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SUMMARY: Fatigue induced by physical exertion and environmental stress remains a critical safety concern in 
construction and other physically demanding industries. This paper investigates whether integrating wearable 
sensor data (EMG, HR, HRV) and thermal conditions (hot, room, cold) can improve real-time fatigue prediction. 
Physiological signals were collected using wearable sensors, processed through noise filtering and feature 
extraction, and classified using Random Forest Classifier and Extreme Gradient Boosting algorithms. The models 
demonstrated high predictive accuracy, achieving 80% for continuous fatigue levels and over 90% for categorical 
fatigue classes. These findings are particularly valuable for construction safety managers, occupational health 
researchers, and technology developers seeking proactive fatigue management solutions. Future research should 
focus on field validation of wearable systems and integration with site management platforms such as BIM for 
broader industry adoption. 

KEYWORDS: Health and Safety, Physical exertion, Fatigue monitoring, Wearable Sensor, Machine learning. 

REFERENCE: Muhammad Khan, Sharjeel Anjum, Abdullahi Ibrahim, Chukwuma Nnaji, Ashrant Aryal, Amanda 
S. Koh (2025). Wearable Sensor-Based Fatigue Classification Under Diverse Thermal Conditions. Journal of 
Information Technology in Construction (ITcon), Vol. 30, pg. 875-902, DOI: 10.36680/j.itcon.2025.036 

COPYRIGHT: © 2025 The author(s). This is an open access article distributed under the terms of the Creative 
Commons Attribution 4.0 International (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original work is properly cited. 

https://dx.doi.org/10.36680/j.itcon.2025.036
https://dx.doi.org/10.36680/j.itcon.2025.036
https://orcid.org/0000-0002-0838-9087
mailto:mkhan13@tamu.edu
mailto:aaibrahim@tamu.edu
https://orcid.org/0000-0002-3725-4376
mailto:askoh@eng.ua.edu
https://creativecommons.org/licenses/by/4.0/


 

 

 
ITcon Vol. 30 (2025), Khan et al., pg. 876 

1. INTRODUCTION 

In the construction industry, workers are consistently exposed to numerous hazards and physically demanding 

tasks, making it one of the most dangerous sectors globally (BLS 2022; Khan et al., 2023). Despite advancements 

in safety protocols (Peña and Ragan 2017), construction continues to be plagued by significant risks (Dodshon and 

Hassall, 2017; Sandberg and Albrechtsen, 2018; Gbiengu and Bonilla, 2024), as evidenced by high rates of 

fatalities and injuries across various countries (Choi et al. 2019; Shim et al. 2022). Among these, work-related 

musculoskeletal disorders (WMSDs) emerge as a leading cause of nonfatal occupational injuries, severely 

affecting workers' health and well-being (Schneider 2001; CDC 2020). WMSDs cover a broad range of injuries 

and conditions, including lower back injuries, tendinitis, and carpal tunnel syndrome (Vijayakumar and Choi 2022; 

D. Wang, Dai, and Ning 2015; Umer et al. 2018; CDC 2020). The Health and Safety Executive (HSE) reports that 

WMSDs account for approximately 27% of all work-related health issues (NRC 2001), highlighting the substantial 

burden these conditions impose on individuals and the economic costs related to lost productivity and medical 

treatment (CDC 2020; NRC 2001). The Institute of Medicine estimates the economic burden of WMSDs, as 

measured by compensation costs, lost wages, and lost productivity, to be between $45 and $54 billion annually 

(NRC 2001). Compounding this issue, Bureau of Labor Statistics (BLS) data reported a significant presence of 

MSDs in the U.S. private sector: in 2018, out of 900,380 days away from work (DAFW) cases, 272,780 (30%) 

were MSD cases, with a notable reduction in incidence rate from 35.4 per 10,000 full-time workers in 2011 to 27.2 

in 2018 (BLS 2020). However, the median days away from work due to MSDs increased slightly from 11 in 2011 

to 12 in 2018, underscoring the persistent challenge of MSDs in physically demanding industries like construction 

(Sundstrup et al. 2020). Despite ongoing efforts to mitigate these risks, WMSDs remain a critical health and safety 

challenge within the construction industry, underscoring the urgent need for comprehensive strategies to identify 

and address work-related risk factors and enhance workplace safety. 

The high incidence of WMSDs in the construction industry is a consequence of physical demands, psychosocial 

stressors, and individual characteristics (Reddy et al. 2016; Anwer et al. 2021). These conditions not only lead to 

project delays and increased worker absenteeism but also escalate operational costs through diminished 

productivity (NRC 2001). Critical factors contributing to WMSDs include repetitive motions, demographic 

variables such as gender and age, disregard for safety protocols, physical overexertion, uncomfortable working 

postures, and exposure to excessive vibration and severe temperatures (Soares et al. 2019; D. Wang, Dai, and Ning 

2015; Umer et al. 2018; Anwer et al. 2021). Notably, extreme weather conditions and high work intensity are 

prominent risk factors that aggravate the prevalence of WMSDs (Aguirre et al. 2021; Da Costa and Vieira 2010; 

Zong et al. 2024; F. Yang et al. 2023; J. Wang et al. 2017). Karthick et al (2022) and Yi and Chan, (2015) reported 

that outdoor construction workers are particularly susceptible to heat and cold stress, which can significantly 

contribute to the onset of fatigue and increase the risk of health complications and accidents.  

Techera et al. (2019) conducted interviews with 143 workers in the transmission and distribution sector, identifying 

extreme weather conditions and prolonged work shifts as primary contributors to worker fatigue in this industry. 

Similarly, Maynard et al. (2021) used focus group surveys and interviews with frontline workers and managers 

involved in a major tunnel construction project, discovering that the physical environment, repetitive tasks, 

inconsistent shift patterns, and manual labor were key factors leading to construction worker fatigue in the tunnel 

industry. Yang et al. (2022) highlight that exposure to temperature variations significantly contributes to the high 

prevalence of musculoskeletal disorders among electronics manufacturing workers in China. The report by the 

Canadian Centre for Occupational Health and Safety (CCOHS) emphasizes that among various risk factors for 

WMSDs, repetitive tasks and exposure to varying temperatures are critical contributors to the development of 

WMSDs. These factors, along with other elements such as work postures and force of movement, play a significant 

role in the prevalence of these disorders in the workplace. Yang et al. (2022) identify exposure to cold, cool breezes, 

or temperature changes as a significant risk factor for WMSDs affecting multiple body areas, highlighting the 

importance of managing environmental conditions to reduce these risks. Recent review articles Spector et al. 

(2019) suggest an increased risk of occupational traumatic injuries linked to rising heat exposure, particularly 

affecting male workers. Workers in hot environments face risks of heat-related illnesses like heat stroke, 

exhaustion, syncope, cramps, and rashes, which can be fatal (Jacklitsch et al. 2016). Szer et al. (2017)  reported 

that fluctuating temperatures on construction scaffolds, particularly in the Lodz and Warsaw regions, frequently 

cause worker fatigue and decreased alertness, increasing the risk of accidents. The paper Bendak et al. (2022) 

investigates the impact of high ambient temperatures on construction workers in Dubai, revealing that hot 

conditions exacerbate fatigue, reducing performance and increasing accidents. In addition, Studies highlight a 
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0.5% rise in injury odds with each 1°C increase in heat, indicating a need for tailored prevention strategies in heat-

exposed work environments (Calkins et al. 2019). Those scenarios underscore the critical need for innovative 

research focused on the automated detection and prediction of workers' fatigue in varying thermal environments, 

which is crucial for developing proactive interventions that could significantly reduce WMSD risk factors in the 

construction industry. 

