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SUMMARY: Modular construction companies produce module components following a make-to-order process to 

realize client-defined customization requirements. This customization leads to varying process times of 

prefabricating module components at workstations, making it difficult for production line managers to accurately 

predict their process times for planning purposes. To address these challenges, this paper proposes a novel method 

that employs Deep Neural Networks, artificial neural networks, and multiple linear regression models for 

predicting workstation production process times at a module prefabrication plant. A Genetic Algorithm is 

employed to refine the structure of the Deep Neural Networks and find a near-optimum number of 

hyperparameters. In a case study, a wood-based wall panel production line is analyzed to demonstrate the use of 

the developed method and test its performance. The developed method for process time prediction is found to 

achieve a mean absolute error of less than 2.50 min for most workstations, with the symmetric mean absolute 

percentage error ranging between 22% and 28%. The research contributions of this study include the development 

of prediction models for all the workstations of the production line and the implementation of a Genetic Algorithm 

to find the near-optimal hyperparameters of Deep Neural Networks. This assists production managers in making 

data drive decisions and overcomes the reliance on experience-based methods for estimating process times and 

creating production plans. 
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1. INTRODUCTION 

According to the CSA Public Policy Centre (Dragicevic and Riaz, 2024), Canada requires 4.3 million affordable 

homes for low-income individuals and more long-term care homes (or similar facilities) to accommodate its 

growing population. In this regard, modular construction is growing in popularity as a promising alternative for 

rapid construction of affordable housing units. Moreover, a report on the modular construction market in North 

America stated that the market is expected to reach $ 80 billion by 2031, driven by its cost- saving benefits in 

construction projects (Assaad et al., 2022). Modular construction is a process of prefabricating modules or module 

components (e.g., two-dimensional wall, floor, and roof panels)—often following a mass production approach—

within a controlled factory environment. These are then transported to the site to be installed as components of a 

building. Modular construction manufacturing (MCM) follows standardized operating procedures (SOPs) at each 

workstation in order to streamline the production of these module components. This standardization allows for 

innovative technologies such as automation and robotics to be implemented, thereby reducing both process time 

and cost. Modular construction offers opportunities to: (i) improve productivity by usually moving tasks to workers 

at fixed workstations rather than having workers move to tasks in production line environment (Feld 2000), which 

is the common practice in traditional construction (e.g. wall panels are transferred from the framing station to the 

sheathing station, while workers remain at their designated station to perform repetitive tasks in line with the 

sheathing workstation standard operating procedures (SOPs); (ii) minimize material waste and actively support 

the realization of a circular economy; and (iii) achieve faster return on investment, since the modular construction 

process allows to reduce the construction cycle time such that developers can begin making profits sooner (Mazdak 

et al., 2021). However, client-defined customization introduces variation in design specifications (e.g., wall panels 

with/without doors and windows, different dimensions and number of studs), leading to varying production rates, 

imbalanced production lines, and increased makespan (i.e., total completion time) (Bhatia et al., 2023). 

These variations in design specifications make it difficult to accurately predict and estimate process times (Bhatia 

et al., 2022). Process time (i.e., the time it takes to process one module component at a given workstation), a critical 

performance metric in MCM, must be accurately forecasted in order to: (i) manage hourly and daily production 

line operations; (ii) gain insights into underlying patterns in production; and (iii) make data-driven decisions 

regarding resource planning (e.g., labor deployment) and scheduling of sequences of operations along the 

production line. Additionally, better process time estimation reduces idle time of workers and minimizes 

production cost. It should be noted that, for the purpose of the present study, “module” refers to a volumetric 

module, while “module component” refers to wall, floor, and roof panels, whereas “modular” refers to a 

construction method that involves using individual modules as the basis for construction. In practice, production 

managers often rely on their experience and historical average process times (e.g., linear meters of wall panels per 

minute) in planning and scheduling the sequences of module components. However, average process time does 

not accurately reflect actual production conditions. Alsakka et al. (2023) showed that the use of average rates leads 

to overly optimistic cycle time predictions. These unrealistic estimates, in turn, put undue pressure on workers and 

management to meet unattainable schedules and ultimately contribute to delays in the production timeline. The 

dynamic nature of MCM, which requires frequent adjustments, makes resource planning and scheduling in the 

absence of accurate process times particularly challenging. To avoid subjectivity, researchers have used 

probabilistic techniques to model the uncertainty associated with process times at workstations in modular 

fabrication facilities. For instance, Altaf et al. (2018) used probability distributions to forecast the process times of 

wall panels at workstations. Khandar et al. (2021), meanwhile, assumed that the process time of workstations on 

a production line follow a triangular distribution. However, these probability distributions can yield misleading 

results, as they do not account for variations in design specifications arising from client-defined customization. 

The primary goal of the present study is to address these limitations through the development of a predictive 

method for accurately forecasting process times at each workstation of the in MCM production line using Deep 

Neural Network (DNN) combined with Genetic Algorithm (GA). The proposed method encompasses: (i) the 

development of predictive models that combine DNN, artificial neural network (ANN), and multiple linear 

regression (MLR) to predict the process times of module components at workstations; (ii) the use of GA for 

identifying near-optimal hyperparameters (i.e., number of hidden layers, neurons, momentum and learning rate) 

for the DNN; and (iii) comparison of the prediction performance of DNN with that of ANN and MLR. 
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Table 1: Research Gaps. 

Number Author and Year Method  Gaps 

1 Alsakka et al. (2024) 

 

Used computer vision based data to 

develop cycle time prediction 

framework for modular construction 

production line. Various machine-
learning models, including ANN were 

trained to estimate the cycle time. 

• Prediction models have not been created for all 

workstations along the production line. This does not 

ensure better project planning. 

• Manual tuning was employed to determine the optimal 

parameters for the neural networks. This method 

introduces subjectivity into the parameter tuning process 

and does not guarantee optimal neural network 
configuration. 

• The dataset used to train the prediction models covers 

only a shorter period of operation. This may not yield 

better prediction performance for projects with complex 

designs and larger datasets. 

2 Mohsen et al. (2022) 

 

Predicted the cycle time of wall 
panels in a production line using ML 

models and using historical RFID 

data.  

• Prediction models are not developed for every 

workstation along the production line. 

