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SUMMARY: This paper presents an automated method for converting laser-scanned point cloud data of steel 

structures into accurate digital 3D models. Point cloud data from laser scanning in such environments typically 

contains gaps, occlusions, and noise that complicate precise digital reconstruction of complex steel frameworks. 

Our approach addresses these limitations by combining geometric feature analysis with skeleton-based topology 

preservation. The method identifies individual steel beam instances within the point cloud, determines precise 

beam orientations through iterative model-based algorithms, and reconstructs occluded sections using skeletal 

representations. Cross-sectional profiles are matched to standardized catalogs through multi-objective 

optimization, generating complete 3D models in IFC format. Validation on industrial point cloud data of I-beam 

steel structures demonstrates high accuracy, achieving a mean angular precision of 0.1° for beam orientation and 

a mean geometric deviation of 4.1 mm between source data and reconstructed models. The method maintains 

robust performance across varying point densities and partial occlusions. This technology addresses critical needs 

in the construction and manufacturing industries. Potential applications include automated as-built 

documentation, construction quality control, retrofit planning for existing structures, and generation of digital 

models for infrastructure management. The automated processing eliminates manual interpretation bottlenecks in 

point cloud workflows, reducing processing time significantly. 
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1. INTRODUCTION 

Along the entire lifecycle of facilities in the built environment, stakeholders involved in the AECO industry 

(Architecture, Engineering, Construction, and Operations) can benefit from digital models, given they are up-to-

date and accurate with regard to the required information. With the introduction and widespread application of 

BIM (Building Information Modeling), this fact has received great attention for the planning and construction of 

buildings (Borrmann et al., 2018). For existing building stock without digital models, data needs to be collected 

and transformed into a usable format, which is expensive and time-consuming (Fumarola & Poelman, 2011). 

Similarly, facilities are, in general, subject to updates and changes, so the respective digital models need to be kept 

up to date to preserve their full value (Bosché et al., 2015). Research on the topic of Scan-to-BIM aims to solve 

this issue by automating the process to make the relevant information available for efficient renovation, 

maintenance, and facility management (Son, Kim, & Turkan, 2015; Q. Wang, Guo, et al., 2019). 

The technology involved in the Scan-to-BIM Process has evolved significantly in recent years. Patraucean et al. 

(2015) provide a comprehensive overview and highlight key challenges for automation in as-built modeling, 

including clutter, occlusions, and other reasons for data incompleteness. These challenges are particularly evident 

in industrial settings, where complex geometries, dense environments, and the presence of specialized equipment 

create a challenging environment. 

Industrial facilities present specific challenges for Scan-to-BIM implementation, specifically in Mechanical, 

Electrical, and Plumbing (MEP) systems. Son, Kim, & Kim (2015) address the intricacies of modeling industrial 

equipment, emphasizing the need for high precision and the utility of prior knowledge from CAD data. To capture 

suitable data for industrial facilities, laser scanning is the most suitable way to acquire site conditions with high 

precision (Fröhlich & Mettenleiter, 2004). Within industrial environments, elongated structural elements with 

various cross-sections – such as beams and columns – present the greatest difficulty for manual modeling tasks, 

necessitating careful consideration of their specific features and challenges (Agapaki et al., 2018). Current 

approaches to this problem have significant limitations: some restrict model generation to center lines only (Smith 

& Sarlo, 2021), some handle only simple cylindrical objects (Yang et al., 2020), while others simplify complex 

cross-sections into cuboids using oriented bounding boxes (OBBs) (Justo et al., 2023). Other methods require 

consistent occlusion patterns along the length of elongated objects for their segmentation algorithms (Yan & Hajjar, 

2022) or for their orientation estimation techniques to function properly (Yang et al., 2020). 

Automating steel structure reconstruction from point clouds remains unsolved, particularly when dealing with 

complex geometries that cause heavy occlusions in captured data. Previous approaches have struggled with issues 

such as unevenly distributed occlusions and have not addressed the identification of standardized cross-sections 

or export to open exchange formats for BIM models. 

Despite advances in point cloud processing and 3D reconstruction, a critical research gap exists in developing 

comprehensive automated methods can simultaneously: (1) handle semantically segmented point clouds with 

significant, inhomogeneous occlusions typical of industrial environments, (2) accurately identify and fit 

standardized steel profile cross-sections to individual beam instances, and (3) generate industry-standard IFC-

compliant BIM models that maintain geometric fidelity while ensuring interoperability across different software 

platforms. 

This paper addresses these challenges by introducing a novel process that leverages both local and aggregated 

geometric features to identify and separate individual beam instances. Our approach combines data-driven and 

model-based techniques to generate detailed, interoperable, and partially parametric procedural 3D models from 

point clouds that have been semantically segmented into the investigated component type. It employs multi-

objective optimization to ensure optimal fitting of standardized steel profile cross-sections to segmented instances, 

even with significant occlusions. 

The key contributions of this paper are: 

1. An automated Scan-to-BIM method generating IFC models for steel structures from semantically 

homogeneous point cloud data, maintaining high fidelity to the original scan geometry 

2. Introduction of two methods to retrieve the orientation of elongated objects at both local and segment 

levels 

3. A multi-objective optimization approach that identifies the best-matching cross-section profile for each 
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beam instance, balancing geometric accuracy with standardized specifications 

4. Experimental validation demonstrating the method's efficacy on real-world industrial point cloud data 

with high geometric complexity and significant, inhomogeneous occlusions. 

The remainder of this paper is organized as follows: Section 2 reviews relevant literature, Section 3 details our 

proposed methodology, Section 4 presents experimental validation and results, and Section 5 concludes with a 

discussion of findings and future directions. 

2. RELATED WORKS 

The domain of Scan-to-BIM has seen various attempts to improve and extend capabilities for broader applications. 

The solutions developed are diverse and varied; some introduce individual processing steps while others aim for 

comprehensive, end-to-end methods. There are some basic processing steps that many methods have in common. 

To structure the following section on related works, the presented methods are grouped into general works on the 

overarching topic of Scan-to-BIM, specific methods for point cloud processing through Semantic and Instance 

Segmentation, Skeleton Extraction and Model Reconstruction. Each domain is covered by the most relevant 

publications to keep this overview brief for such a wide variety of covered topics. 

2.1 Scan-to-BIM 

The term Scan-to-BIM describes the process of converting 3D point clouds, usually laser scans, of existing 

buildings or structures into detailed BIM models, allowing architects, engineers, and other AECO professionals to 

use this data for further activities in planning, management, and others (Son, Kim, & Turkan, 2015; Volk et al., 

2014). Recent research has made substantial progress in developing end-to-end Scan-to-BIM solutions. 

Developments in Scan-to-BIM are often focused on the reconstruction of structural building models. Ochmann et 

al. (2016) introduce an automated method for reconstructing volumetric building models (walls and slabs) based 

on indoor point clouds. Other researchers approach the problem using semi-automatic solutions, combining 

automatic processes with user interaction for complex modeling tasks (Macher et al., 2017). Mehranfar et al. 

