven points and

e
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understanding the probability of cost-effectiveness, decision-makers can optimize their choice between FWSN and
MSR systems based on the unique characteristics of their building projects.

8.4 Limitations

While the developed LCCA framework provides a valuable decision-making tool for facility managers and
stakeholders to identify the most suitable data collection strategy aligned with their building automation system
(BAS) demands and operational goals it is not without limitations.

First, the framework is built on several simplifying assumptions to enable tractable comparisons. These include
uniform floor space distribution, fixed labor requirements, and consistent sensor coverage across all buildings. In
practice, building environments are rarely uniform, real-world structures often feature irregular layouts, multiple
levels, and varied environmental conditions that can significantly influence installation feasibility and system
performance. Moreover, price variability and operational differences represent an important limitation to the
generalizability of the findings, as costs can vary substantially with operational complexity, payload, application
type, and navigation requirements. However, the framework is designed to allow further sensitivity analysis or
recalibration of parameters if applied to more complex or larger-scale case studies, enabling adaptable evaluation
under varied operational contexts.

Second, although mobile sensor robots (MSRs) offer operational flexibility in dynamic environments, the study
does not model the complexities associated with their real-world implementation. Challenges such as obstacle
avoidance, dynamic path planning, and variable tour times caused by furniture layouts or partitions were not
accounted for. Additionally, infrastructure requirements related to robot recharging cycles were simplified, and the
need for real-time routing updates was not explored.

Third, the case study was conducted in the context of a developing country, specifically India where labor costs,
electricity tariffs, and equipment procurement rates are generally lower, and environmental regulations such as e-
waste disposal tend to be less stringent or inconsistently enforced. These economic and regulatory conditions are
reflective of many Global South regions or developing economies that share similar cost structures and governance
characteristics. For example, countries in the Middle East (e.g., UAE) often rely on a low-cost, predominantly
South Asian migrant labor force; similarly, parts of Southeast Asia, Africa, and Latin America exhibit comparable
infrastructure dynamics, regulatory flexibility, and pricing trends. In such settings, the relative cost-effectiveness
of mobile sensing systems versus fixed networks is likely to remain consistent with our findings, making this
framework transferable to a broader subset of developing or transition economies without substantial changes to
key input parameters. However, the assumptions and results may not hold for high-income or highly regulated
environments where compliance with stricter labor laws, privacy mandates, e-waste handling, and safety
certifications can significantly alter operational costs and decision-making pathways. Thus, while the study offers
broad insights for emerging economies, its application in developed regions should be preceded by localized
contextual adaptation and sensitivity adjustment to align with local market conditions.

Finally, the study assumes a constant operational profile for buildings over a 50-year life span, consistent with
standard lifecycle assessment practices. However, buildings often undergo functional and technological changes
over time, including repurposing, renovation, or integration of newer sensing and automation systems. These
changes may influence the relevance and performance of the initially selected data collection strategy. By
recognizing these limitations, future research can work toward refining the framework and expanding its
applicability to a broader range of building types and operational environments.

9. CONCLUSIONS AND FUTURE WORK

The study in this paper presented a comprehensive LCCA framework to compare two distinct data collection
methods for IEQ monitoring, namely FWSN and MSR systems. A novel LCCA-based methodology that combined
deterministic NPV calculations with probabilistic Monte Carlo simulations to address uncertainties in cost inputs
was developed. The methodology was further validated through a case study encompassing small, medium, and
large commercial buildings, which demonstrated the applicability and robustness of the methodology.
Furthermore, sensitivity analysis and heatmap visualization were employed to offer deeper insights into the
parameter dependencies and breakeven points between the two data collection systems.
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The methodology systematically evaluated key cost components, including initial, O&M, replacement, and
disposal costs, for both systems. Deterministic calculations identified conditions where each alternative was more
economical, while Monte Carlo simulations quantified the reliability of these findings. The NPV computations
demonstrated that for smaller buildings, FWSN systems were more economical due to their lower initial setup
costs. Conversely, for larger floor spaces, MSR systems outperformed FWSN, offering scalability and flexibility
that reduced per-unit costs as the monitored area increased. In particular, MSR systems were better suited for
scenarios requiring long data collection intervals, where the operational efficiency of robots became a key
advantage. These findings highlighted the importance of tailoring data collection strategies to the specific
characteristics and requirements of the building environment. The conducted sensitivity analysis revealed that
some key parameters such as the discount rate, floor space, sensor density, and time period of data collection,
significantly influenced the economic feasibility of the two systems. Moreover, heatmap visualization further
illustrated the impact of these variables and provided practical tools for decision-making.

While the proposed methodology proved effective in identifying the cost-effective alternative under different
scenarios, it also pointed to limitations that warrant further exploration. For instance, assumptions regarding
uniform floor space distribution, fixed labor requirements, and single-employee supervision may not be valid for
more complex or dynamic environments, such as industrial facilities or multi-building campuses. Future research
could extend the developed framework to account for these complexities, incorporating advanced modeling
techniques or adaptive algorithms that better reflect real-world conditions. Other future directions could include
integrating advanced machine learning algorithms for optimizing deployment strategies and refining scenario
modeling. With such integration, future studies could also expand the framework to perform detailed case studies
for developed countries, where higher labor costs, stricter regulatory environments, and diverse stakeholder needs
introduce a broader range of variables. This would necessitate more sophisticated probabilistic modeling to
accommodate the additional uncertainties and interdependencies inherent in such contexts. Additionally,
incorporating real-time operational data could dynamically refine cost estimates, while extending the analysis to
consider environmental and social sustainability metrics would further enhance the framework’s
comprehensiveness. Field validation of the LCCA framework in live operational environments would provide
critical feedback to enhance its practical applicability and reliability across diverse global contexts.

In conclusion, the proposed LCCA framework serves as a valuable tool for facility managers and decision-makers
to systematically evaluate and compare data collection strategies in indoor environments. By addressing economic
feasibility alongside technical capabilities, this study paves the way for more informed and strategic investments
in building automation and monitoring technologies. With further refinement and expansion, this LCCA-based
framework can be universally applied to evaluate the cost-effectiveness of any two competing solutions for
building data collection and monitoring needs.
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