• Manual tuning was used to identify the parameters for 

the neural networks. This approach introduces subjectivity 
into the tuning process and does not ensure optimal 

parameters. 

3 Bhatia et al. (2022) Applied MLR models to predict the 

process times of wall panels at each 

workstation of the production line.  

• The dataset used to train the model was small (i.e., 200), 

which may not yield better prediction performance for 

projects with complex designs and larger datasets. 

4 Altaf et al.  

(2018)  

Predicted wall panel process time 

using probability distribution 

functions (e.g., beta, triangular and 

gamma distributions). 

 

• Probability distributions can yield misleading results as 

they do not consider design variations arising from clients' 
customization requirements, which are unique to module 

components when predicting production durations. 

5 Taiwo et al.  

(2022) 

 

Developed multiple linear regression 

model to predict the productivity of 

installing modules in modular 

integrated construction projects. 

• The regression results are not compared with other 

machine-learning algorithms. 

• The dataset used to train the prediction models covers 
only a shorter period of operation. This may not yield 

better prediction performance for projects with complex 

designs and larger datasets. 

6 

 

Khandar et al. (2020) Predicted duration at each 

workstation using triangular 
distribution with 15% upper and 

lower bound. 

• Probability distributions can yield misleading results as 

they do not consider design variations arising from clients' 

customization requirements, which are unique to module 
components when predicting production durations. 

7 Moon et al.  

(2023) 

 

Developed multilayer perceptron 

artifical neural network to predict the 

production days for the cable 

manufacturing production line.  

• Manual tuning was employed to determine the optimal 

parameters for the neural networks. This method 

introduces subjectivity into the parameter tuning process 

of neural networks and does not guarantee optimal 

parameters. 

8 Aghajamali et al. 
(2024) 

Applied ANN to predict cycle time of  
workations at steel fabrication 

production line. 

• Manual tuning was employed to determine the optimal 

parameters for the neural networks. This method 
introduces subjectivity into the parameter tuning process 

of neural networks and does not guarantee optimal 

parameters. 

• The dataset used to train the model was small, which 

may not yield better prediction performance for projects 

with complex designs and larger datasets. 

9 Mohsen et al. (2023)  Developed a data-driven machine-
learning model using Random forest 

and gradient boosted decision trees to 

predict the total duration of 

prefabricating pipe spool. 

• Manual tuning was employed to determine the optimal 

parameters for the neural networks. This method 
introduces subjectivity into the parameter tuning process 

of neural networks and does not guarantee optimal 

parameters. 
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2. LITERATURE REVIEW 

A modular construction production line must operate at its full capacity in order to maximize productivity and 

meet on-site demands. However, due to the highly customized nature of project orders, with multiple orders in 

progress in the plant at any given time, historical data on process times of module components across workstations 

is unevenly distributed, creating uncertainty in process time estimation (Bhatia et al., 2025). Given that the 

complexity of predicting process times increases with customization, an accurate prediction model that would 

allow production line managers to make real-time adjustments to production plans is needed (Taiwo et al., 2022). 

Accurate prediction of process times would also aid production managers in efficiently allocating resources and 

reducing waiting times of module components between workstations. However, in modular construction 

production lines, the amount and nature of the data are crucial factors in training the prediction model. For instance, 

if the collected data only includes working periods when experienced workers are operating, the prediction models 

are likely to perform differently when new workers are involved. Similarly, if the collected data is from a project 

with simple design factors, the prediction model may not perform well for projects with complex designs (Mohsen 

et al., 2023). In this regard, to sustain and enhance the performance of the prediction model, a large set of data 

covering an extended period of time is required. This can be achieved through automated data acquisition (e.g., 

RFID system), which has shown promise in the context of modular construction (Altaf et al., 2018). Given the 

promising performance of RFID system in automated data acquisition, further investigation is needed into the 

performance of prediction models trained using RFID datasets in estimating process times. 

MLR models have been widely used in the development of data-driven prediction metrics in various construction, 

infrastructure, and fabrication applications (Chu et al., 2020; Omar and Moselhi 2022). The MLR model assumes 

a linear relationship between dependent and independent variables, which is crucial for achieving accurate results 

(Mohsenijam et al., 2017). In construction management, MLR has been employed in applications such as 

predicting durations of earthmoving operations (Smith, 1999) and forecasting cycle times for one-span installations 

in precast bridges (Mohsenijam et al., 2017). Additionally, there have been various applications of MLR in 

production line settings. For instance, Bhatia et al. (2022) applied MLR models to predict process times of wall 

panels at workstations, achieving an R2 of over 70% with a small dataset (i.e., 200 data points). However, MLR 

works with the underlying assumption that there is a linear relationship between the independent variables and the 

dependent variable (e.g., process time), and this limits its performance when the relationship is non-linear. Other 

limitations of MLR become evident when it is applied to more complex manufacturing systems (including MCM). 

For instance, in the case of aircraft assembly, which is a non-linear system, regression has not provided satisfactory 

predictions of productivity (Mattsson, 2017). 

In this context, the application of ANN to enhance the accuracy of prediction models has been explored in 

numerous studies. For instance, ANN has been used in engineering operations and management in the development 

of predictive models for decision support (Moon et al., 2023). ANNs are particularly advantageous because they: 

(i) perform well for highly uncertain, nonlinear, and complex problems; and (ii) are effective for predictions in 

nonlinear manufacturing and supply chain settings (Moon et al., 2023; Ambrogio and Gagliardi 2013). Moselhi et 

al. (1991) identified ANNs as the most commonly used supervised learning method for analyzing` the relationship 

between inputs and outputs. This model encompasses a collection of processing elements, usually arranged into 

layers (i.e., input, hidden, and output). The target is to predict one or more dependent variables based on 

independent variables. The input layer accepts the data (i.e., independent variables), which the hidden layer uses 

to represent relationships, and the output layer then generates the network response (i.e., dependent variable). ANN 

is defined as a neural network that has one hidden layer, whereas DNN is characterized by having two or more 

hidden layers ( Aggarwal 2018). The “deep” refers to the presence of multiple hidden layers, enabling the network 

to learn complex representations from the input data. ANNs have been extensively applied in the construction and 

manufacturing industries. For example, Ambrogio and Gagliardi (2013) applied ANN to predict the performance 

of a manufacturing production line, achieving improved prediction accuracy. Basma and Moselhi (2022) used 