(2024) reconstruct BIM models with high accuracy, restricted to Manhattan-world structures. Won Ma et al. (2024) 

present a method that allows one to create models including structural and non-structural objects with high 

accuracy. All three of the aforementioned methods are automated methods that introduced significant novelty to 

the field of Scan-to-BIM. Some works shift focus from major structural parts to finer granularity and aim to 

automatically recognize and model small elements (Adán et al., 2018; Pan, Braun, et al., 2022). 

As mentioned above, the main focus of this work is on the domain of industrial buildings, which poses specific 

challenges. Agapaki et al. (2018) systematically investigate different objects and shapes to prioritize developments 

in Scan-to-BIM for industrial facilities, later providing a compact categorization of relevant shapes by the cross-

section of extruded profiles (CLOI, Agapaki et al., 2019). Yang et al. (2020) present an advanced method to 

reconstruct a specific type of steel truss with high detail, including connecting parts and curved elements. While 

the level of detail of this work is unparalleled, it comprises shortcomings in terms of automation, as several 

processing steps require manual intervention; Furthermore, the high level of detail is limited to a very specific 

connection type between cylindrical members of the structure, limiting the ability of this semi-automated method 

to generalize to other datasets (Yang et al., 2020). Geometric reconstruction of elongated parts requires defining 

center lines for sweep and extrusion operations. Some methods focus on this aspect rather than performing full 

model reconstruction, returning structural beam lines or skeletons (see Section 2.3) from point clouds based on 

several assumptions about input data structure and orientation (Smith & Sarlo, 2021; Yan & Hajjar, 2021). 

However, 3D models of structural lines alone lack information for further processing, such as collision detection 

and quantity takeoff. To create such methods, cross-section shapes need to be determined for each elongated object. 

To address this challenge in the presence of significant occlusions, Yan & Hajjar (2022) process a dataset with 

known scanning locations to apply voxel occlusion labeling by ray tracing. While this is the most advanced 

published method with regard to cross-section fitting, it fails to retrieve cross-section type for these standardized 

profiles, and the applied segmentation method is dependent on lengthwise consistent occlusions (Yan & Hajjar, 

2022). The work by B. Wang et al. (2021) represents a significant step towards full automation in Scan-to-BIM 

solutions for industrial buildings, with a precise method to generate parametric models of complex MEP scenes. 

However, this approach requires an as-designed model for several processing steps and is, therefore, not considered 
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as a pure Scan-to-BIM method but rather connected to the neighboring field of Scan-vs-BIM, which assumes the 

availability of a BIM model of the building (Abreu et al., 2023; Bosché et al., 2015). 

Similar to industrial buildings, many bridges feature components made of extruded profiles. Recently developed 

works in Scan-to-BIM for infrastructure have made significant strides in addressing the unique challenges posed 

by these structures, including the methods mentioned above developed by Yan & Hajjar. Justo et al. (2023) apply 

automated segmentation and classification specifically for bridge components with extruded profiles. Although 

their highly advanced approach includes the creation of structural graphs and an export to IFC (Industry 

Foundation Classes, ISO 16739-1:2024), it remains ambiguous about geometric detail as bridge components are 

merely considered as OBBs (Justo et al., 2023). 

To provide a transparent comparison, Table 1 evaluates the most relevant end-to-end Scan-to-BIM methods for 

elongated parts across five key technical aspects that distinguish advanced methods in this field: automated 

segmentation, automated 3D model reconstruction, non-primitive cross-section handling, robustness to 

inconsistent occlusions along objects, and fully open-source availability of implementation dependencies. These 

aspects were selected because they capture both the automation in critical processing steps and the output 

modalities that differentiate state-of-the-art approaches from conventional methods (as detailed in Section 1). The 

comparison includes the novel method presented in this paper alongside the most relevant existing approaches. 

Table 1: Comparison of end-to-end Scan-to-BIM methods for elongated parts, based on key technical aspects. 

Source 
Automated 

segmentation 

Automated 3D model 

reconstruction 

Non-primitive 

cross-sections 

Robustness to inconsistent 

occlusions along objects 

Fully open-

source 

(Yang et al., 2020) ✗ ✗ ✓ ✓ ✗ 

(Smith & Sarlo, 2021) ✗ ✗ ✓ ✓ ✓ 

(Yan & Hajjar, 2022) ✓ ✗ ✓ ✗ ✓ 

(Justo et al., 2023) ✓ ✓ ✗ ✗ ✓ 

Ours ✓ ✓ ✓ ✓ ✓ 

2.2 Semantic and Instance Segmentation 

Semantic segmentation is a crucial step in the Scan-to-BIM process, as it allows the automated classification of 

point regions in a point cloud into pre-defined semantic categories. Grilli et al. (2017) and Xie et al. (2020) provide 

a comprehensive review of point cloud segmentation and classification algorithms, including edge-based, region-

growing, model-fitting, and machine learning methods. One challenge for semantic segmentation for industrial 

facilities is that there are no publicly available datasets representing the important class categories for such 

facilities (Cazorla et al., 2021; Gao et al., 2021). Yin et al. (2021) have addressed this issue by creating a bespoke 

network architecture for semantic segmentation and training it on their own annotated dataset. Agapaki et al. (2019) 

have collected and reported a dataset in line with the most important object and cross-section types, as mentioned 

in Section 2.1. However, this dataset is not publicly available. To address the challenge of insufficient training 

data, synthetic data integration presents a viable alternative. This approach has been demonstrated by Ma et al. 

(2020) for conventional indoor environments within the S3DIS dataset (Armeni et al., 2016), and subsequently 

extended by Noichl et al. (2024) to industrial plant contexts. 

Instance segmentation goes beyond semantic segmentation by not only classifying points but also distinguishing 

individual instances of objects within the same class (Han et al., 2020). This step is crucial for identifying specific 

building components and thus obtaining the necessary information for model reconstruction, particularly in 

complex industrial environments with multiple similar, often connected elements. However, the lack of domain-

specific training data and the parametric nature of elongated parts prohibit the robust application of Machine 

Learning methods for instance segmentation in the industrial domain. Justo et al. (2023) solve the problem by 

applying PCA (Principal Component Analysis) to identify instance orientation and the fitting and further 

processing OBBs. Campagnolo et al. (2023) apply RANSAC (Schnabel et al., 2007) and DBSCAN (Borah & 

Bhattacharyya, 2004) to distinguish instances of structural building elements. Similarly, Chen et al. (2021) perform 

hierarchical clustering to aggregate points to consistent instance clusters. Agapaki & Brilakis (2021) use geometric 

primitives and machine learning techniques to separate instances of industrial components. Several approaches 
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solve the segmentation problems through projection and subsequent application of pattern matching or similar 

algorithms in 2D (Smith & Sarlo, 2021; Souza et al., 2019). A successful application of such projection-based 

methods requires precise estimation of the direction of elongated components, robust to noise and occlusions. 

Several methods circumvent this challenge by using the assumption of axis-aligned structures and performing 

projections along the axes of the coordinate system (Souza et al., 2019; B. Wang et al., 2021). 

