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SUMMARY: The recent rise in the adoption of sensing technologies, such as laser scanners and drones for 

improving efficiency, safety, and productivity, has driven the need for a technically skilled workforce prepared to 

implement these technologies. Academia is also inclined to meet this need, but is often impaired by the high cost 

of sensing technologies and the need for hands-on experiences. Mixed Reality (MR) has been explored as an 

alternative learning environment to equip construction students with the needed technical skills due to its potential 

to provide experiential learning. However, to advance the adoption of MR as an alternative learning environment, 

concerns persist regarding the safety risks and potential distractions posed by reduced situational awareness (SA) 

during interactions. While studies have explored SA in various domains, its assessment within MR environments 

for construction education remains unexplored. This study addresses that gap by evaluating participants’ SA and 

cognitive load while interacting with sensing technologies in an MR learning environment. Nineteen 

undergraduate students participated in MR-based tasks. Their SA and cognitive load were assessed using the 

Situational Awareness Rating Technique (SART), NASA Task Load Index (NASA-TLX), and eye-tracking metrics. 

Results showed that participants generally had a strong awareness of their surroundings, reflected in high 

familiarity and the ability to process relevant information during MR tasks. The findings also indicate that 

participants with lower SA exhibited longer fixation durations, while those with higher SA showed shorter fixation 

durations. Additionally, individuals with lower SA experienced greater cognitive load and demonstrated more 

extensive visual scanning (e.g., higher fixation count). These findings not only align with cognitive load theory 

and prior eye-tracking research but also offer practical recommendations for MR instructional design. This study 

contributes to the development of virtual learning environments cognizant of users' SA, which often culminates in 

reduced cognitive overload, enhanced student learning, improved attention, and engagement. 
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tracking data. 
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1. INTRODUCTION 

Construction education has long been challenged by the barriers to exposing students to construction sites for 

hands-on experiences (Tomori & Ogunseiju, 2025d). These barriers often arise from the dynamic nature of 

construction sites, weather challenges on the selected day for site visits, safety concerns, and challenges from 

incompatible class and site visit schedules. To address this challenge, Mixed Reality (MR) has emerged as a 

transformative learning environment, offering construction students and professionals experiential learning 

opportunities  (Brunzini et al., 2022; Tomori et al., 2025b). MR’s potential to simulate real-world environments 

offers a unique opportunity for users to interact virtually and acquire knowledge and skills. For example, several 

studies have utilized MR for knowledge and skills acquisition in construction education. Studies by Wu et al. 

(2018) simulated a wood framing lab in MR for training undergraduate students. Sebastian et al. (2018) designed 

a building information modeling (BIM) in MR for easy as-built analysis for construction professionals. Similarly, 

Ogunseiju et al. (2023) implemented a Mixed Reality Learning Environment (MRLE) for learning sensing 

technologies in construction education. 

Despite its potential, MR environments can lead to cognitive overload due to high informational load (Brunzini et 

al., 2022; Wu et al., 2013) and potentially reduce situational awareness. This can result in heightened safety risks 

for students during learning. Situational awareness (SA) is a critical measure of how well individuals understand 

their environment, often used to evaluate the safety and effectiveness of systems that depend on human behavior 

(Bolton et al., 2021). Endsley and Garland (2000) defines SA as knowing what is happening around you while 

engaged in a task. Similarly, Taylor (skybrary) defines SA as the knowledge, cognition, and anticipation of events 

affecting the safe, expedient, and effective conduct of tasks (Taylor, 1995). While there is extensive research on 

SA in various domains such as aviation, power plants, medical, and advanced manufacturing systems (Endsley, 

2021; Endsley & Garland, 2000), its application in MR for construction education remains underexplored. Studies 

such as Aromaa et al. (2020) have revealed the risk of reduced SA in virtual environments, and emphasized the 

importance of considering attention, awareness, and cognitive load when using an MR System, as these factors 

impact safety. Cognitive load can be defined as the amount of mental effort required to process information in 

working memory during learning or task performance (IxDF, 2016). According to Cognitive Load Theory (CLT), 

human working memory has limited capacity, and when instructional materials or tasks exceed this capacity, 

learning can be impaired (De Jong, 2010; Sweller et al., 1998). Endsley and Garland (2000) identified two 

levels of SA, highlighting Level 2 SA as closely related to cognition. Endsley and Garland (2000) stated that 

awareness goes beyond mere perception (Level 1 SA), encompassing how individuals interpret, process, and focus 

on their surroundings (Endsley, 2015), which involves cognitive workload. Endsley and Garland (2000) further 

underscores that SA is essential for effective task performance, highlighting the need to assess the relationship 

between SA and cognitive load.  

Given the widespread use of MR for construction workforce development, it is crucial to evaluate user awareness 

of their surroundings to ensure a safe and effective learning environment free from distractions, especially because 

SA is a widely adopted cognitive construct in human factors and often associated as a causal factor for performance 

(Bakdash et al., 2022). This study aims to assess the relationship between SA and cognitive load in MR 

environments during interactions with sensing technologies on a virtual construction site. Furthermore, owing to 

the potential of eye tracking data for gauging attentional focus and cognitive load during immersive learning 

experiences (Dong et al., 2024; Huang et al., 2025; Jiang et al., 2024; Li et al., 2023). This study further leveraged 

eye-tracking metrics, such as fixations, to investigate cognition during learning interactions in the MR environment 

and identify patterns associated with higher or lower awareness levels of SA. The study recruited nineteen 

undergraduate students, who were engaged in hands-on learning activities with five sensing technologies in the 

MR environment. During the learning interactions, students' eye tracking data were procured, while their SA and 

cognitive load after the learning interactions, through the Situational Awareness Rating Technique (SART), the 

NASA Task Load Index (TLX) questionnaires. This study uniquely contributes to the field by integrating eye-

tracking into MR-based construction tasks to explore the relationship between cognitive load and situational 

awareness. The findings from this study provide foundational insights for designing adaptive MR systems that can 

facilitate timely interventions, ensuring that learners maintain optimal SA throughout the training process. For 

instance, eye-tracking could be integrated into MR platforms as a diagnostic tool to monitor learner attention and 

SA in real time. 
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2. BACKGROUND  

