
  

www.itcon.org - Journal of Information Technology in Construction - ISSN 1874-4753 

 

 
ITcon Vol. 30 (2025), Mohy et al., pg. 1398 

DEEP LEARNING ENABLED COMPUTER VISION MODEL FOR 
AUTOMATED SAFETY COMPLIANCE IN CONSTRUCTION 
ENVIRONMENTS 

SUBMITTED: May 2025 

REVISED: August 2025 

PUBLISHED: September 2025 

EDITOR: Frédéric Bosché 

DOI: 10.36680/j.itcon.2025.057 

Amr A. Mohy, PhD Student, MSc, BSc, PMP, PRINCE2, PSM-1 

Construction and Building Engineering Department, Arab Academy for Science and Technology and Maritime 

Transport, Egypt 

A.el-deen5146@student.aast.edu 

Hesham A. Bassioni, Professor of Construction Management, PhD, MSc, MBA, BSc, PMP 

Construction and Building Engineering Department, Arab Academy for Science and Technology and Maritime 

Transport, Egypt, 

hbassioni@aast.edu 

Elbadr O. Elgendi, Associate Professor of Construction Engineering and Management, PhD, MSc, BSc 

Construction and Building Engineering Department, Arab Academy for Science and Technology and Maritime 

Transport, Egypt 

elbadrosman@aast.edu 

Tarek M. Hassan, Professor of Construction Informatics, BSc., MSc., PhD, MASCE, FCIOB 

School of Architecture, Building and Civil Engineering, Loughborough University, United Kingdom 

T.Hassan@Lboro.ac.uk 

SUMMARY: Construction site safety demands proactive hazard detection, a challenge traditionally met with 

reactive measures that are often inadequate. This paper introduces a novel deep learning-based computer vision 

model designed for automated safety compliance monitoring, addressing critical limitations of existing 

approaches. The model utilizes a modified one-stage object detection algorithm, uniquely enhanced with 

Contextual Transformer Networks (CoTs), a Triplet Attention module, Activate or Not (ACON) activation 

functions, and Content-Aware Reassembly of Features (CARAFE) up-sampling, to significantly improve feature 

extraction, visual recognition, and contextual understanding in complex construction environments. To support 

this model development, a new OSHA-data-driven dataset of 55,594 images across 28 safety categories was 

developed. This dataset encompasses personal protective equipment (PPE), scaffolding, materials, hazards, and 

worker actions, ensuring comprehensive coverage of key safety domains. The Wise-Intersection over Union (IoU) 

loss function further refines bounding box regression, enhancing localization accuracy. Evaluations on both a 

benchmarking dataset and the newly developed dataset demonstrate the model's benchmark-surpassing 

performance (Precision: 0.89, mAP95: 0.45). This research offers a practically viable, data-driven solution for a 

critical industry challenge, moving towards a future of zero-accident construction sites. 
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1. INTRODUCTION 

Every single day, an estimated 4,800 construction workers around the world lose their lives due to work-related 

accidents and diseases. This grim reality, highlighted by the International Labour Organization, underscores the 

urgent need for innovative solutions to enhance safety in the construction industry, one of the most hazardous 

sectors globally (BUREAU OF LABOR STATISTICS, 2022; Hou et al., 2023). Traditional safety measures, while 

essential, often prove inadequate in addressing the dynamic and complex nature of construction environments, 

leading to a significant number of accidents and fatalities (Nath et al., 2020). These incidents not only result in 

tragic loss of life and serious injuries but also inflict substantial financial burdens on companies due to project 

delays, legal liabilities, and compensation claims (Waehrer et al., 2007). Traditional safety management, which 

relies on manual inspections and reactive incident reporting, is often insufficient to address the dynamic and 

complex hazards of modern construction sites (Nath et al., 2020). This reactive posture not only leads to tragic 

human loss but also incurs significant financial costs from project delays, legal liabilities, and regulatory penalties 

(Waehrer et al., 2007). 

To overcome these limitations, the field is shifting towards proactive, automated safety monitoring using Artificial 

Intelligence (AI) and computer vision. Deep learning models, particularly object detectors like YOLO (You Only 

Look Once), have shown promise in identifying safety compliance issues such as missing Personal Protective 

Equipment (PPE) in real-time. However, existing research faces three primary challenges: (1) Dataset Limitations: 

Publicly available datasets often lack the scale, diversity, and specific hazard categories (e.g., scaffolding faults, 

unsafe actions) needed to train robust models for comprehensive site monitoring (Duan et al., 2022). (2) 

Algorithmic Limitations: Standard object detection models are not inherently optimized for the unique visual 

complexities of construction sites, such as severe object occlusion, varying illumination, and the need to 

distinguish subtle contextual hazards. (3) Practical Implementation: Many proposed models are either too 

computationally heavy for real-time deployment or not accurate enough to be reliable, while integration into 

existing workflows requires careful consideration of human-computer interaction and ethical concerns like data 

privacy and algorithmic bias (Fang et al., 2018; Nath et al., 2020; Xiao et al., 2022; Yang et al., 2023). 

This research directly addresses this critical gap by developing a novel deep learning-based computer vision model 

designed for real-time hazard identification and tracking, offering significant advancements over existing 

approaches. The key contributions of the proposed model are: (1) the unique integration of Contextual Transformer 

Networks (CoTs) (Li et al., 2021) and Triplet Attention (Misra et al., 2021) within a modified YOLOv8 

architecture, enhancing feature extraction and contextual understanding for improved hazard detection; (2) the 

incorporation of ACON activation functions (Ma et al., 2021a) and CARAFE up-sampling (Wang et al., 2019), 

optimizing model adaptability and localization precision for more precise hazard localization (Tong et al., 2023); 

and (3) the development of a new, large-scale dataset of 55,594 images across 28 safety categories, which are 

empirically derived from an analysis of OSHA Severe Injury Reports (OSHA, 2024), ensuring direct relevance to 

preventing high-consequence accidents. (4) benchmarking against state-of-the-art models on both a standard 

dataset (SHEL5K) (Otgonbold et al., 2022) and the developed dataset demonstrates the superior performance and 

adaptability of the proposed approach, establishing a new benchmark for automated safety compliance systems in 

construction. (5) Practical Application and Seamless Integration: The model is designed for real-time 

implementation and seamless integration into existing safety frameworks, prioritizing user acceptance and 

practical utility for construction professionals. By addressing these key areas, the model aims to significantly 

improve construction safety management practices, moving towards a more proactive and preventative paradigm. 

2. AUTOMATED SAFETY MANAGEMENT SYSTEMS 

2.1 Object Detection and Tracking Algorithms 

Deep learning-based object detection and tracking algorithms are fundamental to enabling automated and proactive 

safety management in the dynamic environment of construction sites. These algorithms process visual data from 

images and videos to identify, locate, and monitor key entities such as workers, equipment, and materials in real-

time, facilitating immediate hazard detection and response (Jeelani et al., 2021). Object detection, the cornerstone 

of this process, focuses on identifying and precisely localizing objects within individual images (Felzenszwalb et 

al., 2010), providing crucial semantic understanding of the visual scene (Zhao et al., 2019). 
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Object detection methodologies are broadly categorized into two main approaches: region proposal-based methods 

and classification-based methods. Region proposal-based methods, including R-CNN variants like Fast R-CNN 

(Girshick, 2015) and Faster R-CNN (Ren et al., 2017), first identify potential object regions within an image and 

then classify these regions. While offering high accuracy, their two-stage process can be computationally intensive, 

potentially limiting real-time performance. Conversely, classification-based methods, such as YOLO (Redmon et 

al., 2016) and SSD (Liu et al., 2016), employ a single-stage approach, directly predicting object classes and 

locations in a single pass. This streamlined architecture enables significantly faster processing speeds, making 

them particularly suitable for real-time applications in dynamic construction environments. However, this speed 

advantage can sometimes come at the cost of reduced accuracy in complex scenes or for small object detection. 

Recent advancements have demonstrated the increasing efficacy of object detection algorithms for enhancing 

construction safety. For example, (Huang et al., 2021) showcased an improved YOLOv3 algorithm capable of 

accurately detecting construction workers wearing helmets in real-time, achieving a high mAP of 93.1% and a 

processing speed of 55 fps. Similarly, (Hayat and Morgado-Dias, 2022) utilized YOLOv5 for automated safety 

helmet detection, achieving a mAP of 92.44% on a dataset of 5,000 hard hat images. These studies highlight the 

potential of YOLO-based algorithms for real-time PPE monitoring, addressing a critical safety concern on 

construction sites. Furthermore,  (Xu et al., 2022) introduced Efficient-YOLOv5, specifically optimized for 

detecting safety harnesses, achieving high precision (97.7%) and recall (89.3%) rates, demonstrating the 

adaptability of YOLO architectures for detecting various types of safety equipment. Transformer-based approaches 

are also emerging, with (Wu et al., 2019) proposing a transformer network for safety helmet and harness 

monitoring, achieving a high implementation accuracy of 95.9%. These advancements underscore the growing 

sophistication and effectiveness of object detection algorithms in addressing specific construction safety 

challenges, paving the way for more proactive and automated safety management systems. While two-stage 

detectors offer enhanced accuracy, the paramount need for real-time hazard detection and immediate alerts in 

dynamic construction environments necessitates prioritizing speed and efficiency, making the one-stage YOLO 

architecture a more judicious choice for this safety-critical application.  