2.3 Skeleton Extraction and Model Reconstruction 

To understand and further process 3D geometries, it is helpful to identify center line structures, often denoted as 

skeletons. There are various ways to obtain such skeletons from 3D geometry, represented in the form of mesh or 

point clouds; Tagliasacchi et al. (2016) provide a comprehensive, generic method overview. For application in 

Scan-to-BIM, Justo et al. (2023) use the identified OBBs to extract centerlines and further processes to generate a 

skeleton representation as a structural graph. Q. Wang, Tan, et al. (2019) retrieve a line-based representation of the 

point cloud in which the lines do not represent the center line but rather the edges that describe the limiting surfaces 

of the building's interior. Pan, Noichl, et al. (2022) use center lines of RANSAC-detected cylindrical shapes for 

the model reconstruction of pipe runs, B. Wang et al. (2021) derive the skeleton representation from slices of the 

point cloud after model-based detection of elements, refined by estimated connection types, similar to the pattern-

matching approaches applied by Smith & Sarlo (2021). 

Elongated parts like pipes, columns, and beams, which have consistent cross-sections (see Figure 1), can be 

efficiently modeled using simple procedural modeling techniques. For conventional steel beams with straight axes, 

a basic extrusion operation suffices. This approach, known in general as a sweep operation, is particularly effective 

for creating 3D models of objects with uniform cross-sections along a defined path (Borrmann & Berkhahn, 2018). 

Amongst others, Pan, Noichl, et al. (2022) and B. Wang et al. (2021) perform sweep operations along paths 

composed of straight and curved sections for straight pipe segments and elbows. Yan & Hajjar (2022) further 

consider changing cross-sections along the skeleton axis. Extruding rectangular cross-sections leads to cuboid-

shaped objects in the reconstructed model. Justo et al. (2023) use refined OBBs for 3D model reconstruction 

directly. Complex, immutable geometries can be inserted from suitable catalogs after detection in the scene (B. 

Wang et al., 2021). Other model types comprise complex shapes controlled by parameters that can be obtained 

through instance enrichment and subsequent optimization to find optimum sets of parameters to fit the input data 

(Mafipour et al., 2023). 

 

Figure 1: Notation for I-shaped profiles according to European standard EC 3-1-1. 

Scan-to-BIM approaches aim to transform captured data into semantically rich, use-case-ready digital models with 

high degrees of automation. While significant progress has been made across various structure and building 

element types, a relevant gap remains in automated processing and reconstruction of steel structures with 

standardized profiles, which are particularly important in industrial environments. Existing methods are limited by 

their inability to handle inconsistent occlusions along elongated objects, accurately identify standardized cross-

section profiles (such as the I-shaped profile depicted in Figure 1), or generate geometrically precise BIM models 
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in open exchange formats. Methods like the one presented by Yang et al. (2020) achieve highly detailed output but 

lack automation, while the approaches by Yan & Hajjar struggle with inconsistent occlusions, and Justo et al. 

(2023) oversimplify their geometric reconstruction to OBBs. Despite several works highlighting the importance 

of extruded profiles in Scan-to-BIM processes, there is no end-to-end approach that effectively addresses these 

challenges while producing detailed, geometrically accurate, and semantically rich 3D models that preserve critical 

dimensional parameters like those standardized in EC 3-1-1 notation. This contribution aims to close this identified 

gap by introducing an automated, tailored method that combines multi-objective optimization for fitting 

standardized profiles with robust orientation estimation techniques, generating an accurate procedural, partially 

parametric 3D model from semantically enriched point cloud data without additional user input. 

3. METHOD 

The presented method is an automated end-to-end method, covering all relevant aspects from semantically 

segmented point cloud to a semantically rich 3D model. In the following, the relevant steps are introduced 

individually. 

3.1 Input Data and Semantic Segmentation 

The raw input point cloud consists of points in 3D space describing the surfaces visible to the scanning equipment. 

Depending on the scanning system used, this data may include color information and scanning intensities, among 

others. In the first step, semantic classes need to be separated. This is a time-consuming and arduous task if 

performed manually. Recent developments in machine learning have shown convincing results in automating this 

task, as introduced in Section 2.2. The input data is assumed to be available in the form of a semantically segmented 

point cloud in this work. Nonetheless, the step of semantic segmentation is mentioned in Figure 2 (dashed outline) 

for the sake of completeness in the overall process. The specific data used in the presented work was segmented 

leveraging synthetic, model-based data. For an in-depth presentation of the dataset, including a detailed report on 

acquisition and segmentation performance, the reader is referred to (Noichl et al., 2024). In the further processing 

steps, only the point coordinates and point normals of the semantic class beam are utilized. 

 

Figure 2: Method overview: from raw point cloud to partially parametric 3D model. 

3.2 Point Cloud Processing 

The proposed method performs point cloud processing through multiple steps. As depicted in Figure 2, the point 

cloud processing steps can be separated into single-pass enrichment and iterative refinement steps. These 

processing steps include specific computation steps, specifically: 

1. Planar Patches 

2. Local Orientation Supernormal 𝒔𝟏⃗⃗⃗⃗   

3. Segment Orientation 𝒔𝟐⃗⃗⃗⃗  and Point Projection 

4. Cross-section Fitting 
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5. Instance Separation: Advanced Region Growing 

6. Instance Refinement: Iterative Aggregation and Skeleton Refinement 

In the following, these individual processing steps are introduced in detail. 

3.2.1 Planar Patches 

The point cloud is clustered into planar patches using RANSAC (RANdom SAmple Consensus, Schnabel et al., 

2007) and DBSCAN (Density-Based Spatial Clustering of Applications with Noise, Ester et al., 1996). First, planes 

are detected in the point cloud using RANSAC iteratively. Inlier points are labeled and removed from the point 

cloud until no plane with more than the threshold points can be detected. Within these labeled plane clusters, 

DBSCAN is used to identify coherent planar patches by clustering points based on spatial distribution and local 

density (see Figure 3). As a result, the point cloud can be processed using these aggregated clusters rather than 

individual points more efficiently and enriched with the first logic of coherent surface patch points. 

 

Figure 3: Identification of planar patches in the point cloud using RANSAC and DBSCAN. 

This ensures that points are only clustered if they belong to the same planar patch, lying on the same idealistic 

plane and within spatial proximity, effectively preventing the connection of patches on disjoint beams to the same 

cluster. 

3.2.2 Local Orientation Supernormal 𝒔𝟏⃗⃗⃗⃗  

Assuming the observed points are located on the surface of an elongated part, their respective normals will point 

outwards and can be utilized to estimate the orientation of the part. For a group of points (𝑛𝑝 ≥ 2), the 

supernormal  𝑠1⃗⃗  ⃗, an estimated part orientation feature is calculated based on the point normals (see Figure 4). 

Initially, the group of points is defined as the inlier points of a local neighborhood with radius 𝑟n. During region 

growing, all points in a cluster are considered as the input group of points. The points within the group are denoted 

as 𝐏 = {𝐩𝟏, 𝐩𝟐, … , 𝐩𝐧} with their associated normal vectors 𝑁 = {𝑛1⃗⃗⃗⃗ , 𝑛2⃗⃗⃗⃗ , … , 𝑛𝑛⃗⃗ ⃗⃗  }, collected in a normals matrix 𝐍 

with 𝑛𝑖⃗⃗  ⃗ as 𝑛 rows. In case input points do not possess normal vectors, they need to be estimated based on their 

respective local neighborhood first. As this step is implemented in numerous libraries and applications, it is out of 

scope for this work. 
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Figure 4: Local orientation feature  𝑠1⃗⃗  ⃗: Extruded part with rectangular cross-section, partially occluded: green 

faces are covered by point cloud, red faces are occluded. Dots depict the points of the point cloud, arrows indicate 

point normal vectors. Exemplary annotated normal 𝑛𝑖⃗⃗  ⃗ and supernormal 𝑠1,𝑖⃗⃗ ⃗⃗  ⃗ for point 𝒑𝑖. 