2.1 Situational Awareness (SA) in Virtual Learning Environments  

Situational awareness (SA), defined as an individual’s perception and understanding of their environment, is a 

critical factor in ensuring safety and supporting effective decision-making (Endsley, 1995). A comprehensive 

understanding of SA is pivotal for executing efficient and safe operations, particularly in high-risk environments 

like construction sites. Construction workers depend on SA to identify potential hazards, assess risks, and make 

timely decisions to prevent accidents (Gheisari et al., 2010). Theories surrounding SA, especially Endsley’s widely 

recognized model (Endsley, 1995; Endsley & Garland, 2000), provides a structured framework to analyze how 

individuals perceive, comprehend, and anticipate outcomes based on their situational context. This framework is 

especially vital for users of MR environments, where virtual elements are overlaid onto real-world settings during 

interaction. MR devices are increasingly utilized on construction sites; however, given the dynamic and hazard-

filled nature of these environments, it is essential for MR users to effectively perceive, comprehend, and project 

what is happening around them to maintain situational awareness and enhance safety. Research highlights the 

intricate relationship between SA and cognitive load, with some studies indicating that increased cognitive load 

can negatively impact situational awareness (Endsley et al., 2024; Hendy, 1995; Li et al., 2023). While numerous 

studies have examined situational awareness in virtual environments, the majority have concentrated on virtual 

reality and a few on augmented reality, such as Wallmyr et al. (2019). Despite these studies, there remains a gap 

in examining how cognitive load interacts to influence SA, particularly during hands-on interactions in 

construction education. 

2.2 Eye-Tracking Data for Understanding Situational Awareness   

Eye-tracking metrics, such as gaze fixation duration, fixation count, and scan path, allow researchers to capture 

real-time data regarding where a learner directs their visual focus, which can serve as an indicator of SA within 

virtual environments (Dong et al., 2024; Huang et al., 2025; Jiang et al., 2024; Li et al., 2023; Tomori & Ogunseiju, 

2025e). Studies indicate that gaze patterns can significantly correlate with SA levels, as the duration and frequency 

of gaze on specific elements often correlate with the emphasis placed on them in the decision-making process 

(Arias-Portela et al., 2024; Mahanama et al., 2022). For instance, Mahanama et al. (2022) observed that distracted 

drivers had higher fixation durations. Similarly, Arias-Portela et al. (2024) mentioned that prolonged gaze fixations 

are essential cues that can suggest the rate of comprehension and attention allocation. Other studies  (Kummetha 

et al., 2020; Wallmyr et al., 2019) have investigated how work zone complexity and different attention allocation 

strategies impact SA under varying mental workloads. These studies analyzed eye-tracking metrics such as fixation 

count and duration, pupil diameter and position, and gaze direction, and their findings revealed that higher work 

zone complexity increases mental workload while diminishing SA. Furthermore, attention diversion from critical 

elements may signal cognitive overload, compromising SA (Endsley, 1995; Endsley & Garland, 2000). Such 

insights become vital when designing MR learning environments aimed at enhancing educational efficacy and 

fostering deeper comprehension of complex construction scenarios. Despite these insights, limited research exists 

examining how eye-tracking metrics provide insights into SA, particularly in MR-based learning environments. 

This study seeks to address this gap by exploring the relationships between SA, cognitive load, and eye-tracking 

data, ultimately informing the design of MR systems that better support user perception, comprehension, and 

decision-making. 

2.3 Theoretical Framework  

This study is rooted in the Cognitive Load Theory (CLT), which emphasizes the importance of managing cognitive 

processing capabilities (Paas et al., 2016; Paas et al., 1994; Sweller et al., 1998). As Endsley and Garland 

(2000) notes, attention, memory, and workload significantly influence situational awareness (SA). Several 

researchers have adopted CLT to understand workload and design in virtual learning environments. Moreover, 

cognitive theories provide frameworks for assessing and addressing individual differences in learning, guiding the 

design of virtual learning experiences. Researchers (Kirschner, 2002) have adopted CLT to design learning 

environments where information is presented in a manner that stimulates learning and promotes intellectual 

performance (Oviatt, 2006). The theory posits that the working memory is limited while the long-term memory is 

unlimited. However, CLT further explains that the limitations of working memory can be mitigated by developing 

several elements of information as one element in cognitive schemata by automating rules and presenting 
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information with different modalities (Kirschner, 2002). In these environments, how attention is distributed affects 

SA, and design changes that alter attention distribution can impact SA (Endsley, 1995; Endsley & Garland, 2000). 

Memory also plays a crucial role in SA, as information about the environment is stored in both working and long-

term memory (Endsley, 1995; Endsley & Garland, 2000). Therefore, maintaining SA requires careful consideration 

of how learning environments are designed to manage attention and memory effectively. 

2.4 Research Gap 

Despite growing interest in the use of MR for construction education, limited research has explored how learners 

cognitively respond to complex task environments, such as those involving the implementation of sensing 

technologies. In particular, the interaction between situational awareness (SA) and cognitive load remains 

underexamined in MR contexts. While prior studies have examined SA and cognitive load independently, few have 

investigated their interdependent effects on learners’ mental processing in dynamic MR learning environments. 

Additionally, although eye-tracking technology offers a promising, objective method for assessing attention, visual 

behavior, and cognitive effort, there is a lack of empirical research connecting eye-tracking metrics to understand 

the levels of SA and perceived cognitive load. Most existing work focuses on eye-tracking as a standalone tool for 

SA or cognitive load. This gap is particularly significant in the context of construction education, where effective 

implementation of sensing technologies requires learners to navigate complex, simulated scenarios. By addressing 

the identified research gaps, the research aims to explore how SA impacts cognitive load, and how eye-tracking 

data can be used to distinguish between high- and low-SA learners, thereby advancing both theory and practice in 

MR-based construction education. This study seeks to provide answers to the following research questions:  

i. R1: How does situational awareness (SA) relate to cognitive load in a mixed reality learning environment 

for implementing sensing technologies? 

ii. R2: How do eye-tracking metrics and mental demand differ between learners with high and low 

situational awareness in a mixed reality learning environment? 

iii. R3: What is the relationship between situational awareness, cognitive load, and eye-tracking measures 

in a mixed reality learning environment? 

Based on the stated research questions, the following hypotheses are proposed: 

i. H1. Higher situational awareness is associated with lower mental demand of cognitive load. 

ii. H2. Learners with lower situational awareness in an MR learning environment will exhibit higher fixation 

counts and longer fixation durations. 

iii. H3. Cognitive load (mental demand) and eye-tracking measures (Fixation count, fixation duration) are 

negatively associated with situational awareness. 

3. RESEARCH METHODOLOGY 

3.1 Research Design 

This study evaluates situational awareness (SA) and cognitive load while interacting with the MR learning 

environment. Students completed a semester project using the MR environment, and their SA was assessed using 

two subjective measures (NASA TLX and SART questionnaire). The NASA TLX questionnaire gauged six 

cognitive load factors: physical demand, effort, frustration, mental demand, temporal demand, and performance. 