ANN to predict the duration and cost of highway projects, achieving mean absolute percentage error (MAPE) of 

7.4% and 4.5%, respectively. El-Sawah and Moselhi (2014) applied and compared different neural network models 

(back propagation neural network, probabilistic neural network, generalized regression network), and regression 

analysis in order to estimate the costs at the pre-design stage for structural steel buildings and short-span timber 

bridges. Their results showed that the probabilistic neural network outperformed the regression method, with a 

MAPE of 1.91%. Moon et al. (2023) successfully implemented a multilayer perceptron ANN to predict production 

and latency days for manufacturing production facilities. Pannakkong et al. (2022) implemented ANN for 
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predicting the quality of the raw materials in the production process. RSM (Response Surface Methodology) was 

utilized for finding optimal hyperparameters (learning rate and number of hidden layers and neurons). Huang and 

Chang (2024) stochastic gradient descent with momentum (SGDM) was used for hyperparameter tuning (number 

of hidden layers and neurons) of ANN. The objective was to predict the quality of injection-moulded parts. 

Schneckenreither et al. (2021) developed ANN based prediction model to estimate flow time for a make-to-order 

flow-shop. 

Studies such as those by Mohsen et al. (2022) and Alsakka et al. (2024) have advanced the development of 

workstation process time prediction in MCM using various machine-learning models, including ANN. Similarly, 

Aghajamali et al. (2024) used data augmentation techniques and machine-learning techniques to estimate 

productivity for a fitting workstation in a steel production factory. However, these prediction models: (i) have 

targeted individual workstations rather than encompassing all workstations in the production line to ensure 

improved project planning and (ii) have used manual tuning and GridSearchCV to find the hyperparameters for 

the neural networks. Such an approach introduces subjectivity in the process of tuning the hyperparameters (i.e., 

does not guarantee optimal hyperparameters), increases the model prediction error, and entails a high 

computational burden for finding the hyperparameters (Callens et al., 2020). 

Various studies in construction and infrastructure engineering contexts have used GA for hyperparameter tuning 

of machine-learning models. For example, Assad and Bouferguene (2022) employed GA to enhance the accuracy 

of water main condition prediction by optimizing the parameters of various data-mining techniques (e.g., DNN 

and decision tree). Koc et al. (2021) applied tree-based (e.g., Random Forest) machine-learning models to predict 

the post-accident disability status of workers in the construction industry. In their study, the machine-learning 

parameters were tuned using GA in order to improve the prediction accuracy. However, this optimization approach 

omitted key hyperparameters such as learning rate and momentum, which inclusion could enhance convergence 

efficiency and reduce overall training time. Given the successful use of GA for tuning the parameters of machine-

learning models in literature, the present study implements GA to determine the near-optimal parameters for a 

neural network model for predicting process times of module components in a production line. It is worth noting 

that this hyperparameter tuning problem belongs to the class of non-deterministic polynomial-time hard (NP-hard) 

problem. In such problems, there are multiple combinations (number of hidden layers, neurons, learning rate and 

momentum) to train the model, and, with an increase in the number of combinations, the complexity of the problem 

(i.e., the search space) increases, making it increasingly difficult for existing techniques to effectively find the near 

optimal combination within a reasonable model runtime. In this regard, GA is utilized to find near-optimal 

parameters for a DNN in reasonable run time. 

In summary, as shown in Table 1, existing methods for predicting process times of module components in MCM 

exhibit the following limitations: (i) in these studies, manual tuning has been employed to determine the optimal 

parameters for the neural networks, introducing subjectivity into the parameter tuning process and yielding sub-

optimal parameters; (ii) the prediction models have focused on one or a few workstations rather than encompassing 

all workstations along the production line; (iii) the dataset used to train the model has been small, meaning that 

the model may not achieve acceptable prediction performance for projects with complex designs and larger 

datasets; and (iv) the probability distributions may produce misleading results, as they do not account for design 

variations stemming from clients' customization requirements (which is an important consideration when 

predicting production durations in MCM). To address these limitations, this study developed a predictive method 

for accurately forecasting process times at each workstation of the MCM production line rather than focusing on 

few workstations within the production line using Deep Neural Network (DNN) combined with Genetic Algorithm 

(GA). 

3. DEVELOPED METHOD 

Figure 1 presents the main components of the developed method for predicting process times in MCM production 

lines. The method consists of three modules. (i) The first is the data input module, designed to facilitate and 

organize the input data pertinent to the unique characteristics of each module component for fabrication. It includes 

data descriptions that specify the module component design parameters (e.g., number of studs and doors/windows) 

and timestamps (i.e., start and finish times) from the collected RFID data. (ii) The second is the data pre-processing 

module. In this module, the captured data is cleaned and prepared. This entails combining attributes that have 

similar properties (e.g., windows + large windows are combined as ‘windows’) and identifying and removing 
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outliers. (iii) The third is the time prediction module, which houses three tools for time prediction (ANN, DNN 

and MLR) and which enables comparative study to select the most suitable tool for predicting fabrication process 

times. Subsequently, GA is also used, in conjunction with DNN, to fine tune the architecture of the network (i.e., 

number of hidden layers and neurons, known also as “processing elements”) and training parameters (momentum 

and learning rate). It is worth mentioning that in this paper hyperparameter optimization focuses on tuning both 

training-related parameters and structural design of the neural network. Additionally, a base ANN architecture 

consists of one hidden layer and five neurons. A trial-and-error method is used to determine the number of neurons 

in the single hidden layer of the ANN. The number of neurons is varied (1, 2, 3, 4, 5, and 6) with 100 epochs, and 

the resulting output—i.e., mean absolute error (MAE)—is monitored. This procedure is repeated for each neuron 

count, and the network configuration (number of hidden layers and number of neurons) with the lowest error rate 

is chosen. 

Additionally, MLR is employed in the present study due to its successful application in previous studies for 

predicting process times and due the ease with which its results can be interpreted. In MLR, a linear relationship 

is established between the independent variables and the dependent variable. This relationship is a combination of 

the independent variables with predetermined weights and a bias coefficient. This relationship, for the context of 

the present study, is expressed in Equation 1 (Hasan and Lu, 2022). 