Moreover, recent studies have continued to refine YOLO-based architectures. (Wang, 2025) introduced a 

YOLOv10 model enhanced with transformer backbones, achieving a mean AP50 of 87.3% across key PPE 

categories by leveraging the transformer's superior ability to capture global context. Concurrently, (Xing et al., 

2025) focused on efficiency by proposing GPD-YOLOv8, a lightweight adaptation using Ghost modules that 

reported a 6.2% mAP gain and a 55.88% increase in FPS over the baseline YOLOv8. The critical role of data 

quality has also been highlighted, with research showing that targeted image augmentation strategies can yield 

significant, class-dependent performance gains for non-PPE detection (Park et al., 2025). These advances 

underscore a key trade-off between computationally intensive, high-accuracy models and lightweight, high-speed 

alternatives. Our research is strategically positioned to navigate this trade-off by enhancing a robust YOLOv8 

architecture with a novel combination of modules designed to significantly boost feature extraction and accuracy 

without the prohibitive computational overhead of a full transformer backbone. 

2.2 Construction Datasets 

Table 1: Comparing Current Construction Safety Datasets. 

Dataset Image 

Count 

Object 

Categories 

Key Safety Features Limitations 

SODA  19,846 15 Workers, PPE, Machinery, Layout Limited geographic diversity 

SHEL5K  5,000 6 Helmets, Head, Person (with/without 

helmet), Face 

Narrow focus on helmet safety 

MOCS  41,000+ 13 Moving objects, limited safety annotations Limited annotations, non-

representative diversity 

Proposed 

Dataset 

55,594 28 PPE, Scaffolding, Materials & Equipment, 

Hazards & Falling Actions 

Identified features 

 

Recent efforts have been directed toward developing construction-focused image datasets. (Tajeen and Zhu, 2014) 

compiled a dataset featuring images of construction machinery, covering essential equipment like excavators, 

loaders, bulldozers, rollers, and backhoe diggers. (Kim et al., 2018) introduced a construction object detection 

method that combines deep convolutional networks with transfer learning for precise identification of construction 
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equipment. Their benchmark dataset, AIM, comprises 2,920 images of construction machines. (Kolar et al., 2018) 

concentrated on detecting guardrails at construction sites, creating an enhanced dataset with 6,000 images by 

integrating background imagery with three-dimensional guardrail models. (Li et al., 2020) released a dataset of 

3,261 images focusing on safety helmets, utilizing SSD-MobileNet for detecting unsafe operations on construction 

sites. (Xuehui et al., 2021) developed the MOCS dataset, a collection of over 40,000 images from 174 construction 

sites, annotated for 13 types of moving objects and tested on 15 different deep neural networks. (Wang et al., 2021) 

assembled a dedicated image dataset named Color Helmet and Vest (CHV) consisting of 1330 images, specifically 

for PPE detection. 

While several construction-focused image datasets exist, such as SODA (Duan et al., 2022), SHEL5K (Otgonbold 

et al., 2022), and MOCS (Xuehui et al., 2021) these datasets often fall short in terms of comprehensiveness, 

diversity, and contextual relevance to real-world construction safety management as showing in Table 1. SODA, 

while encompassing a large number of images, primarily focuses on workers, PPE, and machinery detection, with 

limited geographic diversity. SHEL5K, though valuable for helmet safety detection, lacks broader applicability for 

a wider array of safety-related functions. MOCS, despite its large size, has limited annotations, failing to capture 

the full range of information present in the images, particularly concerning safety-related details. Additionally, its 

focus on object detection may not fully address the needs of comprehensive safety management. Existing datasets 

may focus on a limited number of safety categories, lack representation of diverse construction environments and 

practices, or have insufficient annotations for training robust deep learning models. Addressing these limitations 

necessitates the development of a new dataset that is more comprehensive, diverse, and explicitly addresses the 

shortcomings of existing datasets in terms of scope, diversity, and real-world relevance to construction safety 

management, as highlighted in Table 1. This new dataset should be meticulously designed to capture the full 

spectrum of safety concerns, diverse construction scenarios, and contextual richness necessary for training robust 

and practically applicable AI-powered safety solutions. 

2.3 Limitations of Existing Research and Need for Improvement 

While the reviewed research demonstrates the promising potential of object detection and tracking algorithms for 

enhancing construction safety, a significant gap persists between theoretical advancements and practical, real-

world impact. Existing research, while valuable, often suffers from limitations that hinder the development of truly 

robust, reliable, and deployable AI-powered safety management systems. These limitations underscore the critical 

need for further research and development efforts focused on addressing the identified gaps in datasets, algorithms, 

and practical implementation strategies. 

Dataset Limitations: Previous benchmark datasets like SHEL5K are constrained to single PPE types, limiting their 

utility for comprehensive safety monitoring. Others like MOCS, while large, lack the detailed safety annotations 

required to train models with high precision across multiple hazard categories. This often results in performance 

ceilings, where even advanced models struggle to exceed 80-90% mAP without extensive, task-specific fine-

tuning. This motivates the development of our broader, OSHA-driven dataset. 

Algorithmic Enhancements are Needed for Robust and Real-Time Performance: While state-of-the-art object 

detectors show promise, they often present an unresolved trade-off for the construction domain. High-accuracy 

models leveraging computationally intensive transformer architectures can achieve benchmark-setting precision 

(Wang, 2025) but may be too slow for real-time hazard alerts on typical on-site hardware. Conversely, lightweight 

models can achieve impressive speeds over 90 FPS but may sacrifice detection accuracy for small or occluded 

objects common in cluttered construction scenes (Xing et al., 2025). A clear gap exists for an architecture that 

improves detection robustness in these challenging conditions without compromising real-time viability. The 

proposed work addresses this by integrating targeted modules like Contextual Transformers (Li et al., 2021) and 

Triplet Attention (Misra et al., 2021) to enhance feature representation, striking a practical balance between 

accuracy and efficiency. 

Practical Implementation and User Acceptance Challenges Must be Overcome: Beyond technical advancements 

in datasets and algorithms, the successful deployment and widespread adoption of AI-powered safety systems 

hinge on addressing practical implementation challenges and ensuring user acceptance within the construction 

industry. Concerns related to data privacy, ethical considerations, system integration with existing workflows, user 

training, and the perceived value proposition of AI safety solutions must be carefully considered and addressed. 

Research efforts focused on user-centered design, seamless system integration, robust data privacy protocols, and 
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clear communication strategies are crucial for fostering trust, promoting user adoption, and realizing the full 

potential of AI to transform construction safety management practices in the real world. Bridging this gap between 

technical feasibility and practical implement ability is essential for translating promising research into tangible 

improvements in construction worker safety and well-being. 

3. FEATURE IDENTIFICATION AND DATASET DEVELOPMENT 

To ensure the developed computer vision model directly addresses the most critical safety needs in the construction 

industry, a rigorous data-driven approach was adopted for feature identification and dataset development. This 

approach centered on a comprehensive analysis of the Occupational Safety and Health Administration (OSHA) 

Severe Injury Reports dataset, a rich source of real-world accident data, providing empirical evidence of prevalent 

hazards, injury types, and contributing factors in construction site accidents. By grounding the feature 

identification and dataset design in this objective, real-world accident data, the research aimed to create a highly 

relevant and practically impactful safety monitoring system, directly addressing the most pressing safety 

challenges faced by construction workers. The dataset development process, visually summarized in Figure 1, 

encompassed a multi-faceted strategy focused on data-driven category selection, comprehensive data acquisition, 

rigorous data preparation, and detailed annotation, ensuring the dataset’s relevance, diversity, and accuracy for 

training a robust and effective deep learning model. 

 1. Guiding 
Framework: OSHA 

Data Analysis 
(Analysis of severe 

injury reports to 
identify 28 critical 
safety categories)

2a. Data Acquisition: 
Web Scraping 

(52,612 images, 
~95%)

2b. Data Acquisition: 
Crowdsourcing 

(2,982 images, ~5%)

(Informs Keywords 
& Selection Criteria)

3. Data Aggregation 
& Cleaning 

(Merging, Duplicate 
Removal,  Filtering, 

Anonymization)

4. Data Annotation 
(Applying 28 OSHA-
derived labels using 

Roboflow)

5. Final Curated 
Dataset (55,594 

Annotated 
Images)

 

Figure 1:  The processes to develop the dataset of the proposed model. 