The data was tested for normality, which informed the use of non-parametric tests such as Spearman correlation 

and Wilcoxon signed-rank tests. Figure 1 shows the methodology overview. The study also procured students' eye-

tracking data for understanding its relationship to situational awareness. 

3.1.1 Participant Demographics  

Nineteen students from a Construction Technology course at Georgia Tech participated in the study. The 

demographic breakdown was 70% male, 25% female, and 5% transgender, with ages ranging from 18-24 years. 

The racial and ethnic composition included 70% non-Hispanic, 10% Hispanic, 20% preferred not to answer, 65% 

White, 20% Black/African American, and 5% Asian, revealing a diverse set of participants. Over half (58%) 

reported having prior experience in the construction industry, with most of that experience gained through 

internships (82%), while a smaller portion had hands-on trade experience (18%). Among those with construction 

experience, durations varied from less than a year to up to four years. Most interns had less than one year of 
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experience. A large majority of participants (89%) were familiar with immersive technologies such as Virtual 

Reality (VR), Augmented Reality (AR), or Mixed Reality (MR). Self-reported experience levels with these 

technologies varied: for AR, most rated themselves at moderate or low experience; for MR, nearly half reported 

low experience, and only one participant rated themselves highly. In contrast, participants had a broader range of 

experience with VR, including a small subset (16%) who rated their experience as very high. Table 1 highlighted 

the participants' demographics. 

 

Figure 1: Methodology Overview. 

Participants reported varying levels of knowledge across five key sensing technologies. For laser scanners, 42% 

reported moderate knowledge, while 47% indicated either a great deal (42%) or extensive (5%) knowledge. 

Regarding drones, 32% had moderate knowledge, and 68% reported a great deal (47%) or extensive (21%) 

knowledge. In contrast, RFID had lower familiarity, with 74% of participants indicating no (47%) or little (26%) 

knowledge. Similarly, IMU knowledge was limited, with 63% reporting no (37%) or little (26%) knowledge. In 

comparison, GPS was more familiar to participants, with 63% reporting a great deal (37%) or extensive (26%) 

knowledge. These findings suggest that students were generally more familiar with laser scanners, drones, and 

GPS, while RFID and IMU technologies were less well understood. 

 

Table 1: Participant Demographics (n = 19). 

Demographic Item Category/Response n % 

Experience in the construction industry Yes 11 58% 

No 8 42% 

Type of construction experience 

(Among those with experience, n = 11) 

Intern 9 82% 

Construction trade worker 2 18% 

Extent of construction experience 

(n = 2) 

3–4 years 1 50% 

Less than 1 year 1 50% 

Internship experience 

(n = 9) 

< 6 months 4 44% 

6 months – 1 year 3 33% 

1 – 2 years 2 22% 

Familiarity with VR/AR/MR Yes 17 89% 

No 2 11% 

Experience Level with AR 1 (Very Low) 2 11% 

2 (Low) 6 32% 

3 (Moderate) 7 37% 

4 (High) 2 11% 

5 (Very High) 2 11% 

Experience Level with MR 1 (Very Low) 3 16% 

2 (Low) 9 47% 

3 (Moderate) 6 32% 

4 (High) 1 5% 

5 (Very High) 0 0% 

Experience Level with VR 1 (Very Low) 2 11% 

2 (Low) 5 26% 

3 (Moderate) 5 26% 

4 (High) 4 21% 

5 (Very High) 3 16% 

Experiment Procedure:

• Consent Form

• Wear Hololens Head-Mounted 
Display

• MR Tasks

• Surveys

Data Collection:

• Surveys: NASA TLX & SART

• Demographics

• Eye-Tracking metrics: Fixation 
duration, Fixation counts, 

Data Analysis:

• Descriptive Statistics

• Normality Tests

• Spearman Correlation

• Wilcoxon Signed Ranks Test

• Regression
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3.1.2 Experimental Setup 

The Microsoft HoloLens 2, an MR Head-Mounted Display (HMD), was used to facilitate interaction with the MR 

learning environment, which was developed using Unity3D. This environment consisted of three scenes: Explore 

Jobsite, Sensor Tutorial, and Sensor Implementation scenes. 

 

Figure 2: MR environment for learning sensing technologies. 

3.1.3 Eye-tracking calibration 

Participants wore the HoloLens headset, which was equipped with integrated eye-gaze tracking sensors (Microsoft, 

2022). Prior to engaging in the main study tasks, each participant underwent an eye-gaze calibration procedure to 

enable precise tracking of their visual focus and cognitive engagement during the interaction. Eye-gaze calibration 

is the procedure by which the Hololens adjusts to the unique eye movements of each participant, allowing for 

precise tracking of where the participant is looking within the MRLE (Microsoft, 2022).  This calibration process 

involved participants focusing on a series of predefined visual targets that appeared on the screen within the 

HoloLens display (Microsoft, 2022). These targets were placed in different areas of the visual field, and the 

participant was asked to look at each point for a brief moment, allowing the HoloLens to capture the eye's position 

relative to the display (Microsoft, 2022). The HoloLens system used these targets to calibrate the eye-tracking 

sensors by detecting each participant’s gaze as they fixated on the points. The system automatically adjusted to the 

unique characteristics of each individual’s eyes, including gaze vectors and orientation (Microsoft, 2022), to 

optimize gaze detection accuracy as they accessed the simulated construction job site within the MRLE.  

This eye-gaze calibration is a critical part of the study, as it enables precise measurement of participants’ visual 

focus during their interactions with the MRLE. Accurate eye-gaze tracking provides valuable data on cognitive 

engagement and decision-making processes, allowing us to analyze how students engage with different 

construction-related tasks in the MRLE. By ensuring that the eye-tracking system is finely tuned to each 

participant, the study minimizes errors and maximizes the reliability of cognitive engagement data, which is 

essential for understanding the differences between professional and novice behaviors. During this task, the 

HoloLens’ built-in eye-tracking device continuously recorded data to capture where and how participants directed 

their gaze, providing insight into their interaction patterns, attentional focus, and cognitive processes.  

Microsoft provides official documentation that explains how to request eye-tracking permissions, invoke 

calibration routines programmatically, and integrate user prompts to ensure data reliability in Unity. They also 

provided a Unity sample script and example scenes that demonstrate extended eye tracking features for 

HoloLens 2, including calibration support. Here is the link to the script adapted in Unity: 

https://github.com/microsoft/MixedReality-EyeTracking-Sample; https://learn.microsoft.com/en-

us/windows/mixed-reality/develop/advanced-concepts/eye-tracking-calibration, https://learn.microsoft.com/en-

https://github.com/microsoft/MixedReality-EyeTracking-Sample
https://learn.microsoft.com/en-us/windows/mixed-reality/develop/advanced-concepts/eye-tracking-calibration
https://learn.microsoft.com/en-us/windows/mixed-reality/develop/advanced-concepts/eye-tracking-calibration
https://learn.microsoft.com/en-us/windows/mixed-reality/develop/unity/extended-eye-tracking-unity
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us/windows/mixed-reality/develop/unity/extended-eye-tracking-unity.  This was directly utilized and edited 

during our Unity game development.  