                   Y = β0 + β1x1 + β2x2 +……………+ βkxk                                                                  (1) 

where Y is the dependent variable (process time); Xk represents the independent variables (number of studs and 

doors/windows); β0 is the bias value; and βk represents the weighting coefficients for the independent variables. 

 

Figure 1: Overview of the developed method (Images courtesy of Mohammed Sadiq Altaf). 

The data used in this study spans the period from July, 2015, to August, 2018. The data was given by case study 

company and this is the reason the authors are using the RFID data for this specific time period.  The data is 

captured using an RFID system, with passive RFID tags attached to each module component. In total, 416,950 

timestamps (i.e., start and finish times) for module components moving through the production line are gathered. 

The captured dataset, after pre-processing, is randomly divided into training (80%) and testing (20%) subsets. The 

criteria in the developed method include the capacity of workstations, defined by the maximum module component 

length they can accommodate (e.g., the capacity of a framing workstation may be a length of 40 ft). 
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3.1 Data characterizing and data-preprocessing 

Data characterization is carried out in two main steps: (i) gaining understanding of the production line (e.g., 

identifying which workstations are fully automated and which are manual), and (ii) extracting process times. In 

the first step, the SOPs of each workstation are reviewed to gain a deeper understanding of the production line. 

Additionally, shop drawings are reviewed in order to classify module components (e.g., the number of studs and 

windows in interior and exterior wall panels). In the second step, before extracting process times, breakpoints (i.e., 

the start and finish points for the various work processes at the workstations) are identified in order to determine 

which RFID antennas and readers correspond with each workstation. The RFID system, described in an earlier 

study (Altaf et al., 2018), is used to collect the production line data to be employed in developing the prediction 

models. Although, a complete discussion of the RFID data collection process is beyond the scope of this paper, a 

brief description is given to explain the components regarding RFID system used for data collection.  The system 

consists of: (i) an RFID printer, which generates the ID tag numbers for module components; (ii) RFID tags, which 

are attached to each module component; (iii) RFID antennas, which are installed at each workstation (i.e., read 

zone) and which detect the tag signals, capturing the movement of module components along the production line; 

and (iv) RFID readers, to which these antennas are connected and which transfer the timestamps (i.e., initial and 

last read time) into the database. The next task in this step is to extract the process times and relevant attributes of 

the module components (e.g., number of studs and doors) at each workstation from the RFID raw data file provided 

by the case company. It is worth mentioning that the authors received RFID data from the case study company, 

and for most workstations (e.g., framing, sheathing, and nailing), the waiting time of the wall panels was removed 

by the industrial partner using the RANSAC algorithm. The process times (i.e., the time required to complete one 

module component at a given workstation) is extracted using Equation 2 (Mohsen et al. 2022): 

                                                            PT m,w = IRT m,w+1 – IRT m,w                                                     (2) 

where PT is the process time of module component ID “m” at current workstation “w”, “w+1” is the next 

workstation, and IRT is the initial read time of the module component at a given workstation of the production 

line. 

The next task in this step is to perform data pre-processing and ensure that the dataset is clean for prediction 

purposes. Data pre-processing includes: (i) discarding records with missing values; (ii) removing outliers using 

data visualization techniques (i.e., pie charts) and “Mean ± 1.5 SD” (i.e., data points that are above the upper 

threshold or below the lower threshold are considered statistical outliers); (iii) combining attributes with similar 

properties (e.g., doors + large doors are combined as “Doors”, and different types of studs, such as studs + Dstud 

+ Lstud + Mstud, are combined as “Studs”); and (iv) data normalization is implemented using Equation 3. 

        𝑋′ =
(𝑋−𝑋𝑚𝑖𝑛)

(𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛)
                                (3)  

where 𝑋𝑚𝑖𝑛 is the minimum value and 𝑋𝑚𝑎𝑥  is the maximum value of the independent variable, and X is the 

original value. 

3.2 Prediction of process time 

Figure 2 presents a flowchart of the proposed model for predicting production time, which combines DNN and 

GA to predict the process times of module components (e.g., wall panels) at workstations using historical data. As 

noted above, the term “deep” signifies that there are multiple hidden layers, such that the network can learn from 

the input data. Part of the rationale for employing a DNN is that its multiple hidden layers allow it to efficiently 

perform complex non-linear transformations. Each layer consists of several neurons representing the input, 

transfer, and output variables. 

The dataset, having been pre-processed, is divided into training (80%) and testing (20%) subsets and, based on the 

training subset, a prediction model is developed. The ReLu (Rectified linear unit) activation function is selected 

for this purpose, with the search range defined as [3,10] for hidden layers and [6,100] for number of neurons. 

Moreover, cross-validation is carried out to prevent overfitting and to ensure robust evaluation of the predictive 

model. In specific, k-fold cross-validation is adopted for testing the performance of a model due to its ability to 

reduce variance in model evaluation and better handling of class imbalance. The dataset is divided into k groups, 

where the predictive model is trained using (k−1) groups, and the remaining fold is used to test the accuracy of the 

model. The process is then iteratively repeated, holding a different group for validation and using the remaining 
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ones for training. The overall performance is then measured as the average performance of each iteration. The 

parameters of the prediction algorithms are automatically tuned based on an optimization procedure in order to 

minimize the MAE resulting from the 10-fold cross-validation.  It is worth noting that bootstrapping, is not used 

as it involves creating many resamples (e.g., 1,000 or more) and calculating the statistic for each one can be 

computationally expensive, especially with large datasets. 

It should be noted that the parameters of the model (i.e., the number of hidden layers and the number of neurons) 

have a significant impact on the model's performance. For instance, if there is a small number of neurons, the 

model cannot be trained well. With a large number of neurons, on the other hand, performance can be enhanced, 

but the large number of connections will increase the computation time. It is thus critical to establish parameters 

that allow for the network to be trained within a reasonable computation time while yielding an error that is within 

the tolerance limit. For this purpose, hyperparameter tuning—the process of identifying optimum parameters (i.e., 

number of hidden layers, number of neurons, learning rate and momentum)—is performed. GA optimization is 

employed for this task due to its efficiency in finding near-optimal solutions to prediction problem. The 

optimization objective is to minimize the model's prediction error (i.e., MAE), as expressed in Equation 4. 