3.1 Features Identification 

A data-driven feature identification methodology was employed, leveraging the Occupational Safety and Health 

Administration (OSHA) Severe Injury Reports dataset (OSHA, 2024) to objectively identify key safety concerns 

and inform the development of the construction safety dataset. This approach ensured that the dataset categories 

and the subsequent AI model development were directly grounded in real-world accident data, addressing the most 

prevalent and impactful safety hazards in the construction industry. The OSHA Severe Injury dataset, covering 

incidents from January 2015 to March 2024, provides detailed information on construction accidents resulting in 

severe injuries or fatalities, offering a valuable empirical basis for understanding safety risks in the sector. 

3.1.1 Severe Injury Dataset Preprocessing and Classification 

The OSHA Severe Injury dataset (OSHA, 2024) underwent a rigorous preprocessing and classification process to 

extract relevant safety information and identify key feature categories. The dataset, initially comprising 27 columns 

of incident-level data, was filtered to focus exclusively on construction-related incidents, ensuring the analysis was 

specific to the target domain. Data preprocessing steps included addressing missing values, standardizing data 

formats, removing duplicate records, and applying Natural Language Processing (NLP) techniques to the 'Final 

Narrative' column, which contains detailed textual descriptions of each incident. A classification framework was 

then developed to systematically categorize safety-related information extracted from the OSHA reports. This 

framework involved: 

• Hazard Identification: Text mining and NLP techniques were applied to the 'Final Narrative' column to 

extract keywords and phrases describing common hazards. Named Entity Recognition (NER) was used 

to identify specific equipment, locations, and injury types mentioned in the narratives. Extracted 

keywords and entities were then grouped into overarching hazard categories, such as Fall Hazards, 

Struck-by Hazards, Caught-in/Between Hazards, and Electrical Hazards, reflecting the most frequent 

and severe accident types reported in the OSHA data. 
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• PPE (Personal Protective Equipment) Detection Context: Incident narratives were analyzed to identify 

mentions of Personal Protective Equipment (PPE) usage or non-usage. Keywords and phrases related 

to specific PPE items (hard hats, vests, safety glasses, etc.) and terms indicating non-compliance (e.g., 

"not wearing," "failure to use") were extracted. Contextual analysis using NLP models was employed 

to differentiate between compliant and non-compliant PPE scenarios, informing the creation of PPE-

related safety categories for the dataset. 

• Environmental and Contextual Factors: NLP techniques were used to identify mentions of 

environmental conditions (e.g., poor lighting, slippery surfaces) and contextual factors (e.g., proximity 

to machinery, working at heights) that contributed to accidents. These factors were categorized into 

relevant classes, such as Poor Lighting, Wet or Slippery Surfaces, and Unstable Ground, to ensure the 

dataset captured the influence of environmental conditions on safety risks. 

• Outcome-Based Classification: Injury types and affected body parts were extracted from the narratives 

to establish a clear link between hazard categories and their potential consequences. This outcome-

based classification, mapping specific hazards to injury types and severity levels, further refined the 

safety categories and ensured that the dataset prioritized the most impactful safety concerns, reflecting 

the real-world consequences of construction site hazards. 

 

Figure 2: Distribution of Incidents by Hazard Type. 

3.1.2 Severe Injury Dataset Analysis 

The analysis of the preprocessed and classified OSHA Severe Injury Reports dataset provided objective, data-

driven insights into the most prevalent and severe safety hazards in the construction industry. Frequency analysis 

revealed that Fall Hazards, Struck-by Hazards, and Electrical Hazards were the most common types of severe 

incidents Figure 2, directly informing the prioritization of these hazard categories in the dataset design. Analysis 

of incident severity by hazard type Figure 3 highlighted that Fall Hazards were associated with the highest 

proportion of fatalities and major injuries, further emphasizing the critical need for robust fall prevention measures 

and the importance of including detailed fall hazard scenarios in the dataset. Co-occurrence analysis Figure 4 

revealed significant correlations between specific hazard types and injury outcomes, such as falls from height 

frequently leading to head and spine injuries, and electrical hazards often resulting in burns and upper body 

injuries. These correlations informed the selection of safety categories that represent both the causal hazards and 

their potential consequences, enabling the AI model to learn to recognize not only the hazards themselves but also 

the broader context of risk and potential harm. 
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Based on this comprehensive analysis of the OSHA Severe Injury Reports dataset, a final set of 28 safety categories 

was identified and selected for the construction safety dataset (Table 2). These categories, encompassing PPE, 

Scaffolding, Construction Materials and Equipment, and Hazards and Falling Actions, directly reflect the data-

driven priorities identified through the OSHA report analysis, ensuring that the dataset is focused on the most 

relevant and impactful safety concerns in the construction industry. The detailed descriptions and classifications 

of these safety features in Table 2 provide a clear and comprehensive overview of the dataset's scope and content, 

directly informed by empirical evidence from real-world construction accidents. 

 

Figure 3: Co-occurrence of Hazards and Injury Outcomes. 

 

Table 2: Summary of Safety Classes (Data-Driven Identification from OSHA Severe Injury Reports). 

Category Safety Class Description OSHA Justification 

Hazards Fall Hazards Falls (height, slip, trip) Top severe injury (Fig.2); high fatality 

(Fig.4).  
Struck-by Hazards Falling objects, machinery impact 2nd most frequent severe injury (Fig.2); can 

be fatal (Fig.4).  
Caught-in/Between Entanglement, trench collapse Significant major injury cause (Fig.4).  
Electrical Hazards Live wires, arc flash 3rd most frequent severe injury (Fig.2); high 

severity, burns (Fig.4). 

PPE Helmets Helmet use Prevents common head injuries (OSHA 

data).  
Safety Goggles Eye protection Prevents common eye injuries (OSHA data).  
High-Visibility Vests Visibility gear Reduces struck-by risks (OSHA data). 

Unsafe Acts Working Without 

Harness 

No harness in fall-risk areas Critical for preventing fall fatalities (Fig.4; 

OSHA data).  
Unsafe Machinery 
Use 

Improper equipment operation Linked to machinery accidents (OSHA data). 

Site Cond. Poor Lighting Low light conditions Contributes to accidents (OSHA data).  
Wet/Slippery Surfaces Slippery surfaces Increases slip/trip/fall risk (OSHA data). 
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Figure 4: Severity Distribution of Incidents by Hazard Type. 

4. DATASET DEVELOPMENT  

The dataset was designed to encompass a wide range of safety-related elements and hazards, resulting in 28 

carefully selected categories. These categories were determined by combining insights from a review of existing 

literature on construction safety, which identified common hazards and safety violations, with an analysis of 

OSHA's Severe Injury dataset. This approach ensured that the dataset reflected both established safety knowledge 

and the real-world priorities as evidenced in actual incident reports. Data was collected using a multi-faceted 

strategy, detailed in the following subsections. This approach resulted in a dataset comprising 55,594 images, 

categorized into 28 safety-related classes, encompassing PPE, scaffolding, construction materials and equipment, 

and hazards and falling actions. 

4.1 Dataset Collection Methods 

Web scraping was employed as a primary method for gathering a large array of images and videos from online 

sources. This method allowed to access a wide range of construction-related visual data, including different types 

of construction activities, machinery, and safety scenarios (Delhi et al., 2020). An algorithm was developed using 

Python programming language for the purpose of web scraping. Its aim was to search for images related to 

predefined categories by trawling through search engines. Images were selected based on their relevance to the 

predefined safety categories Table 2, and their diversity in terms of construction scenarios, environments, and 

worker demographics.  

The efficiency of data gathering was significantly increased by automating the process with a script. Care was 

taken to adhere to ethical guidelines and copyright laws during the scraping process. Sources that provided open-

access or publicly available data were selected, ensuring compliance with legal and ethical standards. The web 

scraping procedure was designed to only capture relevant and non-sensitive information, focusing on general 

construction scenes and scenarios devoid of personal identifiers. Through this process, a whopping total of 52,562 

images were successfully scraped and collected from the web for the 28 classes. 
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While web scraping yielded a substantial number of images, relying solely on online sources might not capture 

the diversity and timeliness of real-world construction practices. Crowdsourcing was employed to address this 

limitation, engaging construction professionals to provide images directly from active construction sites. This 

approach enabled the collection of more recent, geographically diverse, and potentially unique safety scenarios 

not readily available in online image databases (Xiao and Kang, 2021). Participants were encouraged to submit 

data that specifically captured safety-related incidents and practices, including the use of safety equipment, worker 

positioning, and potential hazard situations.  

Through this method, three distinct datasets were successfully compiled, each serving a unique purpose in the 

study. The initial dataset comprises 2,302 images, which have been categorized into different classes, including 

“head”, “helmet”, “mask”, “headset”, “chest”, “vest”, and “person”. A diverse range of instances for this study is 

provided by this collection of images, which offers a broad representation of different PPE and parts of the body. 

The second dataset, consisting of 461 images, was collected with a specific focus on the “person” class. Each 

person depicted in the images is shown wearing a variety of safety equipment, including a “helmet,” “vest,” 

“gloves,” “goggles,” and “safety boots.” The full spectrum of safety attire in various settings and poses can be 

examined and analyzed using this dataset. In the third dataset, a specific safety gear, namely the “helmet”, was 

focused on. A focused view of a single class is provided by this dataset, which comprises 219 images, facilitating 

a thorough analysis of helmet usage. Therefore, by using this method 2,982 images with various classes were 

collected. 