3.2 Data Collection  

3.2.1 Questionnaires   

The participants completed the SART and NASA TLX questionnaires immediately after interaction with the MR 

environment. The 3-D version of SART was used, and it contained ten basic dimensions of situation awareness. 

The main advantage of SART is that it is easy to use and has been administered in a wide range of task types 

(Bolton et al., 2021; Endsley et al., 1998), does not require customization for different domains, and can be used 

in real-world tasks as well as simulations (Endsley et al., 1998).  The SART questionnaire assessed user awareness 

of the surrounding situation during the MR experiment. The SART questionnaire is scaled from 1 (very low) to 10 

(very high) across three dimensions: understanding, attentional supply, and attentional demand. These dimensions 

encompass other awareness factors such as familiarity, information quality, attention, alertness, and variability of 

the surrounding environment. These scales are then combined to provide an overall SART score for a given system. 

The study analyzed the SART dimensions and calculated an overall situational awareness score. The SART score 

is calculated by SA = (Understanding – (Supply-Demand)) (Mazur et al., 2020). The NASA TLX Questionnaire 

was employed for procuring data on the cognitive load of the learning environment. NASA TLX provides 

subjective cognitive load evaluations based on six factors (Makarov et al., 2021) and has been adopted in the 

evaluation of construction-related systems (Abbas et al., 2020). The NASA TLX questionnaire, scaled from 1 (very 

low) – to 10 (very high) and assessed mental demand, physical demand, temporal demand, performance, effort, 

and frustration.  

3.2.2 Eye-Tracking Data   

Eye-tracking data are obtained from the HoloLens device to understand user behavior and interactions within 

virtual environments (Ogunseiju et al., 2022). Eye-tracking data has been extensively used to study SA in various 

domains, including aviation, driving, and construction. . This real-time eye tracking provides valuable information 

on where users are looking, such as users’ eye movements, head direction, focus eye gaze duration, eye origins, 

eye hit positions, head origins, Target names, and positions at 30 frames per second. Fixation durations, saccade 

frequencies, and areas of interest (AOIs) are common eye-tracking metrics used to infer levels of SA in real time 

(Arias-Portela et al., 2024; Li et al., 2023). Previous studies have demonstrated the effectiveness of eye-tracking 

data for SA measurement (Arias-Portela et al., 2024). For example, research in air traffic control has shown that 

eye-tracking metrics, such as fixation duration and count, are significantly correlated with SART scores and 

NASA-TLX ratings (Li et al., 2023). During the experimental procedure, eye-tracking data were collected to 

investigate the visual attention of the participants, which is a critical component of SA. 

3.3 Data Analysis  

3.3.1 Descriptives and Inferential Statistics of SA Measures    

The NASA-TLX and SART scores and the eye-tracking data were analyzed using descriptive statistics, and both 

Microsoft Excel and SPSS were used for this analysis. Correlation and regression analysis were conducted on the 

eye-tracking metrics, NASA-TLX, and SART scores. First, the SART dimensions were correlated with the NASA-

TLX dimensions. Second, the eye-tracking data were correlated with the SART score and the mental demand 

dimension of the NASA-TLX. Lastly, inferential statistics were conducted using the Mann-Whitney rank test 

because the data deviated from normality (from the Shapiro Wilk test). 

3.3.2 Data Preprocessing and Eye-tracking Metrics    

In this study, eye-tracking data collected from HoloLens was used to predict and assess situational awareness (SA) 

in a virtual construction site within a MRLE. The eye-tracking data was filtered and cleaned. Key eye-tracking 

metrics used include fixation duration and fixation counts (Table 2). Fixation Duration is the length of time a 

participant's gaze remains on a single point. For this study, fixation durations were extracted from the eye-tracking 

data to analyze instances where the eyes remain relatively still and focused on a specific point in the visual field 

(Keskin et al., 2023). Studies suggest that fixation duration can range from 150 to 650 ms (Sekhri et al., 2022). 

However, studies by Ogunseiju et al. (2022);  Olsen (2012); and Negi and Mitra (2020) stated a minimum fixation 

https://learn.microsoft.com/en-us/windows/mixed-reality/develop/unity/extended-eye-tracking-unity
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duration between 50 -150 ms can be adopted for tasks such as reading and visual search (Hooge et al., 2022). For 

this study, a minimum fixation of 70 ms, and a maximum fixation duration of 650 ms were utilized. Additionally, 

fixation count measures the number of times a participant's gaze fixes on a specific area of interest (Hooge et al., 

2022). 1 outlines the key fixation metrics utilized in our analysis in Table 1, including fixation duration and fixation 

count (Hooge et al. 2022). The eye-tracking data was analyzed and filtered using Microsoft Excel and Statistical 

Software (SPSS). 

 

Table 2: Eye tracking metrics. 

Data Inputs Description References 

Fixation Duration Fixation time measured in milliseconds (ms) (Sekhri et al., 2022) 

Fixation Count The number of times eyes focus on a particular spot (Zhou et al., 2023) 

 

4. RESULTS  

4.1 R1: How does situational awareness (SA) relate to cognitive load in a mixed reality 
learning environment used for implementing sensing technologies? 

4.1.1 Descriptive Statistics and Normality Tests 

Descriptive statistics and correlation analyses were conducted using SPSS to examine the impact and relationship 

between SA and cognitive load. Descriptive statistics were used to measure the central tendencies and normality 

of the data. The data suggests a moderate degree of mental demand, physical demand, and temporal demand, with 

performance identified as the highest cognitive load. Similarly, the SART results imply that the situation awareness 

is moderate, as reflected by the SART score (SART = 29). Situation awareness score has a SART score ranging 

from 0 – 46, where 0 means low situation awareness and 46 means high situation awareness (Mazur et al., 2020). 

The Shapiro-Wilk test was adopted to understand the data distribution. Tables 3 and 4 revealed that both the 

situation awareness and cognitive load data were not normally distributed for most dimensions, as evidenced by 

significant Shapiro-Wilk tests (p < 0.05 for most dimensions). The mean rating of the dimensions of all data 

implied that the cognitive load and situation awareness imposed by the MR environment are moderate. 

 

 Table 3: The Descriptive Statistics and Normality Test for Situation Awareness. 

 Dimension Descriptive Statistics   Shapiro-Wilk Tests  

Mean  Sd Dev Kurtosis Skewness Statistic Sig. 

