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SUMMARY: Building design must adhere to numerous codes, laws, and regulations. In practice, despite the 

available tools for Automated Code Checking (ACC) and the extensive research in the field, checking whether a 

given design complies with all relevant regulatory requirements remains a manual and time-consuming task. A 

comprehensive checking system that provides highly automated solutions for a wide range of regulations remains 

a distant goal. Recent studies have underscored the potential of engaging advanced technologies like Machine 

Learning (ML) and Natural Language Processing (NLP) to enhance ACC abilities. Hence, this work aims to review 

recent advancements in implementing ML technologies in code compliance checking, identify knowledge gaps, 

and suggest future research directions. By implementing a systematic literature review methodology, we identify 

three key research areas within the domain: processing regulatory text, processing design information, and an 

overall checking mechanism. Existing efforts explore each of these areas using a variety of ML algorithms to 

enhance their effectiveness. Despite the notable advancements, challenges persist due to the complexity of 

regulations, ambiguity of legal texts, and the scarcity of training data, all of which limit the scalability of the 

presented approaches. Additionally, while ML enhances flexibility by learning from data rather than relying on 

hardcoded rules, it introduces uncertainties in decision-making processes critical to building permitting. The 

review highlights the potential for hybrid approaches that combine the strengths of both rule-based systems and 

ML models to effectively address these challenges.  
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1. INTRODUCTION 

Traditionally, code compliance checking has been a manual process carried out by domain experts, such as 

designers, authorities, and other stakeholders. This process relies heavily on their interpretations of the regulations 

and the designs (Dimyadi and Amor 2013a). However it is inherently complex, error- prone, and leading to low 

productivity due to its labor-intensive nature (Preidel and Borrmann 2018). The drive to automate design review 

has been at the forefront of research since the 1960s (Fenves 1966), and it remains an active field of research today. 

We consider Automated Code Checking as the process of verifying building design documents against regulatory 

requirements in a systematic and automated manner. This Process involves two main aspects; the design itself and 

the regulations governing it. In the context of automation, the goal is to achieve a computer-readable representation 

of both, facilitating direct comparison without further mappings or interpretations (Bloch et al. 2023). One of the 

main challenges is that the concepts represented in these two data sources often do not align. The ability to bring 

the regulations and the design to a common environment and representation is the motivation of many of the recent 

research efforts (Amor and Dimyadi 2021).  

A common approach to ACC is to interpret the regulatory documents and translate the text into rules which can 

consequently be hardcoded into the checking system. The four-stage process suggested by (Eastman et al. 2009) 

which includes rule interpretation, design preprocessing, rule implementation, and report, is the backbone of the 

most advanced ACC application such as Solibri (Solibri 2017). Solibri provides an extensive library of rules that 

are customizable to some extent and offers sophisticated checking functionalities. One of the drawbacks of the 

platform (as well as other ACC platforms) is that it implements a “black box” procedure. Namely, the rules are not 

“human readable”, and the internal logic is not entirely transparent to the user. Customization of the rule sets 

presents significant challenges, demanding not only extensive coding expertise but also requiring close 

collaboration with the software vendor to implement any proposed modifications.  

To overcome some of these limitations Dimyadi and Amor (2013b) proposed representing regulations using the 

open standard LegalRuleML, while utilizing Business Process Model and Notation (BPMN) to represent specific 

compliance checks. Similar method was also implemented for checking compliance of railway design (Häußler et 

al. 2021). Preidel and Borrmann (2016) proposed the Visual Code Checking Language (VCCL), which uses a 

graphical notation to represent building codes in a machine-readable and human-readable format. Such visual 

methods for representing regulations make the code checking process accessible to domain experts with limited 

programming knowledge.  

For interpretation of regulatory documents Numerous methods have been examined and employed. For example, 

RASE (Requirement, Applicability, Selection, and Exception) is a markup technique (Hjelseth and Nisbet 2011; 

Nisbet et al. 2022) that aims to transform documents into well-defined rules. Implementation of RASE has been 

tested for regulatory documents and reliable results have been illustrated (Hjelseth and Nisbet 2011). Zhang and 

El-Gohary (2016b) presented a methodology for using rule based NLP for automated information extraction from 

regulatory documents. This method relies on a set of manually coded rules for text processing. Although this 

method yields accurate processing results, it involves much manual work. Despite the accuracy of such rule-based 

methods, they lack the flexibility often required in ACC procedures (Li et al. 2016; Zhou and El-Gohary 2017). 