To effectively mitigate the risk factors associated with WMSDs, it is crucial to monitor physical exertion, as it is 

the primary source of fatigue. Various methods have been proposed for its estimation, including monitoring 

physiological responses and using subjective scales (Mishra et al. 2019; McAtamney and Nigel Corlett 1993; Umer 

et al. 2020). While subjective scales have inherent limitations, they provide valuable insights into workers' 

perceived exertion levels, which can be critical in understanding fatigue progression. Research suggests that 

combining subjective assessments with physiological and biomechanical measurements enhances the overall 

accuracy of fatigue monitoring (Borg, 1998). Therefore, this paper integrates both objective physiological signals 

and self-reported fatigue ratings to develop a comprehensive fatigue assessment model, ensuring a holistic 

evaluation of worker fatigue across various thermal environments. The advent of sensor technology offers a 

promising avenue for advancement, enabling the precise prediction of workers' actions (Valinejadshoubi et al., 

2021;Salem and Moselhi, 2021) and ergonomic risk factors through the collection and analysis of data in real-time 

(Adão Martins et al. 2021; Bustos et al. 2021; Maxwell Fordjour Antwi-Afari and Li 2018; Maxwell Fordjour 

Antwi-Afari et al. 2023; Umer et al. 2016; Aryal, Ghahramani, and Becerik-Gerber 2017; Bangaru;, Wang;, and 

Aghazadeh; 2022).  Recent advancements in Internet of Things (IoT) and Building Information Modeling (BIM) 

technologies have opened additional opportunities for enhancing real-time worker monitoring (Valinejadshoubi et 

al. 2021). IoT-enabled sensor networks can continuously collect and transmit physiological and environmental 

data from dynamic construction sites, offering scalable solutions for fatigue monitoring beyond controlled 

environments. Integration of wearable sensor data into BIM platforms further allows for visualization of worker 

health status in a spatial and temporal context, enabling proactive decision-making and risk mitigation (S. V. T. 

Tran et al. 2023; S. V.-T. Tran et al. 2021). Incorporating these systems could significantly improve the robustness, 

responsiveness, and practicality of fatigue monitoring frameworks in real-world construction settings. Despite its 

potential, sensor-based monitoring faces several challenges, including noise interference in data collection, sensor 

placement variability, and physiological differences among workers, all of which impact the accuracy of predicting 

ROF in diverse thermal working environments. The effectiveness of these systems is further constrained by 

environmental fluctuations, such as extreme heat or cold, which can affect sensor reliability and physiological 

signal consistency, leading to potential misclassifications in fatigue assessment. Recent advancements in 

occupational health emphasize the importance of developing innovative methods for real-time safety and health 

monitoring, especially in professions subject to extreme physical demands and varying thermal conditions (Zong 

et al. 2024; Bustos et al. 2021). Although initial studies utilizing wearable technology have made significant 

progress toward automating and personalizing fatigue detection (Adão Martins et al. 2021; Bustos et al. 2021), 

existing research remains limited in several key aspects. Current studies have primarily focused on laboratory-

based experiments with controlled conditions, making it difficult to generalize findings to real-world construction 

environments where multiple variables influence fatigue progression. Additionally, most existing models do not 

fully integrate environmental factors such as temperature fluctuations, which play a crucial role in fatigue 

development. Moreover, while machine learning approaches have been explored for fatigue prediction, there is 

still a lack of robust frameworks that incorporate multimodal physiological data along with thermal stressors and 

task-related exertion levels. From an industry perspective, common fatigue monitoring practices remain largely 

reactive rather than proactive. Construction companies primarily rely on self-reported fatigue assessments, visual 

observations by safety personnel, and periodic medical evaluations to assess worker fatigue levels. While these 

methods provide some insight, they are highly subjective and lack real-time monitoring capabilities, limiting their 

ability to prevent fatigue-related injuries. The absence of automated, real-time fatigue detection systems 

underscores the urgent need for sensor-based approaches that continuously assess workers’ exertion levels and 

predict fatigue risk before it leads to musculoskeletal injuries. 

This paper aims to address these gaps by integrating non-invasive wearable technology with supervised machine 

learning algorithms to provide a real-time, automated fatigue monitoring framework. By accounting for various 

thermal environments (cold, hot, and room temperatures) and incorporating multivariable physiological 

measurements, this research seeks to advance fatigue prediction models and contribute to the prevention of WMSD 

risks, particularly under extreme working conditions where traditional models may fail. 
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2. BACKGROUND 

In occupational settings, especially within the construction industry, monitoring worker fatigue is not merely a 

matter of enhancing productivity, it is a critical component in preventing WMSDs (OSHA, 2020, Khan et al., 

2024). These conditions, which range from chronic back pain to tendinitis, not only affect workers' well-being and 

quality of life but also contribute significantly to lost workdays and increased healthcare costs (Vijayakumar and 

Choi 2022; D. Wang, Dai, and Ning 2015; Umer et al. 2018; Baron 2010; CDC 2020). The dynamic and physically 

demanding nature of construction work, compounded by exposure to hazardous environments, underscores the 

need for vigilant fatigue monitoring (Ibrahim et al. 2023; M. Zhang et al. 2015; Xing et al. 2020). However, the 

effectiveness of traditional monitoring strategies is often compromised by the unpredictable nature of construction 

settings, particularly in extreme weather conditions (Cheung, Lee, and Oksa 2016). Temperature changes present 

unique challenges that can magnify worker fatigue, affecting physical and mental capacities (Cheung, Lee, and 

Oksa 2016). Thus, there is a pressing need for innovative approaches that can accurately assess and predict fatigue 

levels under these varying conditions, ensuring that preventive measures are both timely and effective. 

Traditional methods for assessing worker fatigue and stress have predominantly relied on self-reported 

questionnaires and direct observations (Gawron 2016; Pimenta and Paulo 2006). A common example of such a 

data measurement tool is Borg's Scale (Borg, 1998) and NASA Task Load Index (TLX). Anwer et al (Anwer et al. 

2020) used Borg- 20 scales to obtain a subjective benchmarking of physical fatigue while simulating construction 

tasks; Mitropoulos and Memarian (2013) utilized the NASA TLX questionnaire to explore the task demands in 

masonry work, while Hsu et al. (2008) applied the Research Committee on Industrial Fatigue (RCIF) scale from 

the Japan Society for Occupational Health to assess the physical and mental demands faced by high-rise 

construction workers. While these tools have provided foundational insights into the physical and mental stressors 

affecting workers, they have inherent limitations. One significant drawback is their subjective nature; responses 

can be influenced by individual perceptions, memory bias, and even the desire to meet perceived expectations 

(Evans and Segerstrom 2017). These methods also cannot predict future states (M. Zhang et al. 2015). Moreover, 

questionnaires can only provide top-level information on fatigue at a specific moment, lacking the continuity 

needed to capture the evolving nature of fatigue throughout the workday.  Equally important is the failure of these 

traditional methods to adequately account for the impact of environmental factors, particularly thermal conditions, 

on worker fatigue. Extreme temperatures, whether scorching heat or freezing cold, can significantly influence 

fatigue levels (Cheung, Lee, and Oksa 2016; Calvert et al. 2013), yet the static nature of questionnaires and 

observations does not capture these dynamic effects. 

Given these challenges, researchers have explored more objective, sensor-based approaches to fatigue monitoring. 

For example, Inertial Measurement Units (IMUs), incorporating accelerometers, gyroscopes, and magnetometers, 

are non-intrusive wearable sensors designed to track body segments' acceleration, orientation, and velocity. These 

devices play a crucial role in detecting overall physical fatigue by observing decreases in motion control (L. Zhang 

et al. 2019). The evaluation of motor performance and control leverages motion smoothness metrics, including the 

ratio of maximum to mean velocity during motion, the count of velocity profile peaks, and jerk calculated from 

kinematic data (Hogan and Sternad 2009; Bosecker et al. 2010). Sedighi Maman et al. (2017) created models to 

detect physical fatigue from wrist and hip jerk data in simulated manufacturing tasks, employing the LASSO 

method for feature extraction. Zhang et al. (2019) explored the potential of jerk measurements for identifying 

physical fatigue in continuous bricklaying tasks and reported that jerk readings from the upper arms and pelvis 

significantly outperform those from the hands and forearms. Although IMUs provide valuable data, their 

effectiveness can be compromised by exposure to repetitive shocks, impacts, and the worker's skill level, which 

may not accurately reflect subtle changes in fatigue or be universally applicable across different worker profiles 

(Bangaru et al., 2022). In addition, the reliance on such smoothness metrics might not capture all fatigue 

dimensions, especially under varying task complexities or environmental conditions that affect motion fluidity. 

IMUs are also difficult to calibrate in extreme temperatures, such as hot environments, which may lead to poor 

data collection (Zihui Wang, Cheng, and Du 2020; Niu et al. 2013). 