Familiarity of situation 7.58 2.36 0.21 -0.90 0.86 0.01 

Information quantity 7.58 1.83 -0.22 -0.50 0.87 0.01 

Information quality 7.68 1.67 -0.17 -0.32 0.87 0.01 

Alertness 7.79 1.75 0.79 -0.89 0.81 0.001 

Concentration of attention 5.26 2.23 0.53 0.84 0.87 0.013 

Division of attention 4.1 1.69 1.60 1.11 0.757 0.000 

Spare mental capacity 4.84 1.92 -0.69 0.25 0.883 0.024 

Instability of situation 5.47 2.09 -0.90 -0.38 0.871 0.015 

Complexity of situation 4.74 1.79 -0.45 0.18 0.887 0.028 

Variability of situation 5.58 2.63 -0.83 -0.06 0.875 0.017 

SART Score 29.05 8.31 -0.53 -0.06 0.975 0.870 

4.1.2 SART Dimensions 

Familiarity with the surroundings situation had a mean score of 7.58, suggesting participants generally felt familiar 

with their surroundings. However, the negative skewness (-0.90) indicates that a small number of participants were 

not familiar with the situation, which could impact their situation awareness. Information quantity and quality had 

mean values of 7.58 and 7.68, respectively, indicating high levels of understanding (Figure 3). 
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Figure 3: Participants' mean ratings of the findings on situational awareness. 

However, information quantity had a skewness closer to zero, indicating that most participants rated these aspects 

positively, which is conducive to maintaining situation awareness. Alertness had the highest mean score (7.79), 

suggesting that participants were highly alert during the task. However, attention-related dimensions showed 

varied results, with concentration of attention (mean = 5.26) and division of attention (mean = 4.1) varied more 

significantly, suggesting challenges in maintaining focus on the surroundings while engaged in the MR learning 

environment (Table 3 and Figure 3). The study evaluated the participants' spare mental capacity during the 

simulation to determine their ability to manage additional cognitive demands, the result indicates limited mental 

resources available. A moderate mean score for "the instability, complexity, and variability of the surrounding 

situation" indicates that participants perceived the surroundings as somewhat unstable, complex, and variable, but 

not to an extreme extent. This is likely manageable for most participants with some effort and attention to maintain 

situational awareness. 

4.1.3 Cognitive Load Factors 

Mental, physical, and temporal demands had moderate mean scores, suggesting these factors contribute 

significantly to the overall cognitive load (Table 4 & Figure 4). Performance had a relatively high mean score 

(6.63) but also a high kurtosis (1.66), indicating participants generally felt successful in their tasks. Effort (mean 

= 5.37) and frustration (mean = 5.68, SD = 2.93) scores were also notable, highlighting significant cognitive and 

emotional strain. 

 

 

Figure 4: Participants' mean ratings of the findings on cognitive load. 
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Table 4 Descriptive Statistics and Normality Test for Cognitive Load. 
 

Descriptive Statistics Shapiro-Wilk Test 

 Dimension Mean St. Dev Kurtosis Skewness Statistic Sig. 

Mental Demand 5.16 2.14 -1.10 -0.23 0.87 0.02 

Physical Demand 4.95 1.81 -0.50 0.34 0.87 0.01 

Temporal Demand 5.05 2.15 0.17 0.53 0.91 0.07 

Performance 6.63 1.77 1.66 -0.71 0.86 0.01 

Effort 5.37 2.01 -1.07 -0.02 0.87 0.02 

Frustration 5.68 2.93 -1.35 0.07 0.89 0.03 

Relaxation 5.16 2.52 -0.43 0.54 0.90 0.05 

4.2 R2: How do eye-tracking metrics and mental demand differ between learners with 
high and low situational awareness in a mixed reality learning environment?  

4.2.1 Relationship of eye-tracking metrics, mental demand, and overall SA    

This section specifically focuses on Mental Demand, as it is considered the core dimension of workload in the 

NASA-TLX framework and directly reflects the cognitive effort involved in task performance (Chakraborty et al., 

2023; Tolvanen et al., 2022). While other NASA-TLX dimensions address aspects such as task complexity, 

physical effort, or temporal demands, Mental Demand captures the internal cognitive processes, such as looking, 

thinking, and remembering that are most relevant to learning and interaction within mixed reality environments 

(Chakraborty et al., 2023; Hart & Staveland, 1988). According to Chakraborty et al. (2023), “Cognitive load refers 

to the amount of mental effort and resources required to complete a task or solve a problem,” and Mental Demand 

serves as a proxy for assessing this load. Mental Demand was selected for this study because it offers insight into 

how much mental effort participants exerted during the learning task, which is critical for evaluating how MR 

tools affect user performance, safety, and satisfaction. Therefore, this section examines Mental Demand in relation 

to the two eye-tracking metrics focused on in this study, alongside SART score to explore how perceived cognitive 

workload aligns with visual attention, cognitive processing behaviors, and SA. 

Table 5: Participant grouping with respective variables. 

Participants SA Groups Fixation duration Fixation count SART Score Mental Demand 

P1 HIGH SA 117.81 1941 44 6 

P2 HIGH SA 101.96 3212 30 2 

P3 HIGH SA 101.77 2578 38 2 

P4  HIGH SA 108.88 1193 36 2 

P5  LOW SA 105.26 3213 22 4 

P6  HIGH SA 87.21 3561 40 4 

P7  LOW SA 132.98 3845 24 6 

P8  LOW SA 111.58 3069 22 6 

P9  HIGH SA 113.72 2435 34 4 

P10  HIGH SA 108.85 3341 30 8 

P11  LOW SA 113.94 1657 20 2 

P12  HIGH SA 98.11 3308 38 8 

P13  LOW SA 142.43 2889 28 8 

P14  LOW SA 113.44 3829 26 6 

P15  LOW SA 108.91 7870 24 8 

P16  LOW SA 96.64 5211 12 6 

P17  LOW SA 115.34 4672 28 6 

P18  LOW SA 125.82 7403 20 4 

P19  HIGH SA 109.45 6292 36 6 

The nineteen participants were classified into High SA and Low SA groups based on their SART Score (High SA 

> Mean SART Score and Low SA < Mean SART Score). Figure 8 and Table 5 show the participants' grouping 

with respective variables. Descriptive statistics were used to compare eye-tracking metrics (fixation duration and 

fixation count), SART scores, and NASA-TLX mental demand ratings between participants categorized as high 

or low SA (Figures 5, 6, and 7). Participants with High SA (n = 9) had a mean fixation duration of 105.31 ms (SD 
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= 9.17), while the Low SA group exhibited a higher mean fixation duration of 116.64 ms (SD = 13.54).  Similarly, 

the Low SA group recorded a higher mean fixation count (4365.80, SD = 1983.28) compared to the High SA group 

(3095.67, SD = 1423.45). Regarding perceived mental demand, the Low SA group reported a slightly higher mean 

(5.60, SD = 1.84) than the High SA group (4.67, SD = 2.45), suggesting that participants with lower SA 

experienced greater cognitive workload during the tasks (Table 6).  