                         MAE = 
∑ |𝐴𝑖−𝑃𝑖|

𝑛
𝑖=1

𝑛
                                                         (4) 

where Ai is the actual process time of a module component; and Pi is the predicted process time of a module 

component. 

 

Figure 2: Flowchart of Deep Neural Network optimization. 

Moreover, error percentage is calculated using the symmetric mean absolute percentage error (SMAPE), which is 

a modified MAPE and which is obtained by dividing the absolute error by the average of the actual observation 

and the predicted process time, as shown in Equation 5. According to Makridakis (1993), MAPE is asymmetric, 

as it imposes a greater penalty on predictions that exceed the actual values than on those that fall short (i.e., a small 

actual value in the denominator leads to a very high percentage error). SMAPE addresses this limitation by treating 

overestimation and underestimation errors more equally. This is achieved by incorporating both actual and 

predicted values in the denominator, ensuring a more balanced evaluation of over-predictions and under-

predictions. 

                                            SMAPE = 
1

𝑁
∑ |

𝐴𝑖−𝑝𝑖

(𝐴𝑖+𝑝𝑖)∕2
|

𝑁

𝑖=1
                                  (5) 



 

 

 
ITcon Vol. 30 (2025), Bhatia et al., pg. 1088 

The optimization process is carried out in four steps. Step 1 is to create an initial population, which consists of 

chromosomes representing various configurations of the number of neurons, number of hidden layers, learning 

rate, and momentum. This initial population is generated randomly, with the number of chromosomes determined 

based on the population size. Each chromosome contains multiple genes, each representing a specific aspect of the 

DNN configuration (i.e., number of neurons, number of hidden layers, learning rate, and momentum). Notably, 

the number of neurons and the number of hidden layers is represented as discrete values, chosen randomly from 

the combinatorial range of their upper and lower bounds. Learning rate and momentum, on the other hand, are 

represented as continuous values. In the present study, neurons have a step size of 2, and hidden layers have a step 

size of 1. Please note that the step size refers to the interval by which a parameter is increased during tuning; here, 

neurons are adjusted with a step size of 2, meaning the neuron count is increased by 2 each time, while hidden 

layers are adjusted with a step size of 1. Figure 3(a) shows the structure of a generated chromosome, which 

represents a potential solution. For example, in the chromosome “8,4,0,1,1,1,1,0,0,1”, “8” is the number of neurons 

in each hidden layer (a discrete value), “4” is the number of hidden layers (also a discrete value), and the binary 

values that follow represent the learning rate and momentum (continuous values). In this chromosome, the first 

four binary digits represent the learning rate, while the latter four binary digits represent momentum. These binary 

strings are decoded using Equation 6 and 7 in order to convert the encoded parameters back into real-world values. 

D = (𝛴𝑏ⅈ𝑡 × 2𝑖) × 𝑃 + 𝛼                                                     (6) 

        P =  
𝑏−𝑎

2𝑙−1
                                                                           (7) 

where D is the decoding process, P is the parameter (see Equation 6 and 7), variables a and b are the lower and 

upper bounds of the parameter, and l is the length of the chromosome. For instance, to decode the variable learning 

rate, which has lower (a) and upper (b) bounds of 0.01 and 0.30, respectively, and a chromosome length of 4 

(Figure 3b), the decoded value (D) is 0.15, which falls within the acceptable range (i.e., 0.01 to 0.30). 

 

(a)                                                    (b) 

Figure 3: (a) Structure of the chromosome; and (b) decoding of chromosome (example of learning rate parameter). 

Step 2 of the optimization process is evaluation, in which the fitness values of each chromosome are evaluated 

based on the optimization criteria (i.e., minimum error rate). Step 3, meanwhile, is the selection process, which 

involves choosing the best chromosomes (i.e., potential parents) from the population as the best solution (i.e., the 

best combination of number of hidden layers, number of neurons, learning rate, and momentum) based on fitness 

value. The tournament selection technique is used for this purpose, this technique being chosen due to its efficiency, 

ease of implementation, and relatively low computation time compared to other methods (e.g., roulette wheel 

selection) (Razali and Geraghty, 2011). In the tournament selection technique, a number of chromosomes 

(represented as k, i.e., the tournament size) are randomly selected from the population, and the chromosome with 

the best fitness score among the k chromosomes is selected as parent 1. This process is repeated until the desired 

number of parents for crossover is selected. For example, in a population of 10 with a tournament size (k) of 3, 

chromosomes 1, 2, and 3, with fitness values of 0.75 min, 0.82 min, and 0.68 min, respectively, are randomly 

picked. The chromosome with the best fitness (i.e., minimum error rate)—in this case, chromosome 3 (fitness 

0.68)—is selected as the first parent, and the process continues with the identification of a second parent. 

In Step 4 of the optimization process, finally, after two parents have been selected, crossover is performed to create 

new chromosomes for the next generation. The number of hidden layers and neurons are exchanged between parent 
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1 and parent 2, while, for the continuous parameters (i.e., learning rate and momentum), a two-point crossover is 

used. This method is preferable due to its successful application in various optimization problems (Murata et al., 

1996). For each set of parents, a crossover point is chosen randomly. Figure 4 demonstrates the crossover process, 

where offspring 1 inherits the number of neurons (8), number of hidden layers (5), and continuous values for 

learning rate and momentum from parent 2. Mutation is subsequently performed, and this process (i.e., the 

sequence of selection, crossover, and mutation) continues, with each DNN configuration being trained, tested, and 

evaluated using the fitness function, until the termination criterion (i.e., maximum number of generations) is met. 

The developed model uses: (i) a population size of 20; (ii) a maximum of 50 generations; (iii) a mutation 

probability of 0.1; (iv) a crossover probability of 1; (v) a tournament size of 3; (vi) a momentum range of 

[0.01,0.99]; and (vii) a learning rate range of [0.01, 0.30]. The GA parameter values are determined by 

experimenting with various values and selecting the one yielding the best results. 

 

Figure 4: Two-point crossover. 