Several research efforts have investigated oxygen consumption as a measure of physical stress in construction 

workers, linking higher oxygen intake to greater task demands and stress levels (Abdelhamid and Everett 2000; Li 

et al. 2009; Wong et al. 2014). Li et al. (2009) conducted a study on eight male construction workers performing 

varied manual materials handling tasks and reported that task frequency and lift/lower heights significantly impact 

oxygen uptake, heart rate, and perceived exertion. In addition,  the paper reported that the tasks demonstrated that 
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increased task frequency and specific height combinations led to higher exertion levels (Li et al. 2009). Wong et 

al. (2014) compared the workload and responses of bar benders and fixers in Hong Kong's summer heat, finding 

bar fixing more physically demanding, with higher heart rates, oxygen consumption, and energy use. Abdelhamid 

and Everett (2000) investigated the physical strain on construction workers and reported that 20 to 40% of craft 

workers daily exceed recommended energy expenditure limits, as evidenced by oxygen uptake measurements at 

an average of 0.82 L/min and heart rate at 108 bpm. However, measurements of oxygen consumption may not 

always be feasible in dynamic construction environments, and the variability in individual worker fitness can skew 

results. 

Skin/core temperature has been identified as a significant indicator of physical stress and fatigue. Chan et al. (2012) 

identified optimal recovery times post-exhaustion in hot and humid conditions, simulating construction work in 

Hong Kong's summer, and concluded that recovery rates from 46% in 5 minutes to 97% in 40 minutes, using 

measures like core temperature and heart rate. Additionally, Aryal et al. (2017) observed a decline in skin 

temperature across various facial areas with rising physical stress levels. However, these temperature metrics might 

not provide immediate indications of fatigue onset and are influenced by external environmental conditions, which 

could limit their practical application on construction sites (Roossien et al. 2020; Goods et al. 2023; Hintz, Presley, 

and Butler 2024).  

Contrary to questionnaires assessing both physical and mental stress, objective measures focus on one component 

at a time. For monitoring physical fatigue, researchers have utilized various metrics such as heart rate, heart rate 

variability, skin temperature, electromyography (EMG), oxygen consumption, and jerk metrics, either singularly 

or in combination, for either descriptive or predictive analyses as shown in Table 1. Numerous research efforts 

have focused on analyzing EMG signals to detect physical stress associated with construction tasks (Girard and 

Racinais, 2014; Bangaru et al., 2022; Khan et al., 2024). EMG stands out among physiological measurements by 

offering a localized analysis of physical stress in specific muscles or body parts. Typically, a rise in the root-mean-

square amplitude and a reduction in the median frequency are markers of increased physical stress. Antwi-Afari et 

al. (2017) investigated the impact of lifting weights and postures on construction workers' spinal biomechanics, 

using surface EMG sensors to measure muscle activity and fatigue during repetitive lifting tasks. It found that 

increased weights significantly boost muscle fatigue, especially in the biceps brachii, brachioradialis, lumbar 

erector spinae, and medial gastrocnemius muscles, highlighting the importance of considering these factors to 

mitigate the risk of WMSDs. In addition, Antwi-Afari et al. (2018) used surface EMG and motion sensors to 

investigate the effects of repetitive rebar lifting on rebar workers, revealing that increased weight intensifies lower 

back muscle activity and affects endurance, potentially heightening the risk of lower back disorders. Similarly, 

Umer et al. (2016)  analyzed trunk muscle activity and kinematics through surface EMG and motion sensors across 

three tying postures; findings indicate all exceed the recommended trunk inclination, with stooping significantly 

reducing lumbar muscle activity, potentially increasing risk by loading passive spinal structures. Bangaru et al.,  

(2022) developed a system that integrated EMG and IMU wearable sensors to aerobic fatigue threshold (AFT) 

from muscle activity and motion data and reported 92.31% accuracy in fatigue assessment. Khan et al. (2024) 

analyzed data from EMG, HR, and HRV sensors alongside observed fatigue through a step-observational approach 

and developed machine-learning models capable of predicting fatigue perception in hot conditions with 77 and 

76% precision and accuracy, respectively. Hwang and Lee (2017) assess wristband-type wearables (heart rate) to 

track the physical demands of construction workers and analyze how work tasks and personal and environmental 

factors influence these demands. Their paper reported significant variability in physical strain, underscoring the 

need for strategies to mitigate excessive demands, such as flexible work-rest cycles. Umer et al (2022) conducted 

manual material handling experiments, and HRV metrics were analyzed using ensemble classifiers and artificial 

neural network (ANN) regression. They achieved accuracies between 64.2% and 81.2% and a minimum root mean 

square error of 1.651 with the ANN approach.  

In recent years, machine learning (ML) models have emerged as a promising tool for predicting construction 

worker fatigue, highlighting their potential to address a critical occupational health issue (Antwi-afari et al. 2022; 

Mehmood et al. 2023; Umer et al. 2022; Lee et al. 2022; Khan, Ibrahim, et al. 2024). Despite this potential, current 

models fall short of accurately reflecting the diverse and dynamic environmental conditions on construction sites, 

where workers are routinely exposed to varying temperatures, ranging from cold to hot. This oversight underscores 

the urgent need to develop ML-based models that account for these varied thermal conditions, aiming to prevent 

muscle strains and damage by more accurately predicting the onset of fatigue. Furthermore, to enhance the 

precision of fatigue and muscle activation predictions, the integration of electromyography (EMG) data alongside 
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heart rate (HR) and heart rate variability (HRV) measurements is proposed. EMG provides localized fatigue 

information from specific muscles, while HR and HRV offer insights into overall body fatigue. Utilizing both 

metrics in combination could deliver a more comprehensive and accurate assessment of physical exertion among 

construction workers, contributing to safer and more productive work environments. This approach ensures that 

fatigue predictions capture widespread physiological effects and target muscle-specific responses, enhancing the 

relevance and application of predictive models in complex work scenarios. 

3. RESEARCH GAPS, OBJECTIVE AND CONTRIBUTIONS 

This paper's primary goal is to develop a process for leveraging data from wearable sensors and machine learning 

to effectively recognize, classify, and predict varying fatigue levels/classes while considering the influence of 

different weather conditions that construction workers are typically exposed to. To achieve this goal, the present 

paper proposes a non-intrusive wearable sensor system, utilizing Shimmer 3 (Shimmer 2024) and Zephyr 

BioHarness devices (Zephyr 2024) to collect heart rate, heart rate variability, and EMG data from targeted muscles, 

respectively. This setup is complemented by advanced machine learning-based ensemble learning algorithms that 

forecast fatigue under severe weather conditions, considering thermal stress and physical load.  

The present paper contributes to research in the following ways:  

I. By meticulously gathering and analyzing a comprehensive set of physiological measurements - heart rate, 

heart rate variability, and EMG - under varied environmental temperatures: hot (95°F), room temperature 

(70°F), and cold (50°F), while applying a uniform load (25% of participants’ Maximal Voluntary 

Contraction force [MVC]), this investigation simulates diverse conditions to explore their impact on 

worker fatigue levels. This methodological approach enhances the experimental design and offers novel 

insights into the predictive accuracy of physiological markers for fatigue under varying temperature 

conditions and standardized physical loads. Consequently, this paper pilots and validates the potential for 

employing such physiological measurements to monitor and manage worker fatigue in real-world 

scenarios, emphasizing the importance of considering environmental factors and physical demands in 

fatigue assessment.  

II. In occupational health and ergonomics, traditional methods for monitoring and predicting worker fatigue, 

such as direct observation or self-reporting, are often time-consuming, unreliable, and subject to bias. 

This research leverages a novel approach by employing an array of physiological measurements, 

complemented by sophisticated ensemble learning models such as Random Forest classifier (RFC) and 

Extreme Gradient Boosting (XGBoost) to predict fatigue levels under different environmental conditions. 

This methodology allows for the continuous and automatic monitoring of workers' fatigue levels, 

eliminating the reliance on static and subjective assessment. By employing machine learning models, the 

physiological data is automatically analyzed to extract key statistical and signal-processing features, such 

as mean, variance, root mean square (RMS), and frequency-domain characteristics, which are then used 

as input variables for predicting the workers’ fatigue levels, considering the influence of temperature 

variations on physiological responses. This approach enhances the precision of fatigue predictions and 

offers a scalable solution for real-time monitoring in various working environments. As such, applying 

these methodologies promises to improve the generalization and automation of occupational health 

management, particularly in fatigue management and prevention. 
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Table 1: Previous relevant literature. 