Table 6: Descriptive Statistics. 
 

High SA 

Fixation 

duration 

Low SA 

Fixation 

duration 

High SA 

Fixation 

count 

Low SA 

Fixation 

count 

High 

Sart 

Score 

Low 

SART 

Score 

High SA 

Mental 

Demand 

Low SA 

Mental 

Demand 

Mean 105.31 116.64 3095.67 4365.80 36.22 22.60 4.67 5.60 

Median 108.85 113.69 3212.00 3837.00 36.00 23.00 4.00 6.00 

Std D 9.17 13.54 1423.45 1983.28 4.52 4.72 2.45 1.84 

 

Figure 5: Fixation count based on SA level.    Figure 6: Fixation duration based on SA level. 

 

Figure 7: Mental demand based on SA levels.  Figure 8: SA level classification based on SART Score. 

4.2.2 Test of Normality and Significance 

The Shapiro-Wilk test indicated that fixation duration (p = .416), fixation count (p = .055), and SART_score (p = 

.870) were normally distributed, while Mental Demand deviated from normality (p = .016). Given these findings, 

the Wilcoxon signed-rank test was used for all pairwise comparisons to ensure consistency and robustness, as the 

dataset included both normally and non-normally distributed variables. This approach aligns with 

recommendations in the literature (Field, 2017), where nonparametric methods are preferred when data include 
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mixed distributions or when the assumption of normality is not uniformly met. The Wilcoxon Signed Ranks test 

revealed significant differences across all comparisons, with Z-values of -3.823 or -3.829 and p-values less than 

.001 (Table 7). The effect size (r) for the Wilcoxon Signed-Rank Test was calculated using the formula (r=Z/SqrN), 

and an approximate r value of 0.88 was obtained, showing a very large effect size, which suggests there is a strong 

difference between the paired variables. 

Table 7: Normality and Wilcoxon Signed Ranks Test. 
Shapiro-Wilk Wilcoxon Signed Ranks 

Variable Statistic Sig.  Pairwise Comparison Z Sig.  r 

Fixation_Duration .951 .416 Fixation_Count – Fixation_Duration -3.823 < .001 0.876 

Fixation_Count .903 .055 SART_Score – Fixation_Duration -3.823 < .001 0.876 

SART_Score .975 .870 Mental_Demand – Fixation_Duration -3.823 < .001 0.876 

Mental_Demand .873 .016 SART_Score – Fixation_Count -3.823 < .001 0.876 
   

Mental_Demand – Fixation_Count -3.823 < .001 0.876 
   

Mental_Demand – SA_Score -3.829 < .001 0.878 

4.3 R3: What is the relationship between situational awareness, cognitive load, and eye-
tracking measures in a mixed reality learning environment? 

4.3.1 Spearman’s rho correlation  

The correlation results (Table 8) reveal nuanced interactions between situational awareness (SA) factors and 

cognitive load dimensions. Familiarity with the surrounding situation generally reduces mental and temporal 

demands and frustration while enhancing relaxation and performance. Information quantity and quality tend to 

decrease frustration and effort. Alertness is moderately associated with improved performance. Higher spare 

mental capacity correlates with increased physical demand but potentially better performance. The instability and 

complexity of the situation increase mental demands but may reduce physical and temporal demands. Lastly, 

greater variability in the situation negatively impacts performance. These findings suggest that enhancing specific 

SA aspects can effectively manage cognitive load and improve performance in MR learning environments. 

Table 8: SA and Cognitive load measures for correlation. 

 

                                                       Cognitive load dimensions  

   S
itu

a
tio

n
a
l a

w
a
ren

ess d
im

en
sio

n
s 

 Mental Physical Temporal Performance Effort Frustration Relaxation 

F -0.31 0.04 -0.28 0.28 -0.26 -0.09 0.39 

I qty 0.03 0.29 0.19 0.11 -0.23 -0.36 0.19 

I qty 0.08 0.28 0.27 0.14 -0.23 -0.39 0.15 

A 0.14 0.22 -0.08 0.39 0.16 -0.23 0.15 

C  0.23 -0.04 -0.14 0.05 0.17 0.10 -0.09 

D  0.10 -0.01 -0.40 0.07 -0.21 -0.28 0.28 

S -0.06 0.56* -0.15 0.29 0.2 -0.18 -0.02 

I  0.44 -0.14 -0.28 0.16 -0.12 -0.19 0.10 

C  0.07 -0.41 -0.44 0.05 -0.21 -0.07 0.15 

V  -0.2 0.04 -0.13 -0.42 0.03 -0.31 -0.16 

Note: SA Dimension: F-Familiarity of the surrounding situation; I qty- Information quantity of the surrounding; I 

qlty- Information quality; A- Alertness; C- Concentration of attention; D- Division of Attention; S-Spare mental 

capacity; I- Instability of the situation; C- Complexity of the situation; V-Variability of the situation.  The color 

ranges from green (low), yellow (medium) to red color (highest correlation coefficient). 

The correlation analyses of eye-tracking metrics, mental demand, or overall SA revealed that fixation duration had 

a weak negative correlation with SART score (rho = -0.253, p = .295) and a weak positive correlation with mental 

demand (rho = 0.166, p = .497), neither of which was statistically significant. Fixation count showed a stronger 
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positive correlation with mental demand (rho = 0.446, p = .056), approaching significance, and a negative 

correlation with SART score (rho = -0.338, p = .157), which was not significant. SART score had virtually no 

correlations with both fixation duration (rho = -0.253, p = .295) and mental demand (rho = -0.027, p = .914). None 

of the correlations reached statistical significance (Table 9). 

Table 9: Correlations of eye-tracking metrics, mental demand, and SART Score. 

Metric Pair ρ (rho) = r p-value Effect Size (η²) 

Fixation Duration – Fixation Count -0.049 .842 -0.049 

Fixation Duration – SART Score -0.253 .295 -0.253 

Fixation Duration – Mental Demand 0.166 .497 0.166 

Fixation Count – SART Score -0.338 .157 -0.338 

Fixation Count – Mental Demand 0.446 .056 0.446 

SART Score – Mental Demand -0.027 .914 -0.027 

Effect Size Interpretation for Spearman’s rho:  ρ < 0.1 is Negligible, ρ ≈ 0.1–0.29 is a small effect, ρ ≈ 0.3–0.49 is 

medium effect, and ρ ≥ 0.5 is Large effect. 