Rules are typically designed to handle clear, well-defined conditions. However, regulatory documents are complex 

and often contain ambiguous or vague language which poses significant challenges for rule-based systems. Based 

on the work of Zhang et al. (2023) there are several types of ambiguity in regulatory documents, some is intentional 

ambiguity (such as performance-based regulations), but some is unintentional and stem from the use of natural 

language. For example, vagueness is a type of ambiguity that can result from poor use of language. Lexical 

ambiguity can occur when using phrases with multiple meanings. Incompleteness is when information is missing 

from the regulatory provisions. This may explain why existing automated rule interpretation methods primarily 

focus on simpler regulatory sentences as more complex and extensive requirements would greatly challenge the 

rule-based systems (Zhou et al. 2022b). 

Recent work, like that of Kruiper et al. (2024), proposed a more flexible and dynamic approach using NLP 

combined with Semantic Web technologies and ML. This approach leverages NLP tools to handle challenges like 

ambiguous language, inconsistent use of terms, and multi-word expressions by enriching the regulatory text 

semantically and structuring it into machine-readable formats. In addition, the integration of knowledge graphs 

helps in resolving ambiguities by linking regulatory terms to predefined vocabularies, improving accuracy and 

retrieval during compliance checking. While the primary focus is on NLP and Semantic Web methods, the 
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inclusion of ML allows for further optimization in processing complex regulatory documents, providing a more 

robust solution for automated compliance checking. We can therefore see potential for ML in handling complex 

regulations. Wang and El-Gohary (2023b) highlight the promise of deep learning techniques in resolving 

referential ambiguities, indicating that ML could be instrumental in overcoming these challenges, though its full 

potential is still under exploration. One of the strengths of ML is its ability to learn from annotated examples where 

human experts have interpreted the regulations. ML models aim to mimic aspects of human decision-making by 

learning patterns from data and applying them to new, unseen cases. ML models rely on data-driven processes 

rather than human-like reasoning. They generalize by identifying underlying patterns in the training data, allowing 

them to adapt to various inputs (Zhang and El-Gohary 2020a). That said, the lack of sufficient training data presents 

a significant barrier to achieving accurate results with ML (Zhong et al. 2020). A more balanced perspective 

emphasizes the importance of understanding the benefits and challenges of ML-based methods compared to rule-

based methods, especially when dealing with complex requirements (Zhang and El-Gohary 2022a). 

In terms of design representation, Building Information Modeling (BIM) is one of the driving technologies behind 

the efforts to automate code checking. BIM has reshaped construction project delivery, affecting every stage in the 

project’s lifecycle and offering numerous possibilities for automation (Sacks et al. 2018). Introduction of the 

Industry Foundation Classes (IFC) schema to facilitate effective data exchange between platforms introduced even 

more opportunities for advanced applications such as code compliance checking. One significant and persisting 

issue is ensuring that the models contain sufficient and accurate information to support comprehensive code 

checking. The completeness and standardization of BIM data are critical for the effective application of rules, as 

inconsistencies or gaps in the data can lead to errors in the compliance checking process (Jiang et al. 2022). 

Information provided in BIM models is often not sufficiently rich for advanced applications such as code checking. 

One notable project is Singapore's CORENET where semantic extensions of BIM were developed and collected 

into a library called FORNAX (Solihin et al. 2004). Many other researchers proposed the idea of enriching BIM 

models to support ACC (Bloch and Sacks 2018) or extending BIMs with regulatory concepts (Solihin and Eastman 

2016). For example, Zhang and El-Gohary (2014) integrated NLP and ML to enrich the IFC schema with 

regulatory concepts, and later introduced a semi-automated technique for classifying relationships within the IFC 

to better incorporate regulatory concepts into the BIM based checking process (Zhang and El-Gohary 2016a).  