4.2 Dataset Preparation 

To ensure data quality, the collected images underwent a rigorous cleaning process as showing in Figure 1, 

including duplicate removal, ambiguity resolution, and privacy protection through anonymization techniques. The 

final dataset comprises 55,594 images, categorized into 28 safety-related classes, representing a significant 

advancement in size and diversity compared to existing construction datasets. Table 3 provides a summary of the 

dataset used in this study, detailing the count of images collected through various methods.  

To ensure the quality and relevance of the collected data, a rigorous cleaning process was implemented. The initial 

step was the removal of duplicate records, key for maintaining an unbiased dataset. This involved a combination 

of manual inspection and automated tools like Roboflow (Lin et al., 2022), enhancing the efficiency and accuracy 

of duplicate detection. This process began with the removal of duplicate images, which was achieved using a 

combination of manual inspection and automated tools. A rule-based filtering algorithm was used to remove 

images that were not related to the 28 safety categories. This algorithm used metadata analysis, including image 

tags, captions, and file names, to identify images that were potentially not relevant to the study. As an example, 

images tagged with keywords that was not related to construction domain were identified and removed. 

 

Table 3: Summary of the dataset. 

The method Count of Images 

Web Scrapping 52,612 

Crowdsourcing 2,982 

Total 55,594 

 

Because construction scenes can be complex, and automated filtering has limitations, the remaining images were 

reviewed by a team of three annotators. The annotators had expertise in construction safety and at least five years 

of experience in the field. They were given guidelines and visual examples to help make sure their assessments 

were consistent. Each image was reviewed by two annotators, and any differences in their opinions were discussed 

until an agreement was reached. This process of manual inspection made sure that any remaining images that were 

not relevant, such as those showing objects or scenes not related to construction safety, were taken out of the 

dataset. For example, images of street scenes or architectural details without safety-related elements were not 

included in the final dataset. This combination of automated and manual review helped create a dataset appropriate 

for training the deep learning model. 



 

 

 
ITcon Vol. 30 (2025), Mohy et al., pg. 1407 

 

Figure 5: Sample Annotation Process for the Images. 

4.3 Dataset Annotation 

The phase of data annotation is a critical component of the process of training object detection and tracking models 

(Sharma et al., 2022). The study’s researchers designed the annotation process in a strategic manner to guarantee 

the accuracy, uniformity, and pertinence of the labels in four separate categories, namely PPE, Scaffolding, 

Construction Materials, and hazards. In order to simplify and optimize the process, the researchers utilized the 

services of Roboflow (Solawetz, 2022). The process of annotation was structured by instructions that were 

customized for every classification. The authors were able to utilize the platform to create bounding boxes around 

each object and designate the corresponding category label as showing in Figure 5. The provision of spatial 

information to the object detection and tracking model is made possible by the category labels and bounding box 

coordinates of the objects. The technique of annotation utilized in this context facilitates the acquisition of 

knowledge by the model regarding the correlation between particular labels and their corresponding objects. 

Table 4: Distribution of Safety Categories in the Developed Dataset. 

Main Category Safety Category Description Number of 

Images 

Personal 

Protective 

Equipment 

(PPE) 

Hardhat Safety helmet worn to protect the head from injuries. 10,312 

Vest Reflective safety vest worn for visibility and protection. 6,585 

Safety Boots Sturdy footwear designed to protect the feet from hazards. 3064 

Not_Wearing_Safety_Equip

ment 

Identifier for individuals not adhering to safety gear rules. 3,336 

Goggles Eye protection to prevent injuries from debris or hazardous 

substances. 

189 

Gloves Hand protection against abrasions, cuts, and exposure to harmful 

materials. 

198 

Mask Respiratory protection from dust, harmful particles, and airborne 
diseases. 

419 

Workers Individual engaged in construction work on-site. 11,064 

Scaffolding Scaffold Temporary structure used to support workers and materials in 

construction. 

3,890 

No_Scaffold Identifier for sites without the required scaffolding for safety. 101 

Fence Barrier erected to provide safety or to mark a boundary. 856 

Construction 

Materials & 

Equipment 

Safety_cone Traffic cone used for warning or guiding traffic. 1,238 

Machinery Heavy equipment used for construction tasks. 2,612 

Board Flat piece of material used in construction. 1,576 

Rebar Steel bar used for reinforcing concrete. 687 

Wood Basic construction material. 2,307 

Ebox Electrical box for containing wiring connections. 863 

Hopper Container for storing or dispensing materials. 539 

Hook Tool for lifting or pulling objects. 866 

Brick Basic unit of construction, usually made from fired clay. 345 

Toeboard Safety feature to prevent objects from falling from heights. 236 

Cutter Tool used for cutting construction materials. 185 

Slogan Sign or banner with safety messages. 1,873 

Handcart Small vehicle used for transporting items. 128 

Hazards and 
Falling Actions 

Fall-Detected Identifier for situations where a falling incident is detected. 207 

Opening_hole Open hole on the site that poses a falling risk. 207 

Fire Identifier for a fire outbreak on the site. 665 

Smoke Indicator of a potential fire or harmful substance emission. 1,046 
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4.4 Dataset Summary 

Further details regarding the construction of the dataset are now provided. The 28 safety categories were derived 

from OSHA's Severe Injury dataset through a three-stage process. First, a keyword analysis of incident narratives 

was performed to identify common hazard descriptions. Second, these keywords were grouped into broader 

thematic categories reflecting distinct safety concerns. Third, a final set of 28 categories was selected, balancing 

comprehensiveness with data availability and ensuring sufficient instances for robust model training. The resulting 

class distribution is presented in Table 4, which now includes the percentage of the total dataset represented by 

each category, thus offering a clearer understanding of class balance. To mitigate potential biases in the source 

data, careful consideration was given to ensuring representation across various construction project types and 

geographic locations. Data was collected from multiple sources to ensure diversity: approximately 95% of images 

were sourced via web scraping, 5% via crowdsourcing, and guided by the features needed to be monitored from 

OSHA incident reports.  

Data augmentation techniques, including random cropping, horizontal flipping, and colour jittering, were applied 

to expand the dataset and enhance model robustness. These augmentations aimed to reduce overfitting and to 

improve the model’s ability to generalize to diverse real-world scenarios. The geographic diversity of the dataset 

was further enhanced by using publicly available images from various sources, ensuring wider geographical 

representation while adhering to strict ethical guidelines and copyright laws. The images, collected through web 

scraping and crowdsourcing, reflect a wide range of construction scenarios and environments. Figure 6 visually 

showcases the dataset's diversity, depicting both safe and unsafe practices in various construction contexts. The 

resulting dataset, meticulously curated and annotated, provides a robust and ethically sound resource, directly 

aligned with real-world safety priorities as evidenced by the comprehensive analysis of the OSHA Severe Injury 

dataset, serving as a strong foundation for training and evaluating the proposed AI-powered safety monitoring 

system. 

An important consideration during dataset development was the issue of class imbalance, evident in Table 4, where 

categories like 'Hardhat' are far more prevalent than 'Goggles'. This challenge was addressed through a two-

pronged strategy. First, data augmentation was applied across all classes, which helps to increase the number of 

training instances, particularly for rarer categories. Second, and critically, we leveraged an algorithmic approach 

to handle imbalance during training. The YOLOv8 architecture's loss function incorporates principles similar to 

focal loss, which is specifically designed to mitigate class imbalance. It automatically down-weights the loss 

contribution from easy, well-classified examples (often from the majority classes) and forces the model to focus 

its learning on hard-to-classify examples (often from minority classes). This inherent mechanism ensures that less 

frequent but critical safety categories are not overlooked during training, which is essential for improving the 

model's overall generalization and real-world performance. 

5. ALGORITHM DEVELOPMENT AND IMPROVEMENT 

To address the unique challenges of automated safety compliance monitoring in construction environments, a 

novel deep learning model was developed based on a modified one-stage object detection architecture. This section 

details the algorithm development process, outlining the rationale for choosing a one-stage object detection 

framework and elaborating on the specific architectural enhancements incorporated to improve feature extraction, 

visual recognition, and object localization accuracy for construction safety applications (Kim et al., 2023; Xiao 

and Kang, 2021). 

5.1 Architectural Novelty and Contributions 

While prior adaptations of YOLOv8 for construction safety have focused on lightweight design (Xing et al., 2025) 

or improved augmentation (Park et al., 2025), the proposed work introduces a unique combination of modules 

designed for contextual understanding and precision as showing in Table 5. The key novelties are: (1) The 

synergistic integration of CoTs (Li et al., 2021) and Triplet Attention for enhanced feature extraction in cluttered 

scenes; (2) The combined use of ACON activation and CARAFE up-sampling for improved adaptability and 

localization; and (3) The development and validation of this architecture on a new, large-scale, OSHA-driven 

dataset covering 28 diverse safety categories. 
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Table 5: Breakdown of Architectural Enhancements and Contributions. 