4.3.2 Regression Analysis   

Regression analyses were conducted to determine whether Mental Demand, Fixation Duration, and Fixation Count 

individually predicted Situational Awareness using SART Score (Table 10). The result shows that none of the 

predictors showed a statistically significant effect on SART scores. The regression with Mental Demand yielded 

an R² of 0.005, indicating that only 0.5% of the variance in SART Score was explained by Mental Demand. The 

relationship was not statistically significant (F = 0.089, p = .769), with a weak negative beta coefficient (β = -

0.72), suggesting no meaningful predictive value. For Fixation Duration, the model explained just 5% of the 

variance (R² = .05) and was also not statistically significant (F = 0.8, p = .384). The beta coefficient was small and 

negative (β = -0.212), indicating a negligible impact on SART Score. The Fixation Count model accounted for 

14% of the variance (R² = .14) in SART Score, with a slightly stronger beta coefficient (β = -0.38). Although the 

F-value was higher (F = 2.9), the relationship still did not reach statistical significance (p = .110). This suggests a 

trend toward a negative relationship between Fixation Count and situational awareness that may warrant further 

investigation with a larger sample size. Fixation Count exhibited a potentially meaningful trend, indicating that 

higher fixation count may be linked to lower situational awareness. 

Table 10: Regression Analysis Predicting Situational Awareness using SART Score with other variables. 

Variables  R R2  Adjusted R2  Beta Coeff t-values F Sig. η² (Eta Squared) 

SART Score – Mental 

Demand 

0.72 0.005 -0.053 -0.72 -0.3 0.089 0.769 0.005 

SART Score – Fixation 

Duration 

0.21 0.05 -0.011 -0.212 0.894 0.8 0.384 0.05 

SART Score – Fixation 

Count 

0.38 0.14 0.094 -0.38 -1.69 2.9 0.110 0.14 

Dependent Variable: SART Score; Predictors: (Constant), Mental_Demand, Fixation duration, Fixation count. 

5. DISCUSSION  

This study investigated the relationship between situational awareness (SA), cognitive load, and eye-tracking 

metrics within an MRLE designed for implementing sensing technologies on a virtual construction site. The 

discussion is structured around the three research questions and supported by descriptive and inferential findings 

from SART, NASA-TLX, and eye-tracking data. 

5.1.1 Situational Awareness and Cognitive Load in MR Environments (R1) 

The first research question aimed to explore how SA relates to cognitive load in an MR environment. Results 

revealed that participants in the MR learning environment experienced moderate levels of both SA (Mean SART 
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Score = 29.05) and cognitive load across most NASA-TLX dimensions. Findings from descriptive analyses 

partially support hypothesis H1, because moderate cognitive load components and higher situational awareness of 

the environment were, on average, experienced by learners. For example, the NASA-TLX scores indicated 

moderate mental, physical, and temporal demand, with performance scores highest among cognitive load 

dimensions. High levels of alertness, information quality, and familiarity indicate that students can effectively 

process and interact with the MR content with a high level of understanding of the surroundings. However, 

moderate levels of concentration and spare mental capacity suggest that while students are engaged, there are 

limitations to their attentional supply to the surroundings. This is also evidenced by the high performance exhibited 

by the participants. Similar studies by Bayounis and Basahel (2020) identified high-performance scores, but low 

SART results occurred because the individuals cautiously applied the required safety requirements. Whereas, low 

performance scores but high SART were individuals with “high awareness level but careless when applying the 

safety requirements” (Bayounis & Basahel, 2020). This is consistent with literature indicating that moderate 

cognitive load can support SA by promoting engagement without overwhelming cognitive resources (Arias-Portela 

et al., 2024; Endsley, 1995; Endsley & Garland, 2000). 

Similarly, to better understand the relationship between situational awareness (SA) and cognitive load, Table 8 

presents correlation values across several dimensions. For example, a negative correlation between familiarity and 

mental demand (r = -0.31) suggests that when participants feel more familiar with the environment, they experience 

lower cognitive effort, which aligns with the theory that familiarity reduces the mental resources required for task 

performance  (Endsley, 1995). Also, instability of the situation (I) shows a moderate positive correlation with 

mental demand (r = 0.44), indicating that greater instability increases mental effort. Similarly, division of attention 

(D) is moderately negatively correlated with temporal demand (r = -0.40), implying that those who struggle to 

divide attention may perceive higher time pressure. Spare mental capacity (S) is positively associated with physical 

demand. These patterns support prior findings that increased task complexity or situational instability tends to raise 

cognitive load, impacting learning and performance (Sweller et al., 1998). 

 

5.1.2 Differences between Eye-Tracking Metrics and Mental Demand of High and Low SA Learners (R2) 

The second research question focused on the differences in eye-tracking metrics (fixation duration and fixation 

counts) and mental demand between learners with high and low SA. Participants with higher SA had shorter 

fixation durations (Mean = 105.31 ms) and lower fixation counts (Mean = 3095.67) compared to those with lower 

SA (Mean fixation duration = 116.64 ms; fixation count = 4365.80). Additionally, the high SA group reported 

lower mental demand (Mean = 4.67) than the low SA group (Mean = 5.60). These differences indicate that learners 

with lower situational awareness were associated with longer and more frequent fixations, as well as higher 

perceived cognitive effort. Hypothesis H2 is hereby supported because findings from the analysis show that 

learners categorised under the Low SA group experienced higher Fixation Duration (116.64 ms) than the High SA 

group, with a fixation duration of 105.31 ms. Similarly, for Fixation Count, the Low SA group has a higher count 

(4365.80) than the High SA group (3095.67). This pattern may indicate that Low SA participants spent more time 

searching for or processing information, or navigating the MR environment. These findings are consistent with 

eye-tracking research, which emphasizes that a higher frequency of fixations and lower fixation counts could 

indicate a lower level of SA (Arias-Portela et al., 2024; Mahanama et al., 2022), and also linking longer fixations 

to increased cognitive effort or uncertainty (Kummetha et al., 2020; Wallmyr et al., 2019). Conversely, High SA 

participants spent less time fixating and engaged in fewer fixations overall. This supports Endsley's model 

(Endsley, 1995; Endsley & Garland, 2000), where SA relies on effective perception and comprehension of 

environmental cues potentially observable through visual attention patterns. These findings indicate that learners 

who can better filter and prioritize relevant cues without becoming overwhelmed by environmental complexity 

are better able to maintain situational awareness.  