While the aforementioned work focused on the STEP representation of the design, some efforts adopted web 

technologies as a base for reasoning over design information (Pauwels and Zhang 2015) and as a base for enriching 

the BIM models (Werbrouck et al. 2020). Semantic enrichment heavily relies on the ability to query BIM models 

for which many approaches have been developed (Borrmann et al. 2006; Borrmann and Rank 2009; Daum and 

Borrmann 2013; Mazairac and Beetz 2013; Wülfing et al. 2014; Zhang et al. 2018). Advanced methods like 

semantic enrichment and ontology-based reasoning show promise in addressing the semantic inconsistencies 

between BIM data and predefined rules (Jiang et al. 2022). Recently, approaches to semantic enrichment extended 

beyond logical inferencing and the abilities of ML models have been illustrated to automatically infer and 

supplement required information into the BIM models (Bloch and Sacks 2020; Koo et al. 2019; Wang et al. 2022). 

The need for specific, well defined, and quality information for ACC is clear. At the core of automated code 

checking, regardless of the specific approach employed, lies a fundamental and unifying element—information 

requirements. They form the bridge between design representations and regulatory documents, enabling 

comparison between the two which is fundamental for ACC. Unfortunately, despite the research efforts, the 

approach of supplementing the needed information manually prevails. Amongst the recent advances in this domain, 

is the introduction of the Information Delivery Specifications (IDS) which is a standard in development by 

BuildingSmart (2024) aiming to define information requirements in a way that is both readable to humans and 

machines. While this will enable automatically checking that all information requirements are met prior to the 

design review, the effort to supplement all required information in the defined representation will fall on the 

designers and modelers. In other words, the manual efforts will simply shift from the actual checking process to 

the process of creating a BIM model to be checked (Amor and Dimyadi 2021). 

In the continuous evolution of ACC, diverse methodologies have been proposed, and a shift towards more 

sophisticated techniques is evident. With the major transformation that ML introduced to the construction domain, 

it is not surprising to see ML implementations in the ACC domain as well. The integration of ML with BIM 

presents new possibilities for ACC and offers the potential to overcome some of the limitations in the existing 
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workflows. We aim to investigate where these fields intersect, assessing recent advancements, identifying research 

gaps, and pinpointing unexplored topics that need to be further investigated.  

The drawbacks of traditional ACC workflows have been recognized in previous work and discussed in existing 

review papers on the subject, which are mainly focused on rule based methods (Amor and Dimyadi 2021; Dimyadi 

and Amor 2013a; Ismail et al. 2017). Despite years of research and many notable efforts, we have not seen a 

significant breakthrough in the field. With the many proven possible applications of AI across various domains in 

AEC, researchers have begun exploring ML as a potential game-changer for ACC. While ML holds promise in 

dealing with some of the existing challenges, there is a notable gap in the literature regarding our understanding 

of what has been achieved so far with ML in ACC, and what are the critical challenges that remain. This work 

aims to address this gap through a comprehensive literature review.  

To the best of the author’s knowledge, there are currently no comprehensive reviews on the application of ML to 

ACC. To fully harness the potential of ML application to ACC, it is crucial to map out the current landscape of 

ML methods in this field, to understand what has been done, what are the existing gaps in knowledge, 

inconsistencies in approaches, and opportunities for future research. Through a careful review and analysis of 

existing literature, our goal is to uncover the trends, successes, and gaps in using ML for code checking. 

Additionally, this review will enable us to highlight the key challenges and limitations that researchers have 

encountered in ACC using ML and to shed light on promising directions for future research. Through this 

exploration, we aim to provide a structured understanding of the existing state of the art, opportunities and 

challenges, and outline the work that still needs to be done in order to potentially lead to significant advancements. 

2. METHODOLOGY 

In this work, we adopt the systematic literature review methodology. The first stage of this methodology is 

formulating a well-defined research question to guide the process. Then, a search strategy is defined to identify 

the relevant studies. Once the search is implemented on chosen reputable academic databases, a screening process 

focusing on assessing abstracts is performed, followed by the full text review and analysis. The findings are then 

summarized and interpreted, and meaningful conclusions are drawn (Khan et al. 2003). This methodology ensures 

a comprehensive and unbiased exploration of the subject, contributing to a robust understanding of the current 

state of knowledge in the field. 