Authors Features Devices Benchmark Scale Accuracy 
Temp- 

H R C 

(Aryal, Ghahramani, and 

Becerik-Gerber 2017) 

HR, Skin temperature, 
personal features, and brain 

activity 

Infrared temperature sensors (T); Garmin 
Vivofit (HR); Neurosky Mindwave (Brain 

waves), 

Borg RPE- 20 Scale 
Four Classes (Low, 
Moderate, High, and Very 

High) 

up to 82% 
 

*  

(Sedighi Maman et al. 

2017) 

HR, IMU (Ankle, Wrist, Hip, 

Torso) 
Shimmer 3 (EMG); Polar CR800X (HR) Borg RPE- 20 Scale Borg, 6-20 Up to 89% 

 
*  

(Anwer et al. 2020) 

Cardiorespiratory (HR and 
BR) and thermoregulatory 

(skin temperature and 

electrodermal activity) 

Empatica E4 (PPG) and EQ02 LifeMonitor 

system (HR, BR, Skin Temperature) 
Borg RPE- 20 Scale Borg, 6-20 

0.836 PSI at 30 

min activity 

(p=0.01) 
 

*  

(Darbandy et al. 2020) HR Polar CR800X (HR) Borg RPE- 20 Scale Borg, 6-20 Up to 78.18%  *  

(Umer et al. 2022) 
Heart rate, interbeat interval, 
skin temperature, respiration 

rate, activity 

Equivital vest (ECG, HR, Skin Temperature) Borg RPE- 20 Scale Borg, 6-20 up to 97% 

 

*  

(Aguirre et al. 2021) Motion, and HR Kinect (Motion) and Zephyr sensors (HR) Borg CR10 Scale 
Three Classes (Low, 

Moderate, High) 
Up to 82.5% 

 
*  

(Bangaru et al., 2022) 
HR, Energy Expenditure, 
Oxygen Consumption (VO2), 

and EMG activity 

Myo armband (EMG and IMU); metabolic 

analyzer; and heart rate monitor 
Borg RPE- 10 Scale 

Four Classes (Low, 
Moderate, High, and Very 

High) 

Up to 92.31% 

 

*  

(Maxwell Fordjour Antwi-

Afari et al. 2018) 
EMG Noraxon TeleMyo sEMG System (EMG) Borg CR 10 0-10   

 
*  

(Umer et al. 2022) HRV Electrocardiogram Borg RPE- 20 Scale Borg, 6-20 
r = 0.912, MAE = 
1.897  

*  

(Khan, Ibrahim, et al. 

2024) 
HR, HRV, EMG 

Shimmer 3 (EMG); Zephyr Bio harness (HR & 

HRV) 
Borg CR10 Scale 

Three Classes (Low, 

Moderate, High) 
Up to 77% *   

Present paper HR, HRV, EMG 
Shimmer 3 (EMG); Zephyr Bio harness (HR & 

HRV) 
Borg CR10 Scale 

Three Classes (Low, 

Moderate, High) and a scale 
0-10 with weather condition 

 * * * 

RPE: Rating of Perceived Exertion; T: Temperature; HR: Heart Rate; HRV: Heart rate variability; EMG: Electromyography; IMU: Inertia measurement unit.  

breathing rate (BR); H: Hot, R: Room; C: Cold; CR:  Category-Ratio. 

1 
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4. RESEARCH METHODOLOGY 

This section describes the experimental design, participant recruitment, data collection and analysis 

procedures, and prediction model development. Figure 1 illustrates the framework of the proposed approach. 

Further details are described below. 

 

Figure 1: Research Framework. 

4.1 Experimental Design  

The researchers, working closely with five experts from biomechanical engineering and exercise science with 

experience in human physiological experimental design, created an experiment aimed at causing physical fatigue 

in a controlled manner. Considering the complexities associated with full-body fatigue modeling (Rudroff 2024), 

the team decided to initially focus on a subset of muscle groups crucial for tasks like material handling, which are 

known to induce fatigue in the construction industry (Heng, Yusoff, and Hod 2024). Previous studies have 

identified the biceps brachii and anterior deltoid muscles (Zhuo Wang et al. 2020; El-Khoury et al. 2015; Hyun et 

al. 2019) as the primary contributors to manual handling operations (Song, Bak, and Shin 2019; Martin-Martin 

and Cuesta-Vargas 2014).  

A dumbbell exercise was chosen as an ecologically valid activity to simulate movements that trigger upper arm 

fatigue (biceps brachii and anterior deltoid muscles) in a controlled manner. Upper limb fatigue is a significant 

concern in construction work, particularly in tasks such as masonry, drywalling, and painting, which involve 

repetitive overhead and lifting motions that place substantial strain on the arms and shoulders (Antwi-Afari et al., 

2017; Umer et al., 2022). Previous studies have demonstrated that repetitive lifting and sustained muscular 

contractions contribute to fatigue-related musculoskeletal disorders (MSDs) in construction workers, particularly 

in tasks that require prolonged static or dynamic exertion of the upper limbs (Antwi-Afari et al., 2017; Umer et al., 

2022). The dumbbell curling task was selected because it mimics the repetitive lifting motions commonly 

performed in construction, such as carrying materials, using handheld tools, or installing overhead fixtures (Antwi-

Afari et al., 2018). Moreover, studies have shown that controlled resistance exercises, such as dumbbell lifting, are 

effective in replicating muscular fatigue patterns comparable to those observed in physically demanding 

occupations (Gatti, Schneider, and Migliaccio, 2014). Similar to previous fatigue-related studies (Gatti, Schneider 

and Migliaccio, 2014; Bangaru et al., 2022), participants were instructed to perform a dumbbell curling task. 

Holding the dumbbell in their dominant hand with the palm facing away and starting at thigh level, participants 

lifted the dumbbell using their biceps to shoulder height without elbow or shoulder rocking and then lowered it 

back to the starting position to complete one cycle within 4 seconds. The pace of the dumbbell curls was regulated 

using a metronome to ensure consistency within and across experiments, following the protocol of (H. J. Hwang 

et al. 2016). Each experiment lasted approximately 45 minutes on average. 

The experimental protocol consisted of four primary sessions, as depicted in Figure 2. The first session was 

dedicated to familiarizing participants with the experimental procedures and each piece of equipment. It also 

included collecting medical histories and health forms. To assess physical strength, participants performed a 

Maximal Voluntary Contraction (MVC) with their dominant hand while seated on a biceps curl bench, pulling a 



 

 

 
ITcon Vol. 30 (2025), Khan et al., pg. 883 

load cell as forcefully as possible for seven seconds. A researcher demonstrated the dumbbell curling exercise, and 

participants practiced until they became accustomed to the exercise protocol. Participants completed a 24-hour 

history form, reviewed by the researchers to ensure compliance with pre-test guidelines: staying hydrated, 

refraining from consuming food, tobacco, alcohol, caffeine, and supplements for at least 3 hours before the 

assessment, avoiding exercise or other strenuous activities on the day of assessment, and ensuring adequate sleep 

(8 hours) the night before. Participants also completed a wellness form to report any bodily pain. Additionally, the 

Rate of Fatigue (ROF) scale was explained to the participants. While subjective fatigue scales have inherent 

limitations, they are widely recognized for capturing perceived exertion levels, providing complementary insights 

when used alongside physiological and biomechanical measurements (Borg, 1998). 

Before data collection began, participants were given ample time to familiarize themselves with the experimental 

apparatus (e.g., Shimmer 3 and Zephyr BioHarness devices, ROF scale) to minimize systematic bias. Initial 

screenings included collecting participants' body composition data such as height, weight, Body Mass Index 

(BMI), visceral fat, muscle percentage, fat percentage, body age, MVC, and average MVC using an Omron HBF-

514C (Omron 2023) and a Preacher curl bench equipped with a load cell to measure the force exerted by their 

biceps in Newtons. 