Using all normal vectors in the group, 𝑠1⃗⃗  ⃗ is calculated using SVD (Singular Value Decomposition), describing a 

direction in space that is the best fit perpendicular vector to all normals in the group. SVD is applied to 𝐍 to retrieve 

   𝐍 = 𝐔𝚺𝐕𝑇, 

   𝚺 = diag(𝜎1, 𝜎2, 𝜎3).      (1) 

where 𝐔 and 𝐕 are the orthogonal matrices obtained from the SVD, 𝚺 constitutes the diagonal matrix with singular 

values, and 𝜎1 ≥ 𝜎2 ≥ 𝜎3 are the singular values. 

𝑠1⃗⃗  ⃗ can be obtained from the last column of 𝐕 

   𝑠1⃗⃗  ⃗ = 𝐕3,        (2) 

and is a vector perpendicular to the direction of maximum variance in 𝐍, and therefore constitutes a first estimate 

of part orientation given a group of points on the part's surface, given the that points do not lie on a single plane or 

multiple parallel planes. 

 

Figure 5: Point cluster: estimated segment orientation 𝑠2⃗⃗  ⃗ defined as the direction of the intersecting line between 

the two detected planes 𝑃1 and 𝑃2, the perpendicular plane 𝑃3 has 𝑠2⃗⃗  ⃗ as its normal vector. 

If the selected group of points does not belong to parts with the same part orientation, 𝑠1⃗⃗  ⃗ can be misleading. To 

prevent this, a confidence value 𝑐𝑠 is computed along with 𝑠1⃗⃗  ⃗, taking into account the number of points in the 

supporting set and the variation of normal orientations within 𝑁 using 𝚺: 

   𝑐𝑠 = √|𝑁| ⋅
𝜎2

𝜎1
⋅ (1 −

𝜎3

𝜎2
),      (3) 
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where |𝑁| denotes the number of points in the supporting set. 𝜎1  is the smallest singular value, corresponding to 

the direction of most variance, 𝜎3 is the largest singular value, corresponding to the direction of least variance, and 

therefore corresponding to  𝑠1⃗⃗  ⃗. 𝜎2/𝜎1   describes the relation between first and second singular value, which are 

ideally equal if the normals are evenly distributed, in a plane, 𝜎3/𝜎2  sets the smallest singular value in comparison 

to the second singular value. The smaller 𝜎3, the smaller the reduction of 𝑐𝑠 by (1 − 𝜎3/𝜎2 ). The higher the value 

of 𝑐𝑠, the more confidence can be attributed to 𝑠1⃗⃗  ⃗ in terms of being a well-supported and accurate vector 

perpendicular to the normals in the supporting group, and the normals in the group depicting a suitable selection 

in terms of the principle introduced above and depicted in Figure 4. 

3.2.3 Segment Orientation 𝒔𝟐⃗⃗⃗⃗  and Point Projection 

Elongated parts such as steel beams possess cross-sections such as rectangles, C-, L-, and I-shapes. Such cross-

sections can be described by combining multiple geometric primitives, typically planes. Therefore, in the 

following, they are referred to as composite cross-sections. Along with round shapes, mostly present in pipe or 

duct systems, composite cross-sections represent the most important part shapes in industrial facilities (Agapaki 

et al., 2018). 

The presented method proposes to estimate the orientation of elongated parts with composite cross-sections using 

RANSAC for plane detection; the underlying principle is depicted in Figure 5. RANSAC is applied to find the 

most prominent plane in the set and remove the inlier points from the point cloud. Plane parameters are stored, 

and RANSAC is repeated until a second plane is found close to perpendicular to the first, within a pre-defined 

threshold 𝜃 (see Figure 6). As RANSAC is a model-based method that is robust to outliers and, therefore, 

occlusions and scanning noise, the resulting intersecting line between those two planes is chosen to identify part 

orientation 𝑠2⃗⃗  ⃗. 

After the orientation 𝑠2⃗⃗  ⃗ has been identified, all points of the cluster are projected onto an idealistic plane 𝑃3 (see 

Figure 5), defined by segment orientation feature 𝑠2⃗⃗  ⃗. The projected points are finally aligned to the 2D coordinate 

system through rotation by the intersecting angle of the most prominent plane 𝑃1 with the x-axis. With the projected 

representation of points, a 2D center of gravity can be estimated using the mean coordinate values and used for 

further processing of the point cluster for cross-section fitting. 

 

Figure 6: Orientation estimation in point clusters by intersection of detected planes. 
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3.2.4 Cross-section Fitting 

Following instance separation and refinement, the projected and axis-aligned points (see Figure 7a) are used to fit 

a parametric polygon (see Figure 7b,c) representing an I-shaped steel profile cross-section. Across national 

standards (e.g., AISC, EC 3-1-1: Figure 1), I-shaped cross-sections are defined by the parameter set 

 𝜽 = {𝑡𝑓 , 𝑡𝑤 , 𝑏, ℎ}, where 𝑡𝑓 is the flange thickness, 𝑡𝑤 the web thickness, 𝑏 the flange width, and ℎ the section 

depth. Edge resolution is controlled by a pre-defined parameter 𝑙max that defines the threshold for edge subdivision: 

For any polygon derived from a set of shape parameters 𝜽, edges that exceed 𝑙max are subdivided into 𝑛 =
⌈𝑙edge/𝑙max⌉ edges, as depicted in Figure 7c. The location of the cross-section is controlled by one of the polygon 

vertices, here chosen as 𝑣0 = (𝑥0, 𝑦0). As depicted in Figure 1, the exact description of the cross-section requires 

fillet radius 𝑟. To reduce computational effort, the parametric polygon used to identify the correct cross-section is 

defined without fillets by line segments only. 

 

Figure 7: Projected point cluster with points 𝑝𝑖 with point normals 𝑛𝑝,𝑖⃗⃗ ⃗⃗ ⃗⃗   of a partially occluded H-beam (a), H-

beam with size parameters 𝜽 (b) and control vertices 𝑣𝑖 to define the location 𝑣0 and shape of the cross-section 

polygon with edge normals, exemplary depicted with 𝑛𝑒,2⃗⃗⃗⃗ ⃗⃗  ⃗ for 𝑒2. Polygon edges can be subdivided into sub-edges 

of equal length to increase evaluation precision, exemplarily shown with inserted polygon vertices 𝑣5𝑎, 𝑣5𝑏 (c). 

The optimal cross-section shape and location are determined using a (𝜇 + 𝜆)-Evolution Strategy (Bäck & 

Schwefel, 1993; Beyer & Schwefel, 2002). Each solution candidate is defined by {𝑖, 𝑥0, 𝑦0}, where 𝑖 indexes a 

standardized parameter set 𝜽𝑖, and (𝑥0, 𝑦0) define the polygon's reference point. To evaluate the quality of an 

individual solution, the parameters are retrieved by index and used to define the polygon and compare it to the 

projected and axis-aligned points of the beam instance. In a similar approach introduced by Mafipour et al. (2023), 

a single cost function was used to consider active edges of the polygon and angular constraints between edges to 

be used in PSO (Particle Swarm Optimization). The challenge for steel cross-section differs from this due to fewer 

degrees of freedom in the cross-section shape, while the underlying data is significantly more challenging due to 

significant noise, due to smaller scale, and heavily occluded cross-sections in complex industrial scenes. 