The DNN results are compared with those of ANN and MLR in order to determine the best tool for predicting the 

process times at each workstation of the production line. The input layer of the neural networks (both ANN and 

DNN) comprises a number of independent variables, which vary according to the SOPs at the workstations. For 

example, as indicated in Table 2, the framing workstation has five variables (number of studs, number of doors, 

number of windows, length, and height), whereas the window/door installation workstation has four variables 

(number of doors, number of windows, length, and height). The number of hidden layers and the number of neurons 

in the DNN are determined using the GA optimization technique as described above. Each hidden layer is formed 

(and the number of neurons in the hidden layer determined) as a weighted sum of all input features based on the 

connection weights. In this feed-forward step, the output layer receives the values from neurons and calculates 

their weighted sum in order to produce a prediction result. The output layer, in turn, provides the predicted 

dependent variable, i.e., the predicted process time (duration). As noted above, ReLu is used as an activation 

function to introduce non-linearity into the network. It should be noted that the input factors (i.e., independent 

variables) used to train the MLR, ANN and DNN models vary depending on the workstation (see Table 2). 

Table 2: Input variables by workstation. 

Input Layer Variables Framing  Sheathing Nailing  Butterfly Window/ Door 

Number of Studs ✓ X X X X 

Length (ft) ✓ ✓ ✓ ✓ ✓ 

Height (ft) ✓ ✓ ✓ ✓ ✓ 

No. of Doors ✓ ✓ ✓ ✓ ✓ 

No. of Windows ✓ ✓ ✓ ✓ ✓ 

SheetPartial X ✓ ✓ X X 

SheetFull X ✓ ✓ X X 

Area X ✓ ✓ X X 

Nailcount X X ✓ X X 

Nailline X X ✓ X X 
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It should be noted that error rate (e.g., MAE) is used in the present study as the measure of goodness of fit. 

According to several studies available in the literature, it is a superior alternative to R2 for evaluating model 

performance in the case of non-linear data. For instance, Kvålseth (1983) has noted that the use of R2 in evaluating 

model performance with non-linear data leads to misinterpretations and produces misleading conclusions. 

Moreover, in the mathematical literature, it has been concluded that R2 generally does not increase even when 

evaluating better-performing non-linear predictive models (Spiess and Neumeyer 2010). 

4. CASE STUDY 

The proposed method is implemented on a wood frame wall panel production line operated by a modular fabricator 

in Edmonton, Canada. The workstations of the production line are equipped with computer numerical control 

(CNC) machines for automated processes, while some workstations require manual work. Figure 5 shows an 

overview of the wall panel production line, which consists of the following workstations: (i) framing workstation, 

where wall elements (studs, cripples, and sill plates) are fastened together using CNC machinery to form an interior  

or exterior wall panel frame; (ii) sheathing workstation, where OSB (oriented strand board) is cut manually and 

placed on wall panel frames; (iii) nailing workstation where OSB is nailed to the frame using CNC machinery; 

(iv) panels are then moved to the butterfly table to undergo other operations such as cutting of multiwall panels to 

single wall panels; and (v) window/door installation station , where windows/doors are installed on the wall panels, 

which are then transferred to the wall magazine to be stored as they await delivery to the site. It should be noted 

that interior wall panels are moved from the butterfly table through the window/door bypass to the wall magazine 

for storage as they await loading, whereas exterior wall panels are transferred from the butterfly table to the 

window/door installation line. It is worth mentioning that the framing and nailing workstations are semi-

automated, while other workstations are operated manually.  

 

Figure 5: Wall panel production line (Images courtesy of Mohammed Sadiq Altaf). 

The process times of wall panels at each workstation are collected using an RFID system (i.e., RFID printer, tag, 

antenna and reader), as noted above. The data spans the period between July, 2015, and August, 2018, and consists 

of (i) 416,950 timestamps (i.e., start and finish times) for wall panels, where each timestamp includes 10 attributes 

(e.g., tagID, panel number, antenna description, etc.); and (ii) the design attributes of each wall panel (e.g., number 

of studs, number of doors/windows, and width of wall panels), for a total of 93,660 records (see Table 3). A total 

of 37 design attributes, such as floor, Dstud, Mstud, and Drillhole, are included. The historical RFID data having 

been obtained from the case company, the next step is to extract the process times of wall panels at each workstation 

from the “RFID raw data” file based on the difference between start times at consecutive antenna locations (i.e., 

workstations), as expressed in Equation 1. 
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Table 3: Summary of wall panel raw data from production line. 

Panel Type Job 

Length 

(mm) 

Width 

(mm) Stud LStud Windows Door Duration 

E-16_30DES-17-10-11_10 EXT 30DES-17-10-11 11,919 2,467 22 5 0 0 13 

E-17_30DES-17-10-11_10 EXT 30DES-17-10-11 12,175 2,467 23 5 0 0 10 

E-18_30DES-17-10-11_10 EXT 30DES-17-10-11 12,168 2,467 14 5 3 0 9 

I-2_10GLR-17-0016_00 INT 10GLR-17-0016 12,035 2,467 24 1 0 2 6 

I-3_10GLR-17-0016_00 INT 10GLR-17-0016 12,195 2,467 25 1 0 3 6 

I-4_10GLR-17-0016_00 INT 10GLR-17-0016 7,329 2,467 14 1 0 2 5 

E-6_10GLR-17-0016_00 EXT 10GLR-17-0016 11,576 2,467 6 7 3 0 8 

E28_10GLR-17-0016_00 EXT 10GLR-17-0016 4,407 2,467 1 2 1 0 4 

Table 4 presents the statistical details (i.e., mean and standard deviation) for each workstation on the production 

line. For example, the mean process time at the framing workstation is 8.15 min, with a standard deviation of 2.98 

min. In addition, initial data visualization is performed in order to gain understanding of the operating procedures 

at each workstation and the effect of these operations on process times. 

Table 4: Mean and standard deviation for each workstation. 