In subsequent sessions (2-4), participants wore a 2-channel EMG device (Shimmer3) for the duration of the 

experiment. Surface myoelectric signals were recorded from the Biceps Brachii (BB) and Anterior Deltoid (AD) 

muscles. Each electrode site was cleaned with alcohol, and surface electrodes with an inter-electrode distance of 

20 mm were placed on the muscles according to SENIAM guidelines (Merletti and Hermens, 2000). The 

experiments were conducted in an ergonomically designed laboratory, ensuring a controlled environment with 

regulated temperatures and humidity levels. The laboratory temperature was manipulated to achieve specific 

conditions: a hot temperature of 95°F, a room temperature of 72°F, and a cold temperature of 50°F, using an air 

conditioner. The humidity level was maintained at 50% using both a humidifier and a dehumidifier as necessary. 

Throughout the experimental sessions, participants performed the dumbbell exercises using weights equivalent to 

25% of their MVC without taking breaks. 

In addition to temperature control, relative humidity was actively regulated throughout all experimental sessions. 

Similar to previous studies (Larsen, Snow, and Aisbett 2015), a calibrated humidifier and dehumidifier system was 

used to maintain relative humidity at approximately 50%, with continuous real-time monitoring using a digital 

hygrometer. This ensured that participants were exposed to consistent thermal and humidity conditions, 

minimizing variability in environmental stress factors across trials. 

 

Figure 2: Experiment design. 
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4.2 Participants Recruitment  

In this paper, seventeen male participants were recruited to participate in physically demanding tasks that involved 

repetitive tasks. These individuals voluntarily agreed to participate after being invited through a phone-based 

screening process, which was conducted to ensure participants met the paper's stringent participation criteria. The 

screening specifically targeted healthy male individuals with no medical illnesses, non-smokers, and those not 

experiencing severe pain in their upper arm, lower back, shoulder, and legs. The inclusion criteria strictly excluded 

individuals who had experienced significant arm injuries in the 12 months prior or had any neurological or physical 

conditions that could impact arm function or balance. The experimental protocol, including the participant 

selection criteria, was rigorously reviewed and approved by the Institutional Review Board (IRB) at the University 

of Alabama, Tuscaloosa. Each participant received a comprehensive verbal explanation of the paper's procedures 

and protocols, followed by the collection of written informed consent, ensuring that ethical standards and 

participant understanding were upheld to the highest degree. The selected participants had an average age of 21 

years, weighed about 172 pounds (approximately 78 kilograms), approximately 71 inches (around 180 

centimeters) in height, and Body Mass Index (BMI) of 23.97 (as shown in Table 2). These data were collected 

using the Omron HBF-514C and Seca Digital Column, which estimate human body composition and BMI, 

respectively.  

Table 2: Participants Physiological Characteristics (n=17). 

  
Age 

Height 

(inch) 

Weight 

(lb) 
BMI 

Fat 

% 

Muscle 

% 

RM 

(kcal) 
Body age Visceral fat 

Min. 18 65 112.8 17.2 7 29.6 1411 18 1 

Max.  29 79.4 308 36.6 36.7 48 2543 80 14 

Mean 21.5 70.8 171.5 23.9 19.1 40.4 1737.6 35.1 4.9 

STD 3.8 3.7 44.1 4.9 8.2 4.9 271 17.4 3.4 

4.3 Data collection  

To collect comprehensive physiological data to assess participant fatigue levels in different thermal conditions, 

this paper employed the use of two primary sensors, including Shimmer 3, to capture EMG data and Zephyr 

BioHarness to collect HR and HRV data. The EMG sensors were calibrated to obtain 1024 Hz per second, thereby 

ensuring a high-resolution depiction of muscle activity. The Zephyr BioHarness continuously recorded HR and 

HRV data at a rate of 1Hz. Healthy individuals have high HRVs at rest, which enhances their ability to adjust to 

various and unanticipated situations (Hidalgo de la Cruz et al. 2018), while lower HRV decreases an individual's 

energy, physical, and cognitive performance (Meeusen et al. 2013). This dual approach facilitated robust 

monitoring of the physiological responses stimulated by the participants under physical stress. In addition, 

complementing the objective data gathered through these devices, the ROF was employed as a subjective measure 

of fatigue (Aguirre et al. 2021). Previous studies have recommended ROF as the preferred scale for assessing 

fatigue (Micklewright et al. 2017). Using the ROF, participants were asked to report their ROF on a 0-10 scale as 

shown in Figure 3.  

4.4 Data Pre-Processing  

Initially, EMG data sampled at 1024 Hz was extracted using ConSensys software and underwent several 

preprocessing steps to prepare it for analysis. A bandpass filter of 20 - 450 Hz was first applied to the raw EMG 

signals, effectively isolating the frequency band that best represents muscle activity (Cárdenas-Bolaño, Polo, and 

Robles-Algarín 2023). This step enhanced the signal-to-noise ratio by removing extraneous noise outside this 

frequency range, critical for accurate fatigue analysis. 

Subsequently, the EMG signals were rectified to convert them into absolute values, highlighting muscular activity 

patterns. The Root Mean Square (RMS) of the signal was then calculated to provide a smooth envelope that 

accurately represents the intensity of muscle contractions over time. This RMS signal was down-sampled to align 

with the heart rate (HR) and heart rate variability (HRV) data frequencies and smoothed further using a Gaussian 

filter to enhance the interpretability of the muscle activity graphically. The processed EMG data was normalized 

against the Maximum Voluntary Contraction (MVC) (Rose 2019; Lehman and McGill 1999; Ahamed et al. 2015), 
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allowing for comparisons of muscle activity across different sessions and individuals by accounting for individual 

strength variations. This refined dataset serves as the foundation for the subsequent machine-learning phase, 

aiming to correlate specific features with fatigue levels. 

 

Figure 3: Experiment data (sensors and subjective) collection. 

During the feature extraction phase, both time-domain and frequency-domain features were extracted to provide a 

comprehensive understanding of the electrical activity of muscles, as detailed in Table 3. Additionally, subjective 

data, including the Rate of Fatigue (ROF) and Fatigue classes, were used to label the preprocessed data for 

supervised machine learning. The extraction process was optimized using different window sizes with a 50% 

overlap between successive windows, ultimately selecting an 8-second window with a 4-second step size. This 

balance ensured efficient computation while maintaining high temporal resolution, critical for effective machine 

learning analysis. 

Table 3: Summary of extracted feature types. 

Feature type Name Expression 

Time-domain Mean      1/N Σ Wi (i=1 to N)                          

Variance Σ (Wi - μ)² (i=1 to N)                       

Maximum Max (W1, ..., WN)                            

Minimum Min (W1, ..., WN)                            

Interquartile range (IQR) Q3 - Q1                                      

Standard deviation √(1/N Σ (Wi - μ)² (i=1 to N)) 

Root mean square (RMS) √(1/N Σ Wi² (i=1 to N)) 

Kurtosis 1/N Σ ((Wi - μ)⁴/ σ⁴) (i=1 to N) 

Skewness 3(μ - τ) / σ                                 

Standard deviation magnitude  σ / √(N - 1 Σ (Wi - μ)² (i=1 to N)) 

Frequency-domain Spectral energy | Σ |p(N)|² (i=1 to N) 

Entropy spectrum  -Σ p(log(P(t))) (i=1 to N) 
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Note: 𝑊𝑖 is the value of the ith data point from the sensor; 𝑁 is the total number of data points; 𝑄 is the ith quartile; 

𝜇 is the mean of the data points; 𝜎 is the standard deviation; 𝜏 is the median; 𝑃(𝑓) is the power spectral density; 

and Δ𝑡 is the time interval between data points. 

4.4.1 Time domain features 

Time domain features were extracted from the EMG, HR, and HRV data across each sliding window, aiming to 

capture the intricate dynamics of physiological signals. For the EMG signal, several key metrics were analyzed. 

Variance was calculated to measure the signal's variability, indicating the spread of the EMG signal values. The 

Root Mean Square (RMS) value represents the signal’s power, essentially reflecting the energy content of the EMG 

signal. The paper also considered Slope Sign Changes, counting the number of times the slope of the EMG signal 

shifted direction, which could indicate muscle activation patterns. Waveform Length was assessed as the 

cumulative distance covered by the waveform over the time segment, offering a perspective on the signal's 

complexity. Furthermore, Skewness and Kurtosis were examined to describe the asymmetry and peakedness of the 

EMG signal distribution, respectively. Integrated EMG (IEMG) was another crucial metric, integrating the signal 

over time to reflect muscle activation strength. Similarly, key time-domain features were also extracted from HR 

and HRV data, encompassing the mean, standard deviation, minimum, and maximum heart rates observed within 

each window. These measures enriched the paper's broader examination of physiological responses, emphasizing 

the importance of time-domain analysis in capturing physiological signal behavior (Umer et al. 2022). The 

AVGNN is the average of the NN intervals that represents the mean heart rate over time and the RMS of the 

successive beat-to-beat interval differences (RMSSD).  The heart rate range (difference between the maximum 

and minimum heart rate within the window) and key percentiles (25th, 50th, and 75th) were also determined, 

providing a nuanced view of heart rate variability as it pertains to physiological responses and potential fatigue 

levels. 