2.1 Research questions 

As explained in the introduction section, in recent years, significant advancements have been made in the field of 

code checking, with various advanced approaches being implemented. To make progress in the ACC domain, it is 

essential to gain an in-depth understanding of these different methods and identify where they can be most 

beneficial in the checking process. To do so, we propose a bottom-up approach, starting with a thorough 

investigation of each of the methods individually. As the rule-based approach for ACC has been thoroughly 

investigated over the years, we turn to address the ML approach in the ACC context. This work aims to explore 

the current landscape, achievements, and challenges concerning the integration of ML for automated code 

checking. Within this overall goal, we aim to answer the following questions: 

RQ 1 - How have ML-based approaches been applied before to enhance automated code checking 

processes? 

RQ 2 - What are the existing challenges and opportunities in integrating ML solutions with ACC, and how 

have researchers addressed these challenges? 

RQ 3 - What are the research gaps in the literature, and what are the most promising future research 

directions? 

2.2 Search strategy and literature evaluation 

The chosen data source for conducting this research was Scopus, which is a large data set that provides wide 

coverage of scientific literature in the AEC domain (Mongeon and Paul-Hus 2016). The overall methodology for 

identifying scientific publications is illustrated in Figure 1. The advanced search tool in Scopus was used to identify 

relevant publications. The search was performed using the following key: TITLE-ABS-KEY (("code 

conformance" OR "code checking" OR "compliance checking" OR "code compliance") AND ("machine learning" 
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OR "ML" OR "deep learning" OR "NLP" OR "Natural language processing")). This initially led to 126 documents. 

Excluding publications from irrelevant domains led to a final set of 95 relevant documents. The search was not 

limited by date, and conference papers were not excluded.  

The abstracts of all identified publications were read and analyzed to ensure the relevance and quality of the 

studies. The abstract screening process is a critical step in the methodology to ensure that only relevant publications 

are included in the final analysis. Two main criteria were evaluated during the abstract reading: 

1. Relevance to ACC: The publication must specifically address aspects of automated code checking of 

building design. For example, some of the identified papers referred to conformance to onsite work 

regulations, like safety standards, fall protection measures etc. Such publications were filtered out 

during abstract reading. 

2. Application of ML: The publications must involve the application of ML techniques, including deep 

learning, NLP or other related methodologies. Some of the identified publications presented conceptual 

ideas for the use of ML for ACC as part of the paper, therefore the author keywords included “ML” or 

other relevant concepts. However, the focus of these publications was not ML for ACC, and they did 

not describe a ML application in this context. Such publications were filtered out during abstract 

reading as well. 

During abstract reading, it became clear that the publications contain several underlying topics suitable for in depth 

analysis. Therefore, the final step in the search and evaluation strategy is the classification of all relevant 

publications (a total of 71 publications identified during abstract screening) based on their underlying topics. This 

classification process involved identifying key themes and categorizing the publications, based on screening the 

full papers. Each publication was examined primarily by focusing on its aims and objectives to understand its 

primary research focus. Once all papers were classified, an in-depth read and analysis was performed. The results 

of this thorough analysis are presented in the following section. 

  

Figure 1: Search methodology. 

The described methodology provides a structured process that allows us to answer the presented research 

questions. The research strategy allows us to identify and analyze a wide range of papers describing the application 

of ML to the ACC process. This analysis will provide a comprehensive overview of previously implemented ML 

methods and their potential in enhancing ACC (RQ1). Furthermore, the classification of identified papers allows 

us to understand the distinct potential of ML applications for two of the main challenges in the process – rule 

interpretation and design information preprocessing. Analysis of papers based on their thematic categories can 

pinpoint opportunities and challenges specific to different steps of the ACC process. ACC relies on two different 

sources and types of information (regulatory text and design). Therefore, implemented methods, challenges, 

opportunities, and employed strategies (RQ2) might be different in different steps of the process. Through analysis 

of relevant publications, we will identify consistent gaps in the field (RQ3). By classifying the relevant papers, the 

review will highlight underexplored areas, recurring limitations, and potential avenues for future research. 
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3. RESULTS AND FINDINGS 

As explained in the methodology section, the abstract screening revealed that each publication addresses different 

challenges or stages within the ACC workflow. The first group of publications focuses on the regulations and 

addresses the challenge of interpreting regulatory requirements and converting them into computable statements. 