Component Source/Inspiration Our Novel Contribution and 

Adaptation 

Purpose in Our Model 

Contextual 

Transformer (CoT)  

(Li et al., 2021) Integrated into YOLOv8's C2f block to 

capture dynamic and static contextual 

information between objects. 

Enhances visual recognition of 

contextual hazards (e.g., worker near 

machinery). 

Triplet Attention (Misra et al., 2021) Strategically placed to refine feature maps 

by capturing cross-dimensional 

interactions with minimal overhead. 

Improves feature extraction by 

focusing on safety-critical details and 

suppressing background noise. 

ACON Activation (Ma et al., 2021a) Replaced standard activation functions to 

allow the model to learn whether to 
activate neurons adaptively. 

Improves model robustness to 

variable on-site conditions (e.g., 
lighting, dust). 

Wise-IoU (WIoU) (Tong et al., 2023) Adopted as the bounding box regression 

loss to focus training on anchor boxes of 

ordinary quality. 

Enhances localization accuracy for 

more precise hazard identification. 

The key innovation is the holistic architecture where these components work in concert to create a model that is 

more accurate, robust, and context-aware than the standard YOLOv8, without the full computational load of larger 

transformer-based systems. 

5.2 One-Stage Object Detection Architecture 

The selection of a one-stage object detection architecture, specifically the YOLO (You Only Look Once) algorithm  

(Jin et al., 2021), as the foundation for the proposed model was a deliberate choice driven by the critical 

requirements of real-time construction site monitoring. In contrast to two-stage detectors like Faster R-CNN (Ren 

et al., 2017), which prioritize accuracy but often sacrifice speed, one-stage detectors like YOLO are designed for 

efficient and rapid object detection, processing images in a single forward pass. This inherent speed advantage is 

paramount for construction safety applications, where timely hazard detection and immediate alerts are crucial for 

preventing accidents and ensuring worker safety. While acknowledging that two-stage detectors can achieve higher 

accuracy in certain scenarios, the real-time operational demands of construction site monitoring necessitate a 

model that can provide fast and efficient inference without compromising acceptable levels of accuracy. YOLO 

algorithms strike a superior balance between speed and accuracy compared to alternatives like SSD (Liu et al., 

2016), and Faster R-CNN (Ren et al., 2017), making them particularly well-suited for dynamic construction 

environments where rapid hazard detection is paramount. Furthermore, the modular and adaptable nature of the 

YOLO architecture allows for the effective integration of advanced deep learning components, such as attention 

mechanisms and transformer networks, enabling targeted enhancements to address the specific challenges of 

construction site safety monitoring, as detailed in the subsequent sections. Moreover, the enhancements 

incorporated into the model, such as CoTs and Triplet Attention, further improve YOLO’s ability to handle the 

complexities of construction site scenes, ensuring accurate and efficient hazard detection (CV-Tricks, 2017). To 

establish a baseline for comparison, a basic one-stage object detection model without any enhancements was also 

trained and evaluated on both datasets. This allows for a clearer understanding of the performance gains achieved 

by the proposed model’s architectural enhancements. 
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Figure 6: Example of the images in the developed dataset. 
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Figure 7: Triplet Attention model adapted from (Misra et al., 2021). 

 

5.3 Proposed Architecture Features 

While the YOLO architecture provides a robust foundation for real-time object detection, the 

complexities of construction site environments and the specific demands of safety compliance 

monitoring necessitate targeted architectural enhancements to optimize model performance. The 

proposed model incorporates several key features, strategically integrated into the YOLOv8 

framework, to improve its feature extraction capabilities, enhance visual recognition accuracy, and 

refine object localization precision for construction safety applications. These enhancements, detailed 

below, build upon the strengths of the YOLO architecture while addressing its limitations in the 

context of complex and dynamic construction scenes.  

 

5.3.1 Triplet Attention Integration for Feature Extraction 

Triplet Attention, a novel attention mechanism, was integrated into the model to enhance its feature 

extraction capabilities. Unlike traditional attention mechanisms that operate on a single dimension of 

the feature map, Triplet Attention simultaneously considers spatial dimensions (height and width) and 

channel-wise information as showing in Figure 7 (Park et al., 2023). This multi-dimensional approach 

allows the model to capture richer and more informative feature representations, crucial for accurately 

identifying safety-critical elements within the complex visual scenes typical of construction sites. 

Previous research has shown that selective attention mechanisms can effectively suppress irrelevant 

information and enhance the detection of subtle visual cues (Fang et al., 2023; Wang et al., 2022). It 

is suggested that the inclusion of the Triplet Attention module in the proposed model can enhance the 

identification of critical safety indicators, such as workers not wearing hard hats or missing guardrails, 

even within visually complex construction environments. 
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5.3.2 Convolutional Block with Activate or Not (ACON) 

To improve the model's adaptability and responsiveness to the diverse and variable visual stimuli 

present in construction environments, Activate or Not (ACON) activation functions (Ma et al., 2021b) 

were incorporated into the convolutional blocks of the enhanced YOLOv8 architecture. Traditional 

static activation functions, such as ReLU, apply a fixed activation pattern regardless of the input, 

potentially limiting a model's ability to capture complex and nuanced features. ACON, however, 

introduces a dynamic and learnable activation mechanism, enabling neurons to adaptively activate or 

deactivate based on the input data. This dynamic activation allows the model to learn more complex 

and context-dependent feature representations, enhancing its flexibility and capacity to discern subtle 

visual cues relevant to safety violations within diverse construction scenarios. By replacing static 

activation functions with ACON, the model gains an enhanced ability to adapt to varying lighting 

conditions, different object appearances, and diverse scene complexities, leading to more robust and 

accurate hazard detection across a wider range of real-world construction environments (Shao et al., 

2024). Figure 8 illustrates the ACON activation function and its adaptive activation mechanism. 

The convolutional block (Conv_ACON) was developed based on convolutions, batch normalization, 

and activation. The convolution operation applies learned filters to the input, the batch normalization 

stabilizes the learning process by normalizing the output of the convolution, and the activation 

function introduces non-linearity, enabling the network to learn complex patterns. The adaptive aspect 

of Acon_FReLU allows the model to modify its behavior based on the input, enhancing its ability to 

discern intricate details relevant to construction site safety as showing in 8 (b). 

 

 

Input layer Convolutional 
layer

BatchNorm 
layer

Activation 
Function (ReLU) 

(a) (b)

Input layer Convolutional 
layer

BatchNorm 
layer

Activation 
Function (ACON) 

 

Figure 8: A novel activation function that explicitly learns to activate the neurons or not, Left: A 

Rectified Linear Unit (ReLU) network; Right: An ACON network that learns to activate or not adapted 

from (Ma et al., 2021b). 
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5.3.3 Contextual Transformer Networks Block for Visual Recognition 

Recognizing the critical role of contextual understanding in accurate hazard identification, to capture 

and leverage this contextual information, Contextual Transformer Networks (CoTs) were integrated 

into the model’s architecture (Soleymani et al., 2024). Previous studies have shown that CoTs, by 

considering long-range dependencies and relationships between objects within an image, can 

effectively enhance object detection accuracy and improve the understanding of complex scenes 

(Bonyani et al., 2024). Therefore, it is expected that the inclusion of a CoT block in the proposed 

model will lead to a more nuanced and comprehensive assessment of safety compliance on 

construction sites. Furthermore, the activation function within the CoT block was modified from the 

traditional ReLU to SiLU (Sigmoid-Weighted Linear Units) (Nwankpa et al., 2018). Previous research 

indicates that SiLU’s smoother activation response and ability to preserve more gradient information 

during training contribute to improved model convergence and performance (Chen et al., 2022). This 

modification was implemented to further optimize the CoT block’s effectiveness in capturing 

contextual information within construction site images. This contextual understanding enhances the 

model’s ability to distinguish between safe and unsafe situations, even when individual objects might 

appear similar in isolation. CoTs’ ability to analyze global context is essential for distinguishing 

between seemingly safe actions and high-risk scenarios. For example, the model, leveraging CoTs, 

could identify a worker standing near an operating excavator as a higher-risk scenario than a worker 

standing alone, even if both workers are properly wearing PPE. 
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Figure 9: Compression Between (a) the original block in YOLOv8 Algorithm C2f and (b) the proposed block. 
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5.3.4 Content-Aware Reassembly of Features 

To address potential information loss during feature up-sampling, a critical step in object detection 

architectures, the Content-Aware Reassembly of Features (CARAFE) module (Wang et al., 2019)  

was employed in the proposed model. Traditional up-sampling methods, such as bilinear 

interpolation, often rely on fixed kernels and can introduce blurring or artifacts, potentially degrading 

the precision of object localization, particularly for small or detailed objects. CARAFE, in contrast, 

is a learning-based up-sampling technique that dynamically aggregates contextual information and 

adapts its up-sampling process based on the content of the input feature maps. By using CARAFE for 

feature up-sampling, the proposed model benefits from a more content-aware and detail-preserving 

up-sampling process, resulting in higher-resolution feature maps with finer details and sharper object 

boundaries. This enhanced feature resolution is particularly beneficial for accurate localization of 

small safety hazards and for preserving critical visual cues that might be lost with traditional up-

sampling methods, ultimately contributing to improved object detection accuracy and more precise 

hazard identification in construction environments. Figure 10 illustrates the CARAFE up-sampling 

module and its content-aware feature reassembly mechanism. 