4.4.2 Frequency domain features 

In the frequency domain analysis, the data was transformed from the time domain back into the frequency domain 

to extract key features from the EMG signals. Mean frequency, the average frequency of the signal, and median 

frequency, which represents the frequency at the power spectrum’s median, were extracted to summarize the 

signal’s central tendency (Umer et al. 2022). Peak frequency, identified as the frequency with the highest power 

within the signal, along with power spectral density, quantified the total power across the signal’s frequency range 

(Umer et al. 2022). Additionally, band power was calculated to determine the power within specific frequency 

bands, and spectral entropy was assessed to measure the complexity or randomness of the signal's power spectrum, 

indicating the variety in its frequency distribution. Furthermore, the paper delved into more specialized frequency 

domain features through Fast Fourier Transformation (FFT) to decompose the signal into its constituent 

frequencies. This analysis included examining very-low-frequency (VLF) bands ranging from 0 to 0.04 Hz, low-

frequency (LF) bands from 0.04 to 0.15 Hz, and high-frequency (HF) bands from 0.15 to 0.4 Hz. For each of these 

frequency bands, the paper calculated peak frequency, absolute power, and the natural logarithm-transformed 

values of absolute powers to provide a more normalized view of power distribution (Umer et al. 2022). Relative 

powers and powers in normalized units were also computed to assess the distribution of power within these bands. 

Moreover, the ratio between LF and HF bands in terms of absolute power was determined for each data segment, 

offering insights into the balance between different frequencies present in heart rate (HR) and heart rate variability 

(HRV) data. Following the feature extraction, the dataset underwent a series of preprocessing steps to ensure the 

integrity and consistency of the data for effective model training. Initially, any missing values were handled using 

a median-based imputation strategy, which filled gaps in the dataset and maintained a robust representation of the 

underlying data trends. Features were then standardized to ensure uniform scaling, crucial for optimal performance 

across various machine-learning models. 

To address challenges associated with class imbalance, the Synthetic Minority Over-sampling Technique 

(SMOTE) was applied to the training dataset. This method augmented the minority classes by generating synthetic 

samples, thereby balancing the class distribution and enhancing the predictive accuracy of the models. The dataset, 

consisting of 12,600 data points, was divided into 10,080 for training and 2,520 for testing, adhering to an 80-20 

split to ensure robust model validation. 

The dataset was categorized into two distinct sets of target classes. The first categorization consisted of ten Rate 

of Fatigue (ROF) classes, ranging from Class 1 to Class 10. Class 1 represents a state of no or minimal perceived 
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fatigue, where participants reported feeling fully rested and experiencing little to no exertion. In contrast, Class 10 

represents extreme fatigue, characterized by severe exertion, muscular exhaustion, and performance decline. 

Intermediate classes (Class 2 through Class 9) capture a gradual increase in fatigue levels, ensuring a high level of 

granularity in fatigue classification. The second categorization grouped fatigue levels into three broader 

categories—low, medium, and high fatigue—based on ROF values. Low fatigue corresponds to ROF values 

between 1 and 3, indicating minimal physical exertion and no noticeable fatigue symptoms. Medium fatigue 

includes ROF values from 4 to 7, representing moderate exertion with noticeable but manageable fatigue. High 

fatigue is classified by ROF values ranging from 8 to 10, signifying severe exertion and muscle fatigue, potentially 

impairing task performance. 

This dual categorization facilitated a comprehensive analysis by allowing the model to capture both detailed fatigue 

levels and broader fatigue trends, ensuring its applicability across various classification schemes. By incorporating 

both fine-grained and general fatigue classifications, the approach enhances the interpretability of the results and 

provides a more robust framework for fatigue prediction. This approach was critical for ensuring a balanced class 

representation, which mitigates sampling bias and supports a more reliable evaluation of model performance and 

generalizability to unseen data, ultimately leading to more robust insights from model outputs (Adão Martins et 

al. 2021). 

4.5 Integration of Applied Techniques 

To ensure an automated and real-time fatigue classification framework, this paper integrates wearable sensors, 

physiological signal processing, and machine learning models to enhance fatigue prediction under varying thermal 

conditions. Physiological data (EMG, HR, and HRV) were collected using Shimmer 3 and Zephyr BioHarness 

sensors, processed through noise filtering, rectification, and normalization techniques, and extracted into time-

domain and frequency-domain features before being used for classification. Machine learning algorithms, Random 

Forest Classifier (RFC) and Extreme Gradient Boosting (XGBoost), were trained on these physiological features 

to predict both detailed fatigue levels (ROF scale: 1-10) and broader fatigue categories (low, medium, high). The 

dataset was balanced using SMOTE, ensuring accurate fatigue classification across all levels. Furthermore, thermal 

conditions (hot: 95°F, room: 72°F, cold: 50°F) were integrated into the models, allowing for fatigue prediction 

reflective of real-world construction environments.  

The integration of physiological sensors (e.g., EMG, HR, HRV) with machine learning models presents a 

promising pathway for real-time fatigue detection; however, it also introduces some interoperability challenges. 

These include sensor fusion synchronization difficulties, susceptibility to environmental noise interference, and 

the presence of motion artifacts in EMG signals, all of which can degrade data quality and model reliability (Adão 

Martins et al. 2021; Lehman and McGill 1999). To address these issues, careful sensor placement, robust signal 

preprocessing (such as bandpass filtering and normalization), and continuous calibration under real-world 

conditions are essential. Additionally, future deployments must account for the dynamic and unpredictable 

conditions typical of construction sites, which can further complicate physiological monitoring and impact the 

robustness of fatigue classification systems. 

This multi-layered methodology bridges the gap between subjective fatigue assessments and objective 

physiological monitoring, offering a scalable and automated approach to fatigue detection and musculoskeletal 

disorder (WMSD) prevention. The integration of sensor data, machine learning, and environmental conditions 

ensures that the developed system can be applied in high-risk occupational settings, such as construction, where 

fatigue monitoring is essential for safety and performance optimization. 

4.6 Prediction Models 

In this research, ensemble learning, an ML technique that combines several base models to develop one optimal 

predictive model, is utilized. Ensemble learning has 3 major types: stacking, bagging, and boosting; this paper 

employed the boosting approach for the classification of overall fatigue. Random Forest Classifier (RFC) and   

Extreme Gradient Boosting (XGBoost) are two prominent types of ensemble learning algorithms. This section 

outlines the introduction of these techniques, the reasons for them, and the fine-tuning of these techniques to build 

a predictive model of workers' overall fatigue.  
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4.6.1 Random Forest Classifier (RFC) 

RFC is one of the powerful ensemble learning algorithms for pattern recognition for high-dimensional 

classification problems [100]. RFC enhanced the stability and reliability of tree-based classification methods by 

integrating multiple decision trees to counterbalance the effect of high variance [100]. The pre-processed dataset 

comprises a series of feature vectors derived from EMG, HR, and HRV raw dataset  denoted as: 

𝐿 =  {(𝑋𝑖, 𝑌𝑖), . . . . . (𝑋𝑛, 𝑌𝑛)}   (1) 

where n represents the number of samples, Xi corresponds to the set of features extracted from EMG, HR, and 

HRV signals of the ith sample, and Yi denotes the target label, categorically representing the fatigue level 

associated with each feature vector. RFC utilizes each tree to assess a new input vector individually, thereby 

aggregating diverse classification outputs to form a consensus. The random forest builds binary sub-trees using 

the bootstrap samples from the learning samples L and randomly picking at each subset of X (Leo Breiman 2020). 