5.1.3 Relationships between Situational Awareness, Cognitive Load, and Eye-Tracking Metrics (R3)   

In addressing the third research question, the study explored potential relationships among SA, cognitive load, and 

eye-tracking behavior. Participants with lower SA not only experienced higher cognitive load, particularly in 

mental demand and effort, but also exhibited more visual scanning behavior (e.g., higher fixation count). This 

triadic relationship supports the notion that reduced SA in MR environments may be a consequence of visual and 

cognitive overload. This relationship aligns with studies highlighting cognitive load as a critical constraint on SA 
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in dynamic environments (Kummetha et al., 2020; Wallmyr et al., 2019). The findings indicate that the dimensions 

of cognitive load and SA are not significantly correlated. Notably, alertness and concentration dimensions of SA 

were more affected than familiarity or information quality. Similarly, spare mental capacities have a positive 

correlation with physical demand and attention dimensions, suggesting that students who manage their cognitive 

load effectively can better maintain situational awareness. Furthermore, the negative correlation between 

relaxation and frustration in this study underscores the need for stress management interventions to improve 

cognitive performance and overall well-being during learning. Although most correlations were not statistically 

significant, a pattern emerged that may be meaningful for future research. In particular, fixation count showed a 

stronger positive correlation with mental demand approaching significance, and a negative correlation with SART 

score, which was not significant. SART score had virtually no correlation with both fixation duration and mental 

demand. This means that a higher fixation count being associated with increased mental demand suggests that 

visual scanning intensity could reflect perceived task complexity or mental effort. These preliminary associations 

indicate that eye-tracking metrics such as fixation count may have latent predictive value for cognitive load under 

certain task conditions. These trends suggest potentially meaningful associations that should be further explored 

with larger samples. Future studies with larger samples or more complex MR tasks might be necessary to justify 

the generalization of these trends. Therefore, Hypothesis H3 is partially supported, although a trend is observed, 

but not statistically significant, which means that fixation count and duration are weak predictors of situational 

awareness. 

5.2 Implications for Mixed Reality Learning Environments   

The study’s findings have practical implications for designing tasks in an MR environment that optimizes cognitive 

load to enhance situation awareness. For instance, ensuring that individuals are familiar with their environment 

and providing high-quality information can help maintain situation awareness. Additionally, managing the division 

of attention and mental capacity is crucial in high-demand situations to prevent cognitive overload. Based on the 

findings, effective training, information management, and stress reduction strategies are critical for enhancing 

cognitive efficiency and overall situational awareness. As Endsley and Garland (2000) highlighted “having good 

situation awareness was largely a matter of training and experience”. Similarly, effort should be made to reduce 

frustration and enhance relaxation during learning in an MR environment, as these factors significantly impact 

overall cognitive load. Eye-tracking could be integrated into MR platforms as a diagnostic tool to monitor learner 

attention and SA in real time. Eye-tracking integration could allow for adaptive instruction based on learner 

engagement and gaze behavior. For example, eye-tracking data such as fixation duration and fixation count could 

be analyzed continuously during MR use to identify moments when learners become cognitively overloaded (e.g., 

short fixation times) or disengaged (e.g., prolonged gaze away from task-relevant areas). The system could then 

respond adaptively by slowing down task complexity, highlighting critical information, providing audio or visual 

cues, or pausing to offer additional prompts. This kind of real-time adaptation would create a feedback loop in 

which the MR system personalizes content delivery based on moment-to-moment cognitive and attentional states. 

Such integration aligns with adaptive learning principles and can improve instructional efficiency, especially in 

complex environments like construction sensing technologies learning tasks, where maintaining situational 

awareness is critical. 

 

5.3 Study Limitations and Future Research   

While participants interacted with the MR learning environment for one hour, it may be beneficial to assess the 

long-term effect of MR environments on cognitive load and situational awareness. Key limitations may also exist 

in potential individual differences (e.g., prior MR experience) that were not analyzed. Future studies could use a 

larger sample size and deepen insights into the impact of prior experience with MR on SA, cognitive load, and 

visual attention in MR environments. Future longitudinal studies could provide deeper insights into how these 

factors evolve with prolonged MR exposure and training. Additionally, this research assessed situational awareness 

in a controlled laboratory, and future studies should explore the application of MR learning environments for 

upskilling the current construction workforce on the actual construction sites, which are often dynamic and 

unpredictable. Future studies with larger samples or more complex MR tasks might further clarify or validate the 

correlation between fixation count and mental demand. 
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6. CONCLUSION  

This study provides valuable insights into the relationship between situational awareness, cognitive load, and eye-

tracking metrics within an MR learning environment for construction education. The study shows that integrating 

subjective cognitive load assessments with objective eye-tracking data analysis, using fixation count, fixation 

duration, and mental demand, are strong behavioral indicator of situational awareness. The study reveals high 

levels of familiarity, along with the quality and quantity of information, indicating that participants generally had 

a good understanding of their surroundings during the MR tasks. Similarly, the negative correlation between 

relaxation and frustration indicates that reducing frustration could improve relaxation and overall performance.  

Implementing effective strategies to enhance spare mental capacity can lead to better attention management and 

lower cognitive load. The study further revealed that participants with lower SA not only experienced prolonged 

fixation durations and higher cognitive load but also exhibited more visual scanning behavior (e.g., higher fixation 

count). Similarly, fixation count showed a stronger positive correlation with mental demand approaching 

significance, and a strong negative correlation with SART score, although statistically insignificant. This means 

that a higher fixation count being associated with increased mental demand suggests that visual scanning intensity 

could reflect perceived task complexity or mental effort. This indicates that eye-tracking data can be adopted as 

behavioral indicators for learners' situational awareness within the MR system. These findings not only align with 

cognitive load theory and prior eye-tracking research but also offer practical recommendations for MR 

instructional design. Eye-tracking could be integrated into MR platforms to predict SA in real time. For example, 

eye-tracking data such as fixation duration and fixation count could be analyzed continuously during MR use to 

identify moments when learners become cognitively overloaded (e.g., short fixation times) or disengaged (e.g., 

prolonged gaze away from task-relevant areas). The system could then respond adaptively by slowing down task 

complexity, highlighting critical information, providing audio or visual cues, or pausing to offer additional 

prompts. This kind of real-time adaptation would create a feedback loop in which the MR system personalizes 

content delivery based on moment-to-moment cognitive and attentional states. Such integration aligns with 

adaptive learning principles and can improve instructional efficiency, especially in complex environments like 

construction sensing technologies learning tasks, where maintaining situational awareness is critical. By 

understanding the relationship between cognitive load, situational awareness, and eye tracking metrics, educators 

and developers can design more effective MR learning environments that enhance student learning, mitigate 

cognitive overload, guide attention, and enhance engagement.  
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