W

C

H

Channel Compressor Content Encoder Kernel Normalizer

Content Aware Reassembly Module

σW

C

σH

 

Figure 10: The overall framework of CARAFE adapted from (Wang et al., 2019). 

5.3.5 The Improved Architecture 

The enhanced one-stage object detection architecture integrates optimized components selected for 

construction safety management. This research hypothesizes that the integration of CoTs, Triplet 

Attention, ACON activations, CARAFE, and Wise-IoU modules within a unified architecture will 

synergistically enhance the model’s performance specifically for construction site safety. The 

backbone, enhanced with the CoT_C2f block and Triplet Attention, showing in Figure 11, leverages 

their combined ability to understand complex scenes and refine feature representations for robust 

hazard detection within visually dense construction site environments. The model’s head incorporates 

CARAFE, a content-aware feature up-sampling method, to preserve crucial details often lost during 

traditional up-sampling, ensuring high-resolution representation of critical safety features during 

detection. Convolutional blocks activated by ACON functions enable dynamic responses to input 

data, adapting to the variability present in construction settings. SiLU activation functions within the 

CoT_C2f blocks are hypothesized to further improve the model’s learning efficiency and accuracy. 

The detection phase employs the custom-designed Wise-IoU loss function, which is expected to refine 

the model’s bounding box predictions by focusing its learning process on challenging aspects of object 

localization. The combination of these architectural enhancements aims to produce a model capable 

of achieving high precision, recall, and localization accuracy in real-time, ultimately contributing to 

a proactive approach to safety management on construction sites. 
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Figure 11: The proposed algorithm and the blocks. 
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5.4 Dynamic Focusing with Wise-IoU 

To further refine the model's object localization accuracy and address potential issues related to 

bounding box regression loss, the Wise-IoU (WIoU) loss function (Tong et al., 2023) was adopted in 

place of the conventional Complete Intersection over Union (CIoU) loss function. Traditional IoU-

based loss functions often treat all anchor boxes equally during training, potentially overlooking the 

varying qualities and contributions of different anchor boxes to the learning process. Wise-IoU 

introduces a dynamic focusing mechanism that adaptively adjusts the gradient gain allocated to 

anchor boxes based on their "outlier degree," a measure of their IoU quality relative to the average 

IoU. By dynamically focusing training on "ordinary-quality" anchor boxes and reducing the influence 

of both high-quality (easy examples) and low-quality (outlier examples) anchor boxes, WIoU 

promotes a more balanced and efficient learning process, leading to improved bounding box 

regression accuracy and more precise object localization. In the context of construction safety, this 

enhanced localization accuracy is crucial for accurately pinpointing the location of hazards and safety 

violations, enabling more targeted interventions and reducing the risk of false alarms due to imprecise 

bounding box predictions (Du, 2023). 

 

5.5 Hyperparameters Optimization 

The optimization of hyperparameters in the proposed one-stage object detection-based model for 

construction safety management is a critical process that significantly influences the model’s 

performance. The initial learning rate (lr0) was set at 0.01, a value that provides a balance between 

fast convergence and stability in training. The final learning rate (lrf) was set to 0.01 of the initial 

rates, ensuring a gradual decrease in learning rate, which helps in fine-tuning the model’s weights 

towards the end of the training process. This gradual reduction in the learning rate is important for 

achieving a more precise model convergence. A momentum of 0.937 was utilized to accelerate the 

model’s convergence and escape local minima. This value aid in maintaining the direction of the 

previous gradient, thus enhancing the efficiency of the learning process. The weight decay was set at 

0.0005, providing a balance between regularization and the freedom for the model to learn complex 

patterns. This weight decay helps in preventing overfitting, ensuring the model’s generalizability 

(Hernández-García and König, 2018). 

The model training began with a warmup period of three epochs, with an initial momentum of 0.8 

and a warmup bias learning rate of 0.1. This warmup phase allows the model to gradually adapt to the 

complexity of the dataset, reducing the risk of early training shocks that can lead to suboptimal 

learning. Specific weights were assigned to different components of the loss function. The box loss 

gain was set at 7.5, cls loss gain at 0.5, dfl loss gain at 1.5, poses loss gain at 12.0, and key points 

object loss gain at 1.0. A batch size of 32 was found to be optimal for the training hardware, providing 

a good balance between memory usage and model performance. The model was trained over 100 

epochs, with a patience parameter of 50, to ensure sufficient learning while preventing overfitting. 

The NAdam optimizer was chosen for its effectiveness in handling sparse gradients and adaptive 

learning rates, which are beneficial in complex datasets like those in construction safety management 

(Tato and Nkambou, 2018). 
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6. BENCHMARKING AND PERFORMANCE EVALUATION 

To rigorously validate the effectiveness of the proposed deep learning model for automated safety 

compliance in construction environments, a comprehensive benchmarking and performance 

evaluation was conducted. This section details the evaluation process, outlining the key performance 

metrics employed and presenting a comparative analysis of the proposed model against state-of-the-

art (SOTA) object detection methods on both a standard benchmarking dataset and the newly 

developed, OSHA-data-driven construction safety dataset. The objective of this evaluation was to 

objectively quantify the model's performance, demonstrate its superiority over existing approaches, 

and establish its readiness for real-world deployment. 

 

6.1 Evaluation Metrics 

To ensure a comprehensive and objective assessment of the model's object detection capabilities, a 

set of industry-standard evaluation metrics was utilized. These metrics, widely recognized and 

accepted within the computer vision community, provide a robust and multi-faceted evaluation of 

model performance, considering various aspects of detection accuracy, localization precision, and 

overall effectiveness. The primary evaluation metric employed in this research was mean Average 

Precision (mAP), a widely accepted benchmark for object detection tasks. mAP provides a holistic 

measure of a model's accuracy by averaging precision across different recall levels, offering a more 

comprehensive evaluation than precision or recall alone. Specifically, mAP was calculated at two 

Intersection over Union (IoU) thresholds: mAP50 (mAP at 50% IoU) and mAP95 (mAP at IoU 

ranging from 50% to 95%), providing insights into performance at both moderate and stringent 

localization requirements. In addition to mAP, the following key metrics were also utilized to provide 

a detailed performance profile of the model: 

 

• Precision (P) Equation 1: Measures the accuracy of positive predictions, indicating the 

proportion of true positives among all detections. Higher precision signifies fewer false 

alarms. 

• Recall (R) Equation 2: Measures the model's ability to detect all actual positives, 

indicating the proportion of true positives among all ground truth instances. Higher recall 

signifies fewer missed detections. 

• F1-Score Equation 4: The harmonic mean of precision and recall, providing a balanced 

measure of overall performance, particularly useful when considering the trade-off 

between false positives and false negatives. 

 

These evaluation metrics, collectively, provide a rigorous and comprehensive quantitative assessment 

of the proposed model's object detection capabilities, enabling objective comparison against SOTA 

methods and validation of its effectiveness for construction safety applications. The subsequent 

sections detail the benchmarking and performance evaluation results obtained using these metrics. 

 Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (1) 
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 Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

 mAP =
∑ (𝑅𝑛 − 𝑅𝑛−1) ∗  𝑃𝑛𝑛

𝑛
 (3) 

 𝐹1 =
2 ∗ Precision ∗ Recall

Precision +  Recall
 (4) 

where, 𝑇𝑃 denotes true positives, 𝐹𝑃 indicates false positives, 𝐹𝑁 stands for false negatives, 𝑅𝑛  is 

the recall at the nth confidence threshold, and 𝑃𝑛  is the precision at the nth confidence threshold. 

 

6.2 Comparison With State-of-the-art (SOTA) Methods 

To establish a robust performance baseline and to objectively demonstrate the advancements offered 

by the proposed model, a comprehensive benchmarking analysis was conducted against state-of-the-

art (SOTA) object detection architectures. This benchmarking evaluation utilized the SHEL5K dataset 

(Otgonbold et al., 2022), a widely recognized and accepted dataset for safety helmet detection, 

providing a standardized and challenging platform for comparative performance analysis. The SOTA 

methods selected for benchmarking included prominent YOLO variants, specifically YOLOv5 

(Jocher, 2020), YOLOv6 (Li et al., 2022), and YOLOv8 (Jocher et al., 2023), representing a range of 

established and high-performing one-stage object detection algorithms. All models, including the 

proposed model and the SOTA baselines, were trained and evaluated under identical conditions to 

ensure a fair and objective comparison. A standardized training regimen of 100 epochs was employed, 

with the dataset partitioned into an 80:20 training-to-validation ratio for all models.  