Three objective functions are defined to take these considerations into account: The first objective is the 

logarithmic distance 𝑑log (Equation 4), which is the most essential, calculating the distance between the point 

cloud and the polygon. The logarithmic calculation allows for the prioritization of close distances and increases 

robustness against outliers in the point cloud, introduced through errors in segmentation or measurement noise: 

    𝑑log =
1

𝑁
∑ log (min

𝑗
𝑑𝑖𝑗)

𝑁
𝑖=1 ,    (4) 

where 𝑁 is the number of data points and 𝑑𝑖𝑗 is the closest distance from point 𝑖 to polygon edge 𝑗. The second 

objective is the relative active edge length 𝑙a,rel, indicating the relative share of the polygon close to the data points: 

    𝑙a,rel =
∑ 𝑎𝑘⋅𝑙𝑘

𝑀
𝑘=1

∑ 𝑙𝑘
𝑀
𝑘=1

,      (5) 

where 𝑀 is the number of edges in the polygon (𝑀 ≥ 12, depending on 𝜽 and 𝑙max), 𝑎𝑘  is the activity of each 

edge 𝑘 (0 or 1), and 𝑙𝑘 is the length of edge 𝑘. An edge is considered active if there is a point in the point cloud 
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that is closer to edge 𝑘 than any other edge. Computing the relative active length ensures that all sizes of cross-

sections are treated equally. To improve the precision of 𝑙a,rel, polygon edges can be subdivided using a maximum 

edge length threshold 𝑙𝑚𝑎𝑥, as depicted in Figure 7c. Edge normals are adopted for each resulting edge as the 

original normal vector of the edge. 

The third objective is the normal orientation similarity 𝜑𝑛, describing the similarity of point normal directions and 

their matching edge normals: 

    𝜑𝑛 = ∑ ∑ cos(𝑛𝑒⃗⃗⃗⃗ , 𝑛𝑝,𝑖⃗⃗ ⃗⃗ ⃗⃗  )𝑖∈𝑃𝑒𝑒∈𝐸active
,    (6) 

where 𝐸active is the set of active edges, 𝑃𝑒 is the set of points associated with edge 𝑒, 𝑛𝑒⃗⃗⃗⃗  is the normal vector of 

edge 𝑒 and 𝑛𝑝,𝑖⃗⃗ ⃗⃗ ⃗⃗   is the normal vector of point 𝑖. Evaluating point coordinates alone in heavily occluded cross-

sections can lead to erroneous results for parts of which only one surface is visible, such as the right surface of the 

web depicted in Figure 7. The normal orientation similarity penalizes cases where points are assigned to an edge 

facing the opposite direction than the point normal. 

Due to varying instance segment sizes, ranging from hundreds to thousands of points, a downsampling step using 

k-means clustering (Lloyd, 1982) limits the input to a computationally manageable, pre-defined size while 

preserving the point cloud's geometric characteristics. Each centroid in the downsampled point cloud is assigned 

a weight corresponding to the number of original points it represents. These weights are incorporated into all three 

objective functions, ensuring that dense regions of the original point cloud maintain their relative importance in 

the optimization process. 

3.2.5 Instance Separation: Advanced Region Growing 

To separate instance clusters depicting single beam objects, the introduced methods are applied in single-pass and 

iterative processing steps. Iterative refinement is performed until the resulting cluster of the region-growing 

process remains unchanged for one iteration. The method is explained in Algorithm 1. Region growing in the 

presented method should result in over-segmentation rather than under-segmentation, because part limits need to 

be respected in the result of region growing: parts that are separated in multiple instance clusters can be aggregated 

in the following step, but wrongly joined clusters cannot be separated downstream.  

 

Depending on occlusions and noise in the input point cloud, using region growing as a standalone method for 

clustering usually leads to over-segmentation; complete instances can often not be identified as such and need to 

be aggregated in another step (see Section 3.2.6). If ground truth information is available as point-wise labels, this 

can be quantified and controlled by observing performance set metrics like precision and recall. The application 

and meaning of these metrics in the context of the presented method are important for the experiment and explained 

in Section 4.3. 

3.2.6 Instance Refinement: Iterative Aggregation and Skeleton Refinement 

After initial clusters are identified in the region growing step, they are used as input for instance refinement. In 

this step, the cluster orientation is estimated using the method introduced in Section 3.2.3, resulting in a more 

robust estimation of part orientation. The results are used to instantiate parts of the skeleton: the known location 

of the cluster point coordinates, the projected center of gravity in 2D, and the obtained 𝑠2⃗⃗  ⃗ are used to define the 

centerline of the segment and project the cluster points to that direction vector. By identifying the first and last 



 

 

 
ITcon Vol. 30 (2025),  Noichl et al., pg. 1110 

point after projection to this direction vector, a line segment can be defined as part of the skeleton of the beam 

system. 

 

After the skeleton is instantiated, angles and distances between all parts are calculated. This includes the angular 

difference between part vectors, the minimum distance between two skew vectors, and the minimum distances 

between the start and endpoints. If these values are within the pre-defined thresholds, two skeleton line segments 

are joined, the old clusters and line segments are removed, and the estimation of segment orientation  𝑠2⃗⃗  ⃗ and point 

projection are repeated for the new cluster. This procedure is explained in sequence and pseudo-code in Algorithm 

2, and the mentioned variables are explained visually in Figure 8. 

 

Figure 8: Relationship between skeleton line segments 𝑙1 and 𝑙2: intersecting angle 𝛥∠, minimum lengthwise 

distance of endpoints 𝑑𝑚𝑖𝑛,𝑙, minimum crosswise distance between warped vectors 𝑑𝑚𝑖𝑛,𝑐. These parameters are 

checked for a potential extension of 𝑙2 to bridge point 𝑏2,1 with by distance 𝑑𝑏2,1
. 

Similar to the region growing algorithm (see Algorithm 1), this iterative method is stopped if an iteration does not 

yield any change in the skeleton line segments. By considering three independent parameters for joining segments, 

this method bridges gaps caused by significant occlusions, using the plane-based segment orientation estimation 

of 𝑠2⃗⃗  ⃗ as its main feature. 

Occlusions on steel beams can occur on free length as well as in joint areas and can by no means be assumed to 

be consistent along the length of a beam. The presented method bridges gaps in the free length of beams by the 

segment aggregation method described above, joint areas need to be considered in the final step of skeleton 

refinement. To ensure that no gaps persist in model reconstruction, line segments close to joining onto other line 

segments are extended to their bridge points, defined by the location of the minimum distance between two warped 

vectors, as depicted in Figure 8. The underlying algorithm is similar to Algorithm 2. However, threshold 𝑑min,l is 

replaced with a threshold value for extending 𝑙𝑖, 𝑑𝑙  does not have to be considered. 
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3.3 Model Reconstruction 

In the last step of the presented method, all obtained information is used as input data to reconstruct the 3D model 

of the steel structure. The sequence of steps is depicted in Figure 9. Using Blender1 and Bonsai2, the beam type 

can be used directly to retrieve the required cross-section from a standardized catalog. Using the determined length 

of the respective line segment, an extrusion is performed to create the beam geometry in its 3D representation. The 

extruded profile is finally placed in its target location by rotation and translation. The necessary parameters are 

obtained in the orientation estimation step (see Section 3.2.3). 