Workstation 
Mean process time 

(min) 

Standard deviation 

(min) 

Framing 8.15 2.98 

Sheathing 9.39 2.79 

Nailing 8.35 3.02 

Butterfly 6.18 2.48 

Window/Door 18.50 5.54 

Figure 6(a) shows that there is a high level of variance in process times. For example, at the sheathing workstation, 

the process time of wall panel 3 is 9 min, that of wall panel 4 is 12 min, and that of wall panel 6 is 2 min. Moreover, 

the process times variations at the butterfly workstation are very high compared to those at other workstations 

during the month of June 2016. This is due to the influence of client-defined design customizations, which result 

in variations in the number of windows, panel length, and number of studs. This variation in process times affects 

the daily productivity of the workstations, as shown in Figure 6(b). These productivity results show, for example, 

that the daily production output on March 30 is 12 panels at the sheathing workstation, 22 panels at the framing 

workstation, and 6 panels at the nailing workstation, indicating an imbalanced production line. It should be noted 

that the first three workstations (i.e., framing, sheathing, and nailing) operate on multi-wall panels, while from the 

butterfly station onwards, these multi-wall panels are cut into individual wall panels, which leads to an increase in 

number of wall panels detected at this workstation by RFID system. 

As noted above, prior to development of the predictive model, data pre-processing is implemented. Pre-processing 

involves: (i) retaining only the initial reading for a given wall panel at a given workstation and omitting subsequent 

ones if there are multiple readings (for example, as shown in Figure 7a, the initial reading for wall panel E29 at 

the wall magazine (i.e., record A12, time 2:34 pm) is retained while subsequent readings of this panel at this 

workstation (i.e., 2:35, 2:36, 2:37, and 2:39 pm) are removed); and (ii) removing TagID, antenna description, 

location source antenna, first and last read date, backing, floor, siding, weight, model and parent unit (due to the 

irrelevance of this information to wall panel process times prediction). Additionally, data visualization (i.e., pie 

chart) is used to remove outlier process times. For example, Figure 7(b) presents the distribution of process times 

at the butterfly workstation), window/door installation workstation, and transfer table. Here, the process times 

above 60 min (butterfly workstation), 80 min (window/door installation workstation), and 10 min (transfer table), 

are removed. The reason for removing these points is that they have excessive process times (i.e., 61 to 410,000 
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min) that likely represent: (i) work disruptions due to errors in shop drawings and/or (ii) a wall panel being operated 

on at the given workstation over two successive work days.  

 

 

Figure 6: (a) Process times of wall panels; and (b) daily production of wall panels. 

Moreover, similar physical attributes of a wall panel (e.g., studs, window, and sheetfull) are combined into a single 

attribute in order to reduce data dimensions and computation time. For example: (i) DStud, LStud, and MStud are 

combined into a single attribute (“stud”); and (iii) door and large door are combined as “door”. Finally, the min–

max normalization technique is applied in order to transform the data into values ranging between 0 and 1 prior to 

prediction model development. Following data pre-processing, the datasets number 7,256, 2,885, 3,035, 19,998, 

and 1,868 for the framing workstation, sheathing workstation, nailing workstation, butterfly table, and 

window/door installation workstation, respectively. It should be noted that the steps in data pre-processing are 

specific to the case study (i.e., they are a function of the given wall panel design attributes). For other cases, the 

data pre-processing phase would need to be modified according to the given module component design attributes. 
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(i)                                                                                   (ii) 

Figure 7: (a) RFID data of wall panels at workstations; and (b) distribution of wall panel process times at: (i) 

butterfly workstation; and (ii) transfer table. 

As noted above, variation in process times at workstations due to differences in design attributes of customized 

wall panels leads to an imbalanced production line, hence the development of a predictive model for estimating 

process times (for use in scheduling and planning) that considers wall panel design factors. Based on the training 

dataset (i.e., 80% of the data) and the independent variables (e.g., panel length, number of studs, doors, windows, 

etc.) used as model inputs, the DNN is developed and validated using a 10-fold cross-validation technique. The 

developed DNN consists of an input layer, multiple hidden layers, and an output layer (i.e., process times of wall 

panels), and each node element is connected and layered with the neurons of the next layer. In addition, ANN and 

MLR models are developed for the purpose of comparing the results with those generated by the DNN model. 

Table 5 presents a comparison of the MAE values obtained for the different numbers of neurons in a single hidden 

layer of the ANN for each workstation. The number of neurons tested ranges from 1 to 6, and the best result for 

each workstation (i.e., the minimum MAE achieved) is selected for comparison with the results from DNN. For 

instance, at the framing workstation, the test with 5 neurons achieves the lowest MAE (2.21 min). 

GA optimization is used to minimize the MAE by identifying the near -optimal number of hidden layers, number 

of neurons, momentum, and learning rate for the DNN model. The computational time required to train the 

prediction models for the workstations ranges between 2-3 hours. The ReLu activation function is employed, with 

the search ranges [3,10] for number of hidden layers, [6,100] for number of neurons, [0.01,0.99] for momentum, 

and [0.01,0.30] for learning rate. It is worth mentioning that the selection of these ranges of the neural network 

was based on a combination of prior literature, and practical considerations (i.e., balance computational feasibility 

with sufficient search space exploration). Additionally, these ranges cover a broad spectrum of hyperparameter 

values for DNN in order to achieve near-optimal solution in a reasonable run time (i.e., explore broad search space, 

while achieving computational efficiency). The optimization parameters, meanwhile, are assigned as follows: (i) 

a population size of 20; (ii) a maximum number of generations of 50; (iii) a mutation probability of 0.1; (iv) a 

crossover probability of 1; and (v) a number of tournaments of 3. As shown in Table 6, most of the workstations 

(i.e., framing, sheathing, butterfly and nailing) are found to have a MAE of less than 2.50 min. If we compare this 

to the work of Mohsen et al. (2022), in their study the MAE of the prediction algorithms ranges from 4.4 min to 

9.2 min—meaning that the model developed in the present study achieves better performance. Additionally, the 

percentage errors achieved by the prediction model for the various workstations are consistent with those of 

previous prediction models reported in the literature (Mohsen  et al. 2022; Alsakka et al., 2024). The DNN results 
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are also compared with ANN and MLR. As these results show, the DNN model is found to achieve superior MAE 

values with the exception of the nailing workstation (with ANN achieving a better result for this workstation). 

These various prediction models were developed utilzing Python in a Jupyter notebook environment, which allows 

to efficiently code, visualize results, and iterate through different modeling approaches. Additionally, a paired t-

test was conducted to compare the MAE values of the DNN and regression models for five workstations. The 

mean difference in MAE for these workstations was -0.12 with a standard deviation of 0.07. The computed t-

statistic of -4 exceeded the critical t-value (± 2.776) at a 95% confidence level, n value of 5 and degree of freedom 

4. This indicates that the DNN model’s predictive performance was statistically better than the regression model 

and is unlikely to be due to random chance. 