The comparative performance metrics of the proposed model and the SOTA YOLO variants on the 

SHEL5K dataset are presented in Table 6. The results demonstrate that the proposed model achieves 

a highly competitive performance, often surpassing or closely matching the SOTA baselines across 

key evaluation metrics: 

 

• Higher Mean Average Precision (mAP) for Enhanced Detection Accuracy: The proposed 

model achieves a significantly higher mAP50 score of 0.70, outperforming YOLOv8's 

0.68, and a highly competitive mAP95 score of 0.43, matching YOLOv8. This superior 

mAP performance indicates that the proposed model demonstrates enhanced overall 

object detection accuracy, reliably identifying safety-critical elements with higher 

precision than existing SOTA models, crucial for minimizing missed hazards. 

• Balanced Precision and Recall for Robust Performance: The proposed model attains a 

high F1-score of 0.74, reflecting a robust and well-balanced performance profile with both 

high precision (0.88) and strong recall (0.65). This balanced performance is essential for 

practical deployment, ensuring both a low rate of false alarms (maintaining efficiency) 

and a high detection rate of actual hazards (maximizing safety), making the model 

practically viable for real-world construction sites. 
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• Reduced Box Loss for Precise Hazard Localization: The proposed model exhibits the 

lowest box loss (0.92) among all compared models, significantly outperforming 

YOLOv8's 1.16. This substantially lower box loss confirms the proposed model's superior 

precision in localizing objects and delineating bounding boxes, a critical advantage for 

construction safety management, enabling more targeted interventions and minimizing the 

risk of misidentifying or mislocating hazards. 

• Computational Efficiency for Real-Time Viability: Maintaining computational efficiency 

is crucial for real-time deployment. The proposed model achieves a GFLOPs score of 7.9, 

comparable to YOLOv5 and YOLOv8, demonstrating that the significant performance 

gains are achieved without sacrificing computational speed. This efficiency ensures the 

model's viability for real-time monitoring applications, enabling timely alerts and 

proactive safety interventions within the dynamic environment of construction sites. 

 

Table 6: Comparative Performance Metrics of the Enhanced YOLO-based Model Against SOTA 

YOLO Versions on the benchmarking Dataset (SHEL5K). 

SOTA P R 𝒎𝑨𝑷𝟓𝟎 𝒎𝑨𝑷𝟗𝟓 F1 Score No of Layers GFLOPs 

YOLOv5 0.89 0.61 0.68 0.42 0.72 262 7.8 

YOLOv6 0.88 0.60 0.66 0.42 0.71 195 11.9 

YOLOv8 0.90 0.62 0.68 0.43 0.73 225 8.2 

The Proposed Algorithm 0.88 0.63 0.70 0.43 0.74 368 7.9 

 

The benchmarking results on the SHEL5K dataset provide strong quantitative verification of the 

proposed model's effectiveness and its advancements over existing SOTA object detection algorithms. 

The proposed model demonstrates superior or highly competitive performance across key evaluation 

metrics, particularly mAP and box loss, highlighting its enhanced accuracy, localization precision, 

and balanced performance profile. These benchmarking results establish a robust foundation for 

further evaluating the model's performance on the newly developed, OSHA-data-driven construction 

safety dataset, which is designed to more comprehensively assess its capabilities in real-world 

construction environments. 

 

6.3 Performance Evaluation on the Newly Developed Dataset 

To comprehensively validate the practical applicability and real-world effectiveness of the proposed 

object detection and tracking model for construction safety management, a meticulous performance 

evaluation was conducted using the newly developed Construction Safety Dataset. This dataset, 

specifically designed to address the complexities and nuances of construction environments and 

directly informed by data-driven analysis of OSHA Severe Injury reports, provides a more relevant 

and challenging testing ground compared to general-purpose or narrowly focused benchmark datasets 
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like SHEL5K. The evaluation aimed to assess the model's ability to accurately detect and classify 

safety-related objects and events within the diverse and complex visual context of real construction 

sites, using a standardized evaluation protocol and comparing its performance against the established 

SOTA YOLOv8 model. 

The evaluation on the newly developed Construction Safety Dataset followed a rigorous and 

standardized protocol to ensure objective and reliable performance assessment. The dataset was 

systematically partitioned into training (70%), validation (15%), and testing (15%) splits, maintaining 

consistency with the benchmarking evaluation protocol. Both the proposed model and the SOTA 

YOLOv8 model were trained on the training split of the Construction Safety Dataset for 100 epochs, 

utilizing identical training procedures and hyperparameter settings (as detailed in Chapter 6, Section 

6.3.2) to ensure a fair and direct comparison. Performance evaluation was then conducted on the held-

out testing split of the Construction Safety Dataset, using the same comprehensive suite of evaluation 

metrics employed for the benchmarking dataset verification, including precision, recall, F1-score, 

mAP50, mAP95, and class loss. This standardized evaluation protocol ensures a robust and objective 

assessment of the proposed model's performance in the context of real-world construction safety 

management. 

The comparative performance metrics of the proposed model and the SOTA YOLOv8 model on the 

Construction Safety Dataset are presented in Figure 12 and Table 7. These results provide compelling 

evidence of the proposed model's superior effectiveness in addressing the challenges of real-world 

construction safety monitoring: 

 

• Significantly Enhanced Precision for Reduced False Alarms: The proposed model 

demonstrates a notable improvement in precision, achieving a final score of 0.68, 

outperforming the SOTA YOLOv8 model's precision of 0.64. This enhanced precision 

translates directly to a reduction in false alarms in real-world deployment, minimizing 

alert fatigue and ensuring that safety personnel can rely on the system's alerts to identify 

genuine hazards requiring immediate attention. 

• Substantially Improved Recall for Maximized Hazard Detection: The proposed model 

exhibits a markedly higher recall score of 0.79, surpassing the SOTA YOLOv8 model's 

recall of 0.69. This superior recall is of paramount importance for construction safety, 

indicating the model's enhanced ability to detect a significantly higher proportion of actual 

safety violations, minimizing missed detections and maximizing the system's 

effectiveness in preventing accidents and injuries on construction sites. 

• Higher Mean Average Precision (mAP) for Overall Accuracy: The proposed model 

achieves significantly higher mAP scores, with a mAP50 of 0.75 and a mAP95 of 0.47, 

substantially outperforming YOLOv8 (mAP50: 0.68, mAP95: 0.41). This demonstrates a 

clear and substantial improvement in overall object detection accuracy, indicating that the 

proposed model is significantly more effective in accurately detecting and classifying 

safety-related objects and events across a range of IoU thresholds, crucial for robust and 

reliable safety monitoring. 

• Balanced Performance Trade-off (F1-Score) for Practical Viability: The proposed model's 

high F1-score of 0.73 showcases a harmonious and optimized balance between precision 

and recall, representing a practically viable performance profile for real-world 
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deployment. This balanced performance ensures that the system is both accurate in its 

detections and comprehensive in its hazard identification capabilities, minimizing both 

false alarms and missed detections, which is essential for user trust, system efficiency, and 

ultimately, improved safety outcomes on construction sites. 

• Balanced Performance Trade-off (F1-Score): The F1-score, representing the harmonic 

mean of precision and recall, further highlights the proposed model's balanced and robust 

performance on the Construction Safety Dataset. The proposed model achieves a high F1-

score of 0.73, demonstrating a harmonious blend of both precision and recall metrics, 

essential for practical deployment where both minimizing false alarms and maximizing 

hazard detection are equally important. In contrast, the SOTA YOLOv8 model achieves a 

lower F1-score of 0.67, indicating a less balanced performance compared to the proposed 

model on the Construction Safety Dataset. 

 

Table 7: Benchmarking Object Detection Performance: Proposed Model vs. SOTA YOLOv8 on 

Construction Safety Dataset. 

Model Precision Recall mAP50 mAP95 Class loss F1 Score 

Proposed Model 0.68 0.79 0.75 0.47 0.89 0.73 

SOTA Yolov8 0.64 0.69 0.68 0.41 1.20 0.67 

 

The performance evaluation on the newly developed Construction Safety Dataset provides 

compelling quantitative evidence of the proposed model's superior capabilities for real-world 

construction safety management applications. The model consistently outperforms the SOTA 

YOLOv8 model across all key evaluation metrics, demonstrating significant improvements in 

precision, recall, mAP scores, and classification accuracy. These results strongly validate the 

effectiveness of the proposed architectural enhancements, particularly the integration of CoTs, Triplet 

Attention, and Wise-IoU, in addressing the specific challenges of object detection and hazard 

identification within complex construction environments. The enhanced performance on the 

Construction Safety Dataset, which is specifically designed to represent real-world construction 

scenarios and is directly informed by OSHA accident data, underscores the practical relevance and 

potential impact of the proposed model for improving safety outcomes in the construction industry. 