Generating structural 3D models with detailed beam connections is already solved through existing proprietary 

and open-source applications, and is therefore outside the scope of our method. Furthermore, model reconstruction 

with the required level of detail for connectors requires high-resolution local information. However, such depth of 

information is usually not captured, and to integrate such aspects would lead to unnecessary ambiguity. On the 

contrary, the presented basic parametric model reconstruction at LOD 300 (BIMForum, 2024) is based on precise, 

automatically retrieved information. 

Working with Bonsai in Blender in the described way allows the export of the generated 3D model of the steel 

structure in two distinct ways. First, the model is exported to the open IFC data exchange format, which contains 

rich semantic information such as detailed information on steel profile cross-sections3. Generally, this format 

enables seamless further processing in other software applications for further analysis, planning, or quantity 

takeoff. Second, the geometric representation of each beam and the entire structure is exported to a 3D mesh 

representation for geometric evaluation of the resulting geometry and comparison to the input point cloud. 

4. EXPERIMENTS AND RESULTS 

The effectiveness of the proposed method is demonstrated through comprehensive experiments on laser-scanning 

point cloud data from an industrial environment. This section presents implementation details first, followed by a 

description of the dataset and the methodology for establishing ground truth. Then, the relevant metrics for 

evaluation are introduced, including their mathematical formulation and interpretation. Two experiments validate 

our approach: first, a detailed step-by-step analysis on a subset of the dataset illustrates the internal workings of 

the method, while a second experiment evaluates the method's performance on the complete dataset to demonstrate 

its scalability and robustness in real-world scenarios. 

4.1 Implementation 

The presented method is implemented using several specialized open-source libraries, namely Open3D4, DEAP5, 

and Blender with Bonsai. Using the authors' implementation, several experiments are conducted to investigate the 

functionality of the presented method. The authors' implementation is made available at 

https://github.com/fnoi/pc2beam; no proprietary, commercial software was used in this project. We refer the reader 

to this repository for comprehensive information on all utilized libraries beyond the above-mentioned examples. 

Several parameters define the method's performance, as noted throughout Section 3. They are collected with the 

respective processing steps in Table 2. Some parameters are not explicitly mentioned in this collection as they 

depend solely on properties of the input point cloud and do not require tuning based on geometry, such as RANSAC 

and DBSCAN parameters. 

 

 

 
1 https://blender.org, v.4.2.2 
2 https://bonsaibim.org, v.0.8.0 
3 http://128.199.55.109/IFC/RELEASE/IFC4x3/HTML/lexical/IfcIShapeProfileDef.htm  
4 https://www.open3d.org/, v.0.18 
5 https://github.com/deap, v.1.4.1 

https://github.com/fnoi/pc2beam
https://blender.org/
https://bonsaibim.org/
http://128.199.55.109/IFC/RELEASE/IFC4x3/HTML/lexical/IfcIShapeProfileDef.htm
https://www.open3d.org/
https://github.com/deap
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Figure 9: 3D model reconstruction method overview. 

Table 2: Collected relevant parameters per computation step. 

Processing step Parameter Description 

local orientation supernormal 𝑠1⃗⃗  ⃗ 𝑟𝑛  neighborhood radius 

instance separation ∠max  max. angular orientation (𝑠1⃗⃗  ⃗, 𝑠2⃗⃗  ⃗) deviation  

iterative aggregation Δ∠,𝑚𝑎𝑥  

𝑑max,c  

𝑑max,l  

max. angular deviation (𝑠2⃗⃗  ⃗) 

max. crosswise distance 

max. lengthwise distance 

instance refinement 𝑑b,max  max. distance to bridge point 

4.2 Dataset 

The dataset used for the presented experiment depicts the steel roof structure of an industrial building. It was 

captured using a Faro Focus 3D terrestrial laser scanner and includes 7.8 ⋅ 106 points classified as beams. A 

detailed report on the dataset, including scanning parameters and overall class distributions, is reported in (Noichl 

et al., 2024). 

 

Figure 10: Steel roof structure point cloud, ground truth beam instances color-coded. 

Ground truth is created manually to provide a basis for the subsequent calculation of performance metrics. The 

annotation of instances is performed by hand within the beam point cloud, as depicted in Figure 10. A total of 30 

beam instances are separated, and for each beam, the orientation is manually estimated by adjusting the camera 

angle until the best possible projection direction is identified. Further, the point cluster of each beam is evaluated 

individually to provide insight into variability in the data and effects of occlusion. The number of points within 

local neighborhoods is evaluated to compare the characteristics of beam instances in terms of point density. As 

reported in Figure 11, the variability within the used dataset is significant: instance cluster sizes range between 

1'213 and 58'232 points, the mean number of points within the local neighborhood with radius 𝑟 = 0.1m ranges 

between 124 and 480 points. The smallest instances also have the least local point density (see Figure 11 left): with 

increasing mean number of points in the local neighborhood, the standard deviation also increases (see Figure 11 

right), which indicates inhomogeneous point densities caused by occlusions in the laser scan. The standardized 
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cross-section types of the investigated beams in the dataset vary between wide-flange beams HEA340 (largest 

cross-section) and HEA140 (smallest cross-section). 

 

Figure 11: Beam instance characteristics in point cloud dataset with local neighborhood radius 𝑟 = 0.1𝑚. Left: 

total number of points vs. mean number of points in local neighborhood, right: standard deviation vs. mean number 

of points in local neighborhood. 

4.3 Evaluation Metrics 

In the following experiments, the outcomes of individual steps and the final results are evaluated quantitatively. 

This is done using geometric and classification metrics. Geometric deviations are measured in terms of point-mesh 

distance and angular deviation. The point-mesh distance 𝑑pm describes the minimum distance between a point and 

a mesh surface. This calculation is a standard feature of state-of-the-art applications such as CloudCompare6 and 

not discussed in detail. The angular deviation 𝜃Δ between two vectors in space can be calculated as follows: 

    𝜃Δ = arccos (
�⃗� ⋅�⃗� 

|�⃗� |⋅|�⃗� |
),     (7) 

Where 𝑎 ⋅ �⃗�  is the dot product of the two vectors and |𝑎 | and |�⃗� | represent the magnitudes of the vectors. 

The purity metric is utilized to assess homogeneity in the initially over-segmented clusters. As denoted in Equation 

8, it reflects the mean consistency of labels within predicted clusters. 

    purity =
1

𝑛
∑ max

𝑗
|𝑐𝑖 ∩ 𝑡𝑗|

𝑘
𝑖=1 ,    (8) 

where 𝑛 is the total number of points, 𝑘 is the number of predicted instances, 𝑐𝑖  is the 𝑖-th predicted instance, and 

𝑡𝑗 is the 𝑗-th ground truth label (Manning et al., 2008). 