Table 5: Mean absolute error measurement for ANN. 

Neurons Framing (MAE) Sheathing 

(MAE) 

Nailing (MAE) Butterfly (MAE) Window/Door (MAE) 

1 2.48 5.72 4.93 4.12 8.03 

2 2.40 2.30 2.51 3.07 7.76 

3 2.42 2.32 2.48 3.10 6.01 

4 2.37 2.29 4.46 2.58 5.90 

5 2.21 2.36 2.40 2.18 5.12 

6 2.39 2.38 2.56 2.93 5.88 

Although, the prediction model yields relatively high SMAPE values (ranging between 22% and 28%); however, 

it is due to the absence of key factors that can affect the process time of wall panels at the workstation. For example, 

according to the SOP file provided by the case company: (i) workers need to set up the CNC machine after 

completing each wall panel, but the current data lacks any variables related to this setup time; and (ii) at the 

sheathing workstation, workers spend time installing guard wrap on the top plate of the wall panel, cutting OSB 

sheets, labelling the wall number on the top plate, and conducting a quality check (e.g., ensuring that end studs are 

aligned with the plate); these activities are not included as variables in the current dataset. Additionally, the dataset 

does not include variables for worker idle time at workstations due to material shortages or machine breakdowns. 

This is due to the fact that the RFID system records only the timestamps (start and end times) of wall panels at 

each workstation, and does not capture activities occurring between these timestamps or account for factors that 

might result in delays (e.g., movement of workers to pick wall panel elements and tools). The developed prediction 

model can be improved by collecting data related to activities such as OSB cutting, inspection, and labelling of 

wall panels at the sheathing workstation. 

Table 6: Comparison of DNN, ANN and MLR. 

Workstations DNN Selected Value DNN 

MAE 

(min)  

DNN 

SMAPE 

(%) 

ANN Value ANN 

MAE 

(min)  

ANN 

SMAPE 

(%) 

Reg. 

MAE 

(min) 

Reg 

SMAPE 

(%) 

Hidden 

Layers 

Neurons Hidden 

layers  

Neurons 

Framing 3 74 2.17 25.78% 1 5 2.21 27.94% 2.24 28.86% 

Sheathing 3 72 2.11 22.49% 1 4 2.29 24.87% 2.28 24.81% 

Nailing 3 14 2.41 28.42% 1 5 2.40 28.31% 2.43 28.68% 

Butterfly  7 70 2.05 28.87% 1 5 2.18 31.59% 2.24 32.12% 

Window/Door 8 42 4.48 27.62% 1 5 5.12 31.56% 4.61 28.42% 
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The case study demonstrates that hyperparameter tuning utilizing GA to optimize number of hidden layers/nodes, 

learning rate and momentum is beneficial to improving the accuracy of the prediction model. The method described 

in this study is capable of efficiently estimating the fabrication process times of wall panels at workstations of the 

production line, thereby removing the guesswork from production planning and scheduling. However, it should be 

noted that the factors (independent variables) used as inputs in the prediction model of this study are a function of 

the given product design specifications of the case study production line. For other cases, practitioners would need 

to modify the input phase based on the given design specifications. Additionally, in modular construction, due to 

unpredictable on-site demand, production managers must frequently alter their plans to accommodate change 

orders. In this respect, average process times and linear fixed rate (sq. ft. per minute) are used to estimate the 

process time of module components at workstations for multiple projects. As an alternative to this challenging and 

error-prone approach, the framework implemented in the case study can be deployed to develop predictive models 

for estimating process times and streamline the MCM planning and scheduling process as illustrated in the works 

of Bhatia (2025). 

5. CONCLUSION 

In modular construction, the module components (e.g., wall, roof, and floor panels) are of varying sizes and design 

specifications, and these client-defined design variations necessitate dynamic changes to the production line. This 

poses a challenge for production line managers in their efforts to accurately predict process times, leading to 

inefficient production line schedules and reduced productivity. In this respect, this research proposes a novel 

method that uses historical process time data from the wall panel production line as an input in DNN, ANN, and 

MLR models to predict the process times at each workstation. GA optimization is then implemented for 

hyperparameter tuning in DNN to find the near- optimal number of hidden layers, number of neurons in each layer, 

momentum, and learning rate. The implementation of the proposed method in a wall panel production line shows 

that the developed method is capable of predicting the process times with a MAE of less than 2.50 min for most 

of the workstations. DNN provides the best results for most of the workstations, although ANN is found to perform 

better in the case of the nailing workstation. 

The contributions of this study include: (i) implementing GA to determine the near -optimal DNN 

hyperparameters, considering learning rate and momentum along with number of hidden layers and neurons to 

reduce the prediction error; (ii) developing prediction models for all production line workstations rather than 

focusing on only one or a few workstations within the production line; (iii) providing production insights (e.g., 

wall elements that effect the process times) to management, enabling them to improve the productivity of module 

component prefabrication. Overall, this approach overcomes the reliance on experience-based methods for 

estimating process times and creating production schedules; and (iv) accurate estimation of process times will 

enable modular construction companies to quantitively analyse their operations and, hence, to identify sources of 

waste in the production line (e.g., waiting time of workers at workstations and idle times of wall panels between 

workstations). 

It should be noted that this study is subject to some limitations. First, other metaheuristic algorithms, such as 

particle swarm optimization (PSO) are not investigated. Therefore, to introduce more diversity, future studies could 

assess these algorithms for hyperparameter tuning and compare their outcomes with those of GA. Second, the 

number of workers at each workstation (for manual workstations) and machine setup time (for automated 

workstations) are not included in the RFID data and are not used as independent variables in the process time 

prediction. Therefore, future research could incorporate these factors in order to enhance the accuracy of the 

process times prediction. Third, this research primarily emphasizes the development of predictive method with 

module design specifications, without focusing on factors such as number of workers, work shifts, material 

availability and on-site change orders that can affect process time. In this respect, the future work would consider 

these factors as an input in order to increase the accuracy of the prediction model. 
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