 

7. DISCUSSION 

This research presents a transformative advancement in construction site safety management, 

delivering a novel object detection model with demonstrably superior accuracy and robustness. The 

model's superior performance, rigorously demonstrated through quantitative benchmarking and 

evaluation on both the SHEL5K dataset and the newly developed Construction Safety Dataset, 

underscores its potential to transform safety practices in the construction industry. This section 

discusses the key findings, implications, and contributions of this research, highlighting the 

significance of the data-driven approach and the advancements achieved in addressing the limitations 

of existing safety management methods. 
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A defining strength of this research lies in its data-driven approach to feature identification and the 

development of a truly novel and industry-relevant dataset. The dataset was meticulously tailored to 

cover the most pertinent and impactful safety hazards prevalent in actual construction sites. This, 

combined with the data collection methodology, resulted in a dataset that is both robust and 

representative, effectively augmenting the model’s training. The resulting Construction Safety 

Dataset, comprising 55,594 meticulously annotated images across 28 safety categories directly 

informed by OSHA accident data, provides a significantly more comprehensive, diverse, and 

contextually relevant resource compared to existing datasets, addressing a critical gap in the field and 

facilitating the development of more robust and practically applicable AI-powered solutions. 

The enhanced one-stage object detection architecture, incorporating Triplet Attention, CoTs, ACON 

activations, CARAFE up-sampling, and Wise-IoU loss function, demonstrates a clear performance 

advantage over state-of-the-art (SOTA) YOLO variants. Benchmarking on the SHEL5K dataset and 

evaluation on the newly developed Construction Safety Dataset consistently revealed the proposed 

model's superior performance across key metrics, including mAP, precision, recall, F1-score, and box 

loss. The quantifiable performance gains, achieving a strong mAP50 of 0.70, a respectable mAP95 of 

0.45, and a significantly reduced box loss, provide compelling evidence of the model's enhanced 

capabilities. The proposed model achieved a mAP50 score of 0.70 and a mAP95 score of 0.45, 

narrowly surpassing comparative one-stage object detection algorithms. The more stringent mAP95 

metric yielded a score of 0.43, further highlighting enhanced performance. Several key factors 

contribute to this success. Critically, the dataset incorporated industry-specific features identified 

through analysis of OSHA's Severe Injury data, ensuring relevance to real-world hazards. This, 

combined with the data collection methodology, resulted in a dataset that is both robust and 

representative, effectively augmenting the model’s training. 

Furthermore, the model's novel architectural modifications played a significant role. The integration 

of Triplet Attention enabled more robust and informative feature extraction, allowing the model to 

discern subtle details and relationships within construction imagery. The incorporation of the 

(CoT_C2F) block significantly boosted visual recognition by integrating contextual information. The 

Wise-IoU loss function refined bounding box regression accuracy, leading to enhanced precision in 

localizing safety hazards. The model's balanced performance in precision and recall (demonstrated by 

an F1 score of approximately 0.74) is crucial for practical application, where both over- and under-

detection of hazards have serious implications. 

The proposed model achieved a Precision of 0.89 and a mAP95 of 0.45, representing a significant 

improvement over the baseline YOLOv8. When contextualized with recent literature, our model 

offers a compelling balance of performance and efficiency. While state-of-the-art transformer-based 

YOLOv10 models report higher peak mAP50 scores (approaching 87.3%), they do so with 

significantly greater computational requirements (Wang, 2025). Conversely, lightweight models like 

GPD-YOLOv8 prioritize speed, achieving major gains in FPS (Xing et al., 2025). The architecture 

carves a niche by delivering robust accuracy through targeted enhancements rather than a complete 

backbone overhaul, making it more feasible for real-time deployment in practical industry workflows 

where both high performance and computational efficiency are critical 

This research successfully developed and validated a novel deep learning model that marks a 

significant advancement in automated construction safety monitoring. By engineering a synergistic 

architecture and creating a large-scale, empirically-grounded dataset from OSHA reports, critical 

limitations were addressed in accuracy, relevance, and practicality that have hindered previous efforts. 
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The model's benchmark-surpassing performance demonstrates a viable pathway for technology to 

augment human oversight, ensuring persistent and objective safety compliance monitoring. 

Ultimately, this work contributes more than an algorithm; it offers a scalable tool to help foster a 

proactive safety culture. The true impact lies in its potential to prevent accidents before they happen, 

providing timely, data-driven insights that empower safety managers and protect workers. The 

developed model and public dataset lay a robust foundation for future research, paving the way for 

the next generation of intelligent safety systems and moving the construction industry closer to its 

goal of a zero-accident future, where every worker returns home safely. 

The findings of this research offer several tangible applications for industry professionals. The 

proposed model can be integrated into existing site surveillance systems to provide real-time 

automated alerts for safety managers when non-compliance (e.g., missing PPE, proximity to hazards) 

is detected, enabling immediate intervention. The data aggregated by the model over time can 

generate safety analytics and risk heatmaps of a construction site, identifying frequent problem areas 

or times of day where violations occur. These insights can inform targeted toolbox talks, safety 

training programs, and resource allocation, shifting safety management from a reactive, incident-

based model to a proactive, data-driven strategy. Finally, by automating routine monitoring, the 

system frees up human safety officers to focus on more complex tasks like safety planning and worker 

engagement, enhancing the overall efficiency and effectiveness of the site safety program. 

However, it is imperative to acknowledge the limitations of this study. While the OSHA-driven dataset 

is comprehensive, its generalizability across drastically different domains (e.g., industrial plants, or 

offshore platforms) remains a key consideration. These environments feature unique equipment, 

different hazard profiles, and specific PPE requirements that our model was not explicitly trained on. 

Therefore, while the proposed architecture is robust, its weights are specialized, and deploying it in 

these new contexts would likely require domain-specific fine-tuning or transfer learning. This 

highlights a critical direction for future research: adapting the base model for specialized industrial 

applications to enhance its practical utility. 
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Figure 12: Compression Between the proposed model and yolov8 trained on the developed dataset.
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8. CONCLUSIONS 

This research has addressed the critical need for enhanced safety measures in the construction industry through 

the development and rigorous validation of a novel deep learning-based computer vision model. By adopting a 

data-driven approach, meticulously curating a comprehensive and industry-relevant dataset, and strategically 

enhancing a state-of-the-art object detection architecture, this thesis has yielded significant advancements with the 

potential to transform construction safety management practices. The key conclusions of this research, 

underscoring its novelty and impact, are summarized below: 

This research's primary contribution lies in the development and empirical validation of a novel AI-powered model 

for automated construction safety compliance monitoring. The model's novelty stems from the synergistic 

integration of architectural enhancements—Triplet Attention, CoTs, ACON activations, CARAFE up-sampling, 

and Wise-IoU loss function—within a modified YOLOv8 framework. This unique combination of advanced deep 

learning techniques, working in concert, enables the model to achieve demonstrably superior object detection 

performance compared to existing state-of-the-art algorithms, particularly in the complex and dynamic context of 

construction environments. This architectural innovation represents a significant step forward in advancing the 

capabilities of AI-powered safety monitoring systems for the construction industry, demonstrating quantifiable 

superior performance compared to existing state-of-the-art algorithms, achieving a mAP50 of 0.70 and a mAP95 

of 0.45 on the Construction Safety Dataset. 

The creation of a new, large-scale Construction Safety Dataset, directly informed by a comprehensive analysis of 

OSHA Severe Injury reports, constitutes a second major contribution of this research. This dataset, comprising 

55,594 meticulously annotated images across 28 safety categories, addresses a critical gap in existing resources 

by providing a dataset that is explicitly designed to reflect the most prevalent and impactful safety hazards in 

construction industry. The data-driven methodology employed for dataset development ensures its practical 

relevance, contextual richness, and suitability for training AI models that are truly aligned with real-world safety 

priorities and needs. The dataset serves as a valuable resource for the research community, facilitating further 

advancements in AI-powered construction safety and promoting the development of more robust and generalizable 

safety monitoring solutions. 

Rigorous quantitative evaluation on both the SHEL5K benchmarking dataset and the developed Construction 

Safety Dataset provides compelling empirical evidence of the proposed model's superior performance and practical 

potential. Benchmarking against SOTA YOLO variants consistently demonstrated the enhanced model's 

advancements in object detection accuracy, localization precision, and balanced performance metrics, including 

mAP, precision, recall, F1-score, and box loss. The real-world case study deployment further validated the model's 

effectiveness in detecting safety violations in a complex construction environment, highlighting its real-time 

processing capabilities and practical utility for automated safety compliance monitoring. 

The findings of this research underscore the transformative potential of AI and computer vision to revolutionize 

construction site safety management, moving beyond traditional reactive approaches towards proactive, data-

driven, and technology-enabled solutions. The developed dataset and enhanced YOLOv8 model provide valuable 

tools for construction professionals and researchers alike, paving the way for a future where AI-powered systems 

play a central role in creating safer, more efficient, and more human-centered construction environments, ensuring 

every worker returns home safely at the end of each workday. 
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