To quantify general clustering performance, the conventional classification metrics of precision (P), recall (R), and 

Intersection over Union (IoU), and an aggregated mean IoU (mIoU) are evaluated. To consider imbalanced 

segment sizes, the weighted mean IoU (wmIoU) considers the number of points in each segment. These metrics 

can be evaluated in a controlled environment with known ground truth: 

    P =
TP

TP+FP
,      (9) 

    R =
TP

TP+FN
,      (10) 

 

 
6 https://www.danielgm.net/cc/, v.2.13.2 

https://www.danielgm.net/cc/
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    IoUi =
TPi

TPi+FPi+FNi
,     (11) 

 

    mIoU =
1

C
∑ IoUi

C
i=1 , 

    wmIoU =
∑ 𝑛𝑖⋅𝐼𝑜𝑈𝑖

𝐶
𝑖=1

∑ 𝑛𝑖
𝐶
𝑖=1

,     (12) 

where TP denotes true positives, FP false positives, FN false negatives; 𝑛𝑖 denotes the number of points in segment 

𝑖; and subscript 𝑖 attributes these metrics to beam instances; 𝐶 denotes the total number of segments. 

Instance segmentation presents a particular challenge for evaluation, as the relationship between predicted and 

ground truth instances is not a 1: 1 mapping but rather an 𝑚:𝑛 correspondence. To address this, a systematic 

approach is employed. First, an IoU value is calculated for each possible pairing of predicted and ground truth 

instances. This process results in a 𝑚 × 𝑛 matrix of IoU scores, where 𝑚 is the number of predicted instances and 

𝑛 is the number of ground truth instances. To determine the optimal matching between predicted and ground truth 

instances, the Hungarian algorithm (also known as the Munkres algorithm) is applied to the IoU matrix. This 

algorithm determines the 1: 1 assignment that maximizes the overall sum of IoU values and thus mIoU. The 

resulting matching strategy provides a basis for calculating precision, recall, and other instance-level metrics. 

Matched pairs are considered TP, unmatched predictions are FP, and unmatched ground truth instances are FN. 

 

Figure 12: Evaluation of intermediate results in the initial region: planar patches color-coded, unclustered points 

black (a); analysis of supernormal  𝑠1⃗⃗  ⃗ quality in the initial region (b-d): correlation between supernormal 

confidence 𝑐𝑠 and deviation between supernormal and ground truth orientation 𝜃𝛥, density of scatter points added 

to aid visualization (b), supernormal confidence in the initial region (c), deviation between supernormal 

orientation  𝑠1⃗⃗  ⃗ and part orientation ground truth (d). 
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To consider the segment size imbalance in the reported metrics, the performance of instance segmentation is 

evaluated using the weighted mean Intersection over Union (wmIoU) or Aggregated Jaccard Index (AJI) (Kumar 

et al., 2017). 

4.4 Experiment 1: Processing Step Evaluation 

In the first experiment, the performance of individual processing steps is evaluated as each step influences the final 

result of the presented Scan-to-BIM method. An initial point cloud region is selected and annotated to find suitable 

parameters for the presented method (see Table 2).The initial region chosen for this experiment consists of 7 beams 

and a total of 26'897 points (see Figure 12). Table 3 collects the parameters chosen for this region. Note that the 

parameters for planar patch identification are fixed values and not investigated in the presented experiment. 

Table 3: Chosen parameter values for processing of the initial region. 

Parameter 𝑟n ∠max Δ∠,max 𝑑max,𝑐  𝑑max,𝑙 𝑑𝑏,max 

Value 0.05 m 10° 15° 0.1 m 0.1 m 0.3 m 

Planar patch clustering leads to a total of 106 patches with a mean size of 251 points. About 20% of points remain 

unclustered, as depicted in Figure 12a. As per Equation 8, the resulting cluster purity is 98.9%, which means that 

only 1.1% of clustered points differ from the most common label in the clusters. At this early stage, this is crucial: 

if planar patches include points of multiple beam instances, this error will persist through all computation steps in 

the presented method. 

The initial calculation of the local orientation supernormal 𝑠1⃗⃗  ⃗ is performed for each point in the point cloud based 

on its neighbors within a spherical neighborhood with radius 𝑟n. This feature is stored as a 3D vector for each 

point, so deviations can be evaluated against the manually annotated ground truth on the point level. Selected 

results are depicted in Figure 12. These results show how 𝑠1⃗⃗  ⃗ works in principle: Figure 12b shows that for the 

majority of points, 𝑠1⃗⃗  ⃗ is a reasonable estimation of the part orientation (deviation from ground truth: mean deviation 

7.7°, median 0.85°); the highest density of points in the plot is found for high confidence 𝑐𝑠 and low deviation 𝜃Δ. 

In Figure 12c, 𝑐𝑠 is color-coded for each point in the cloud, revealing the critical areas for supernormal estimation 

using spherical neighborhood for joints between multiple beams and for heavily occluded sections. A similar 

pattern can be observed in Figure 12d, where the points are color-coded according to 𝜃Δ, further supporting the 

confidence value of 𝑐𝑠 as an indicator of the quality of the local orientation feature  𝑠1⃗⃗  ⃗. 

With the chosen parameters, region growing leads to wmIoU of 38.9%, while a high mean cluster purity can be 

retained with 99.5% (worst cluster purity = 90.0%). The color-coded initial clusters are depicted in Figure 13a. At 

this stage, the point cloud is clearly oversegmented. Similar to the findings for the planar patches, the challenging 

areas are the joints between multiple beams and the highly occluded beam in the lower right section. 

 

Figure 13: Intermediate outcomes and final result of instance segmentation: (a) after region growing, (b) after 

skeleton line segment aggregation, (c) final skeleton after refinement. 

The estimation of segment orientation 𝑠2⃗⃗  ⃗ is performed on the initial clusters to find cluster-wide orientation and 

initiate the skeleton, as depicted in Figure 13a. The orientation of the resulting original line segments in the skeleton 

deviates from the ground truth by a point-wise average of 0.1° (median 0.07°). These line segments are used to 
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aggregate the skeleton, as depicted in Figure 13b; the updated instance segments amount to a wmIoU of 89.0%, 

with a slightly decreased mean cluster purity of 98.9% (worst cluster purity = 97.0%), notably improving the value 

for worst cluster purity. Finally, the line segment skeleton is refined to ensure system connectivity, as depicted in 

Figure 13c. 

 

Figure 14: Exemplary results of cross-section fitting using multi-objective optimization:(a) objective function 

values for all individuals, color-coded by generation, red circles indicate Pareto front solutions, (b) cross-section 

polygon and points of a largely occluded beam segment projected to 2D, lines indicate point normals, color-coding 

indicates point weights. 

The aggregated information of the line segment skeleton is used as input for multi-objective optimization to find 

the right steel profile cross-section type and location. Figure 14 contains two typical results of this process, shown 

as the evaluated collection of all investigated solutions and the Pareto front, as well as the parametric I-shaped 

cross-section polygon for a selected H-beam. 

After complete model generation, the resulting beam geometries are exported as a high-quality IFC model and 

mesh representation. The mesh is further used to investigate the quality of the resulting model. Figure 15 shows 

the point cloud and complete resulting model for the initial region. The overall deviation between the point cloud 

and model is 1.7 mm (median 1.1 mm). 