 

(a) 

 

(b) 

Figure 4: Top 15 Important Features for Predicting based on  (a) ROF (b) classes. 
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The decision forest selects a classification with a high score from the built forest. The random forest consists of 

bagging (creating a set of classifiers to improve the accuracy of weak classifiers) and random selection. The 

hyperparameters include n_estimators (number of trees in a forest), max_depth (maximum number of depths/levels 

in each tree), min_samples_split (minimum number of data points before node splitting), random_state (42), and 

min_samples_leaf (minimum number of data points allowed in a leaf node). The training parameters of the RFC 

model are listed in Table 4. Moreover, this paper determined the role of individual features in predicting overall 

fatigue and dropped unimportant features in the training of the models. Figure 4(a) shows all features 

(combinations of weather, BMI, time, and frequency domains) for EMG, HR, and HRV data; the most important 

features are on the top, and the least contributing features are on the bottom in the case of predicting ROF. Similarly, 

Figure 4(b) demonstrates the important features of predicting fatigue levels in terms of predicting low, medium, 

and high levels. 

Table 4: RFC-based Model Hyperparameters. 

Parameter Value 

bootstrap True 

Max_depth 80 

max_features 3 

min_samples_leaf 8 

n_estimators 100 

Random_state 42 

4.6.2 Extreme Gradient Boosting (XGBoost) 

XGBoost is another ensemble learning algorithm known for its advanced tree-boosting capabilities. This is an 

optimized gradient algorithm that is capable of scaling effectively for various scenarios with limited resources and 

commendably examines the significance of all input features. Previously, researchers recognized that this is a 

reliable and efficient supervised machine-learning algorithm for classification tasks [92,95,96]. Compared to other 

gradient boosting algorithms, XGBoost can collect a strong classifier from a set of weak classifiers and has the 

following advantages: (1) effectively deal with missing values; (2) be able to prevent overfitting; (3) parallel and 

distributed calculations reduce runtime. XGBoost is designed to refine and optimize the objective function through 

a gradient descent optimization strategy. It uniquely employs arbitrary differentiable loss functions with the aim 

of minimizing loss. This process is characterized by its approach to minimizing a regularized objective, outlined 

as follows (eq 2): 

  (2) 

where loss function L captures the discrepancy between the predicted fatigue levels 𝑦𝑗̂ and the true fatigue level 

yj. It serves as a measure of the model's predictive accuracy. In conjunction with L, the regularization term Ω is 

employed to mitigate the risk of overfitting by penalizing model complexity, and F is a set of all possible regression 

trees. This ensures the model remains generalizable and does not simply memorize the training data. 

Table 5: XGBoost-Based Model Hyperparameters. 

Parameter Value 

Booster gbtree 

Objective Binary logistic 

Random _state 42 

N_estimater 10000 

Learning_rate 0.2 

Reg_alpha 0.03 
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The XGBoost library is written in the C++ language, and it can be used in various interfaces such as the command 

line interface, the Python interface (the model in sci-kit-learn), the R interface (the model in the caret package), 

JULIA, JAVA, and JVM languages. However, in this paper, the XGBoost was implemented in Python language 

by using the scikit-learn library to predict fatigue levels using physiological data. The training parameters for the 

XGBoost algorithm can be seen in Table 5. 

5. RESULTS AND DISCUSSION 

This paper aimed to investigate the effectiveness of various physiological and personal features in predicting 

physical fatigue among construction workers under different thermal conditions. We focused on heart rate (HR), 

heart rate variability (HRV), electromyography (EMG), temperature conditions, and personal features to develop 

accurate fatigue prediction models. 

5.1 Results 

To assess overall fatigue, this paper employed five distinct sets of feature variants: (1) time-domain features, (2) 

frequency-domain features, (3) participant personal features (age and body mass index), (4) weather such as room, 

hot, cold and (5) a combination of all features derived from EMG, HR, weather, and HRV data. Ensemble learning 

models, namely the RFC and XGBoost, were developed and trained to recognize two sets of target labels: ROF on 

a scale from 1 to 10 and fatigue levels (low, medium, and high). 

The models' efficiency was evaluated using metrics such as precision, recall (True Positive Rate, TPR), F1-score, 

false positive rate (FPR), and accuracy (equations (3) to (7)). Precision measures the number of predicted true 

positives, while recall indicates the correct identification of true positives. FPR indicates instances where the model 

incorrectly predicts the positive class as negative. 

Table 6 outlines the macro average (calculates metrics independently for each class and then takes their unweighted 

mean) performance of the ensemble learning approach on all features. RFC and XGBoost achieved approximately 

80% and 80% accuracy, respectively, when predicting the ROF. To improve accuracy, the ROF scale was replaced 

with categorical classes (low, medium, and high). In this case, classes 0 and 1 were combined into a single class, 

as they did not show significant differences. Table 7 presents the ensemble learning results for predicting fatigue 

levels, which achieved an overall accuracy of 90% for RFC and 92% for XGBoost. This high level of accuracy 

across two different ensemble learning algorithms indicates the dataset's reliability and the robustness of the 

modeling approach. 

Figure 5(a) shows the confusion matrix for the Random Forest Classifier (RFC), illustrating its performance on 

ROF classification across classes 1 to 10. The recall percentages for each class are as follows: Class 1 = 81%, 

Class 2 = 91%, Class 3 = 75%, Class 4 = 78%, Class 5 = 70%, Class 6 = 73%, Class 7 = 75%, Class 8 = 82%, 

Class 9 = 83%, and Class 10 = 89%. Similarly, Figure 5(b) presents the confusion matrix for ROF classification 

using XGBoost, with recall percentages as follows: Class 1 = 81%, Class 2 = 89%, Class 3 = 75%, Class 4 = 75%, 

Class 5 = 62%, Class 6 = 76%, Class 7 = 71%, Class 8 = 84%, Class 9 = 83%, and Class 10 = 90%. 

Continuing with the fatigue level predictions, Figure 6(a) displays the confusion matrix for RFC, achieving high 

recall percentages for the classifications of low, medium, and high fatigue, which are 93%, 93%, and 92%, 

respectively. The corresponding confusion matrix for XGBoost, depicted in Figure 6(b), also shows commendable 

recall percentages for fatigue levels with Class 0 (low) = 90%, Class 1 (medium) = 91%, and Class 2 (high) = 

89%. These results highlight the effectiveness of both classifiers in handling different scales of classification tasks. 

These results highlight the effectiveness of both classifiers in handling different scales of classification tasks and 

demonstrate that the models achieved excellent results in classifying both ROF and fatigue levels. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

(3) 

𝑅𝑒𝑐𝑎𝑙𝑙(𝑅)/𝑇𝑃𝑅 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

(4) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 
(𝑃 ∗ 𝑅)

(𝑃 + 𝑅)
 

(5) 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 

(6) 

 𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

(7) 

Table 6: Performance Results of RFC and XGBoost-based 0-9 scale on all features. 

RFC XGBoost 

Performance Matrix Percentage Performance Matrix Percentage 

Precision 0.78 Precision 0.79 

Recall 0.79 Recall 0.79 

Accuracy 0.80 Accuracy 0.80 

F1-Score 0.79 F1-Score 0.79 

 

  

(a) (b) 

Figure 3: RFC (a) and XGBoost (b) based Confusion Matrix for ROF. 

Table 7: Performance Results of RFC and XGBoost-based classes(low, medium, and severe) on all features. 

RFC XGBoost 

Performance Matrix Percentage Performance Matrix Percentage 

Precision 0.90 Precision 0.92 

Recall 0.90 Recall 0.92 

Accuracy 0.90 Accuracy 0.92 

F1-Score 0.90 F1-Score 0.92 
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(a) (b) 

Figure 4: RFC (a) and XGBoost (b) based Confusion Matrix for fatigue classes. 

5.2 Discussion  

This paper aimed to develop a machine-learning model for monitoring physical exertion and fatigue using various 

physiological features and ensemble learning algorithms under different thermal conditions. The models were 

evaluated using metrics such as precision, recall, F1-score, false positive rate (FPR), and accuracy. 

The initial models, using the RFC and XGBoost, achieved an accuracy of 80% and 80%, respectively, for 

predicting the ROF on a 1-10 scale. This performance aligns with existing literature, where similar models reported 

comparable accuracies. For instance, Umer et al. (2022) achieved 64.2% accuracy using HRV features, and Aryal 

et al. (2017) reported 59% accuracy using personal and HR features. Furthermore, by combining HR and skin 

temperature data, Aryal et al. (2017) reached 82% accuracy, demonstrating the benefit of integrating multiple 

physiological measures. This paper confirms the advantage of using a comprehensive set of features, including 

EMG, HR, and HRV, to enhance model performance. Previous studies, such as those by Khan et al. (2024), which 

integrated HR, HRV, and EMG to predict fatigue classes in hot weather, reported accuracies of 77% for RFC, 64% 

for SVM, and 61% for KNN. However, these studies did not account for varying thermal conditions, a crucial 

factor as thermal stress significantly impacts physiological parameters during physical tasks (Umer et al. 2022; 

Aryal, Ghahramani, and Becerik-Gerber 2017). 

To improve model accuracy, we restructured the ROF scale into categorical classes (low, medium, high) as 

considered by previous researchers (Aguirre et al., 2021; Bangaru et al., 2022; Antwi-Afari et al., 2023). This 

approach yielded higher accuracies: 90% for RFC and 92% for XGBoost. This significant improvement suggests 

that categorical classification can better capture the nuances of physiological responses under different fatigue 

levels and thermal conditions. The confusion matrices for both classifiers revealed specific challenges and 

strengths. The achieved results of the proposed ensemble learning methods align with the findings of Anwer et al. 

(Anwer et al. 2020), who also observed challenges in distinguishing fatigue levels under similar thermal 

conditions. This paper's findings are also consistent with those of  Darbandy et al. (2020), who states that 

integrating HR signals with machine learning algorithms like KNN could effectively assess physical fatigue. 

However, our approach demonstrated superior accuracy by using a broader set of physiological features and 

advanced ensemble learning techniques. 

The proposed model's ability to operate effectively across various thermal conditions is particularly noteworthy. 

This capability is crucial for real-world applications where environmental factors can significantly influence 

physical exertion and fatigue. Previous studies, such as those by Aguirre et al. (2021) and Bangaru et al.(2022),  

emphasized the importance of considering environmental conditions in fatigue monitoring systems. Our paper 
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extends this understanding by providing a robust model capable of accurate fatigue prediction in diverse thermal 

settings. 

This paper significantly contributes to the field by developing a model that monitors physical exertion to prevent 

muscle injuries and disorders. Particularly, the model is invaluable for activities involving physical exertion under 

various thermal conditions. By accurately tracking muscle activation, the proposed model offers a proactive 

approach to identifying potential risk factors for muscle injuries, allowing for timely interventions and prevention 

strategies. This advancement enhances worker safety and health, especially in environments where thermal stress 

adds an additional risk layer to physical activities. The model's ability to operate across different thermal settings 

underscores its versatility and potential applicability in various industrial and occupational settings, making it a 

valuable tool for safeguarding against muscular disorders and injuries. 

6. CONCLUSION, LIMITATIONS AND FUTURE WORK 

6.1 Conclusion 

This paper marks a significant advancement in predicting physical exertion and fatigue within high-intensity work 

environments through the integration of time-domain, frequency-domain, participant personal features, and 

comprehensive EMG, HR, and HRT data, using ensemble learning models. Achieving accuracy levels of 80% with 

RFC and 80% with XGBoost in classifying fatigue (ROF 1–10), our findings outperform previous models and 

underscore the potential of machine learning in this field. The improvement to a 92% accuracy rate when 

classifying fatigue into low, medium, and severe categories highlights the effectiveness of simplifying fatigue 

ratings. These findings pave the way for future research aimed at bridging these gaps, enhancing worker safety 

and health in environments where physical and thermal stress are prevalent risks. 

6.2 Limitations and Future Work 

Furthermore, the dataset collected for BB and AD muscles using dumbbell exercises presents a limitation, as these 

conditions differ from true construction environments. While the present paper provides promising results, the 

relatively small sample size (n=17) and the use of a controlled laboratory environment present some limitations 

regarding broader generalization. However, the sample size is consistent with prior research in the fields of fatigue 

monitoring, machine learning model development, and wearable sensor studies, where participant numbers have 

commonly ranged from 4 to 12 (Bangaru et al. 2021; Sedighi Maman et al. 2017; Khan, Ibrahim, et al. 2024; Umer 

et al. 2020; Umer et al. 2022). This sample size is sufficient to achieve the primary objective of developing and 

validating a machine learning-based fatigue classification framework under controlled thermal conditions. Future 

studies with larger and more diverse participant groups will allow for expanded statistical analyses, such as 

subgroup comparisons based on activity types, gender, and other demographic or physiological variables. Such 

expansions would help strengthen the external validity and broaden the applicability of the developed models for 

real-world construction environments. While BB and AD are primary contributors to manual handling tasks on 

construction sites, future experiments should focus on common construction-specific activities such as masonry, 

drywalling, lifting, and material handling to ensure a more targeted and relevant dataset. Additionally, recruiting 

university students as participants poses certain limitations; construction workers generally possess greater 

physical strength and may exhibit higher levels of obesity. Inducing comparable physical exertion and fatigue in 

these participants may require a more substantial workload, suggesting that future studies should consider using 

professional construction workers to enhance the applicability and relevance of findings. However, it is worth 

noting that the participants, though not construction workers, displayed diversity in physical characteristics, as 

shown in Table 1 (e.g., mean age was 35 years, and weight ranged from 112 to 308 lbs). The machine learning 

models demonstrated adaptability to these diverse features, indicating significant promise in their potential 

applications. 

Additionally, the computational demands of ensemble learning models such as RFC and XGBoost present a 

limitation for real-time applications, particularly in resource-constrained construction environments. Deploying 

these models would require embedded or edge-computing platforms capable of processing physiological data 

efficiently without relying on cloud servers. Future work should focus on optimizing model architectures and 

validating performance in actual construction sites to ensure practical, scalable deployment. 
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In addition to technical challenges, wearable monitoring systems raise important ethical and privacy concerns. 

Continuous collection of physiological data can potentially violate on personal privacy if not managed 

appropriately. Future deployments must ensure that participants provide informed consent, understand the scope 

of data collection, and retain rights over their personal information. Furthermore, secure data handling practices, 

including encryption, anonymization, and restricted access, should be implemented to protect sensitive worker 

data. Recent studies, such as (Gbiengu et al. 2025), have emphasized the importance of proactively addressing 

ethical concerns when implementing wearable technologies on construction sites. Addressing these ethical 

considerations is essential to foster trust and acceptance of wearable fatigue monitoring technologies among 

construction workers. 

Additionally, future studies should explore gait patterns at different levels of fatigue, as fatigue-related changes in 

walking dynamics can be critical in assessing fall risks in construction workers. Moreover, the impact of different 

types and shapes of loads on gait patterns and fatigue levels will be evaluated to provide a more comprehensive 

understanding of how varying workloads influence biomechanical responses. Furthermore, future studies should 

consider the impact of varying weight loads (workload) in conjunction with diverse thermal working conditions 

on muscle activation and fatigue among construction workers. The combination of heavy physical loads and 

extreme temperatures constitutes a significant aspect of occupational hazards in construction work. Understanding 

how different weight loads affect the body's response to heat or cold will enable a more comprehensive assessment 

of the physical stressors these workers face. This nuanced analysis is crucial for designing more effective safety 

protocols and policies that account for the full spectrum of environmental and task-related challenges encountered 

on construction sites. By integrating considerations of thermal conditions, workload variations, gait analysis, and 

load types, research can lead to more informed, practical interventions aimed at minimizing the risk of injury and 

improving overall worker well-being in the construction industry. 

Building on these findings, future work should focus on several actionable steps. First, pilot studies should be 

conducted on active construction sites to validate the system’s performance under real-world operational 

variability. Second, integration of wearable fatigue monitoring data with Building Information Modeling platforms 

should be explored to enable spatially informed safety interventions. Third, real-time testing of system robustness 

across varying thermal and workload conditions should be prioritized.  
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APPENDIX A: LIST OF ABBREVIATIONS 

 

Full name Abbreviation 

Heart Rate HR 

Heart Rate Variability  HRV 

Work-Related Musculoskeletal Disorders WMSDs 

maximum voluntary contraction MVC 

One Weight and Three temperatures (cold, room, and hot) 1W3T 

Bureau of Labor Statistics BLS 

Occupational Safety and Health Administration OSHA 

Health and Safety Executive HSE 

Rate of Fatigue ROF 
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