 

Figure 15: Final model output and point deviation: (a) point cloud and beam geometries, (b) point to mesh distance 

histogram, color-coded using the same scale. 
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4.5 Experiment 2: Full Dataset Experiment 

To investigate the efficacy of the method presented in this paper, it is finally applied to the full dataset with the 

same parameter setup as in the previous experiments, resulting in the reconstructed model depicted in Figure 16. 

In this, 24 out of a total of 30 or 80% of beam instances are reconstructed successfully (see Figure 10 for reference). 

The missing beams are lost due to one critical problem: Overall low numbers of points in the segments lead to 

insufficient points on intersecting planes for determining orientation within an established cluster; these instances 

are therefore neglected (see Figure 11, bottom left). For the successfully identified instances, the mean deviation 

between the point cloud and the reconstructed model surface is 4.1 mm (median 2.8 mm). The missing instances 

increase the mean deviation between the full input point cloud and reconstructed model surface to 20 mm (median 

3 mm). Between ground truth beam orientation and orientation of the beam objects in the reconstructed model, the 

mean angular deviation remains at 0.1°. For a single beam in the dataset, estimation of longitudinal rotation failed 

– as depicted in Figure 16, bottom right, one beam is rotated by 90°. 

All semantic information on the beam cross-section, including standardized cross-section profile names and 

parameters, is finally stored in an IFC file to enable the best interoperability for the resulting models (see Figure 

17). 

 

Figure 16: Resulting IFC model for the full dataset. Visualized using IfcOpenShell viewer7. 

4.6 Discussion 

The results of these experiments exhibit several strengths and limitations of the presented method. Section 4.4 

shows that the local orientation supernormal feature 𝑠1⃗⃗  ⃗ is able to estimate the part orientation based on a local 

neighborhood directly. However, in sections of the scene with complex geometry, such as beam joints, 𝑠1⃗⃗  ⃗ does not 

produce reliable estimations. The presented confidence measure of 𝑐𝑠 identifies points with weak support for 𝑠1⃗⃗  ⃗ in 

the further process and mitigates the risk of erroneous decisions based on this feature. Orientation estimation on 

the cluster or segment level for 𝑠2⃗⃗  ⃗ using intersecting planes identified using RANSAC leads to highly accurate 

results. The precision of 𝑠2⃗⃗  ⃗ is a crucial prerequisite for cross-section fitting using multi-objective optimization, as 

it defines the input data both in terms of direction and longitudinal alignment of the point projection. The defined 

objective functions effectively leverage the limited information carried in highly occluded beam segments and 

return standardized profile cross-sections. 

The second experiment in Section 4.5 tests the method's abilities and reveals several limitations. Due to very low 

local point density and occlusions leading to a low total number of points in several segments, some beams cannot 

be detected; others might not be connected correctly. The presented instance segmentation method is a sequential 

heuristic that is relatively inflexible. It is a very good solution for the investigated dataset since hardly any training 

 

 
7 https://view.ifcopenshell.org, accessed 20-12-2024. 
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data is available for industrial buildings. For a more generalizable approach, using learning-based, unsupervised 

methods could be advantageous. A single beam's misidentified longitudinal orientation in this experiment exposed 

an additional type of error not yet accounted for in the methodology. 

 

Figure 17: Exemplary section of beam cross-section information of a beam instance with HEA160 profile cross-

section stored in the generated IFC model, retrieved using KITModelViewer8. 

5. CONCLUSIONS AND OUTLOOK 

5.1 Contributions 

The presented methodology provides two main contributions: Firstly, a robust method to estimate the orientation 

of elongated parts on the local and segment levels and a sequential heuristic to segment such elements in point 

clouds: Given a point cloud that partially covers two non-parallel surfaces of a steel beam – or an elongated part 

in general – the method can first estimate the rough part direction to initiate instance segmentation. Once a segment 

has been established, the method can precisely estimate part orientation using the presented plane intersection 

method. Secondly, the presented method describes an end-to-end approach for Scan-to-BIM that comprises various 

processing steps starting from a semantically segmented point cloud, resulting in a precise, procedural and 

semantically rich 3D model of the structure, including export to the open standard IFC format for best 

interoperability in the domain. Both contributions are demonstrated and quantitatively evaluated on a manually 

annotated laser scanning point cloud dataset depicting the roof structure of an industrial building. 

5.2 Scope and Limitations 

This study focuses on I-shaped beams, mainly due to limitations in available experimental data. While the 

presented approach uses extrusions along straight paths for beam modeling, it is important to note that this method 

does not capture the full detail of reality as-is. Real-world beams may exhibit variations such as sag or slight 

deviations from perfect straightness. Such deviations are relevant for observations of structural behavior and 

deformation monitoring and out of scope for the presented work, which aims to contribute to the automation of 

Scan-to-BIM in general. Detailed joint modeling is intentionally excluded from this study, as it often requires 

specialized software and techniques outside of the focus of this work. Other studies have demonstrated that 

Terrestrial Laser Scanning (TLS) accuracy is sufficient for investigating features like cable sag (Suchocki et al., 

2024). While data acquisition technology is capable of providing detailed information, the level of detail in as-

built or as-is models depends on specific requirements and how these are reflected in the chosen model type and 

 

 
8 https://www.iai.kit.edu/english/4561.php, accessed 20-12-2024. 
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might require more detailed modeling approaches than purely parametric cross-sections, i.e., by finer granularity 

in B-Rep (boundary representation) model with additional control points (Rausch & Haas, 2021). 

5.3 Extending Applicability and Future Works 

The presented method can be enhanced without altering its fundamental structure or functionality. Its applicability 

could be extended, for example, to cover all types of composite cross-sections by introducing an intermediate 

cross-section classification step. While the current implementation is limited to I-shaped beams, the method's core 

strength lies in its capability to segment, enrich, and reconstruct composite cross-sections. To extend this capability 

to all code-defined cross-section types, an additional processing step is needed: after point projection, object 

detection or model fitting techniques could be integrated to differentiate between cross-section types (e.g., 

rectangular, C, and L-shapes). This classification would then inform the subsequent model fitting process, ensuring 

that suitable parametric polygon shapes are selected from the catalog to initiate the optimization process. 

The current approach reconstructs individual beams and their connections to more complex structural systems 

based primarily on relative placement. This framework could be enhanced with additional structural logic to 

address more complex scenarios, such as steel frames or connections to other structures or fixed points. It is worth 

noting that the method contains parameters that require adjustment based on input point cloud characteristics 

(density, noise levels, occlusion patterns). To improve usability with user input, the approach could be adapted to 

an incremental workflow similar to that proposed by Szabo et al. (2023). While supervised learning approaches 

for instance segmentation exist, the lack of available training data for industrial elements makes unsupervised 

approaches and heuristics, as demonstrated in our method, particularly advantageous. 

Beyond extending the method for wider practical application, future work could investigate existing steel beams 

in greater detail. The current approach identifies steel beam cross-sections based solely on point cloud geometry. 

While this provides precise geometric estimation, incorporating additional data such as surface reflectivity could 

help identify beam coatings, further increasing precision and adding valuable information to material inventories. 
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