The second group is focused on design information. Publications in this category deal with preprocessing and 

enriching BIM models to prepare them for the checking process. The publications in the third group look at the 

checking process overall. This information was documented during the abstract screening process and evaluated 

again during screening of the full papers. The list of the reviewed publications, classified into the three groups, is 

presented in Table 1.  

Notably, a significant portion of the existing publications primarily focus on transforming regulatory documents 

into machine-readable representations. As demonstrated in Table 1, over 60% of the reviewed publications discuss 

the use of ML for interpreting regulatory requirements. 

However, as illustrated in Figure 3, the tide seems to be slowly changing, as recent efforts begin to emerge, showing 

promise in exploring ML's applicability and potential for preprocessing the design and for transforming the code 

compliance checking process overall. The rising interest in the subject in the last two years is also evident, with 

29 papers published during 2022-2024. 

  

Figure 3: Year of publication for the papers in each of the classes. 

Table 1: Classification of relevant publcations. 

Class References 

Machine readable 

regulations 

(Fuchs et al. 2022, 2023; Kruiper et al. 2021, 2024; Li et al. 2020; Purushotham et al. 2024; Salama and El-

Gohary 2013, 2011a; b, 2016; Schönfelder and König 2021; Uhm et al. 2015; Wang and El-Gohary 2022, 

2023a; b; Xu et al. 2019, 2020; Xu and Cai 2021; Xue et al. 2024; Xue and Zhang 2020a; b, 2021, 2022; 

Zhang 2023; Zhang and El-Gohary 2012a; b, 2015b, 2016b, 2019a; b, 2020a; b, 2021, 2022a; b, 2018; Zhou 

and El-Gohary 2014a; b, 2015, 2016a; b, 2017; Zhou et al. 2022a; b) 

Machine readable design (Bloch and Sacks 2018; Dinis et al. 2022; Fei et al. 2022; Karmakar and Delhi 2024; Koo and Shin 2018; 

Luo et al. 2023; Wu et al. 2022; Zhang and El-Gohary 2016a, 2014, 2015a; Zheng et al. 2022) 

Checking mechanism (Bloch et al. 2023, 2024; Chen et al. 2024; Guo et al. 2021; Li et al. 2024a; b; Li and Cai 2015; Locatelli et 

al. 2021; Peng and Liu 2023; Wang and El-Gohary 2024; Wang et al. 2023; Zhang and El-Gohary 2013, 

2017, 2020c, 2023; Zhou and El-Gohary 2021) 
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3.1 Computer readable representation of the regulations 

Many efforts have been focused on developing automated code compliance systems, but their use remains limited 

due to the need for extensive human input to convert building codes into computer-readable format. Various text 

classification approaches have been explored to automatically interpret regulations. Some work focuses on the 

automated classification of documents to predefined classes in preparation for further analysis and rule extraction 

for ACC. For example, Salama and El-Gohary (2016) suggested a hybrid approach for classifying clauses using a 

text classification technique that implements a semantic model and a ML model. A ML approach for text 

classification was also implemented for classifying environmental regulatory clauses using several popular ML 

algorithms like Support Vector Machine (SVM), Decision Tree (DT), Naive Bayes (NB), Nearest Neighbors (NN), 

and Ensemble Method (Zhou and El-Gohary 2014a). 

Natural Language Processing (NLP) plays a pivotal role in the processing of regulations, and it has been widely 

investigated in the context of ACC. For example, Zhang and El-Gohary (2012a; b) explored the effectiveness of 

utilizing syntactic and semantic features of the text to automatically extract regulatory information from codes. 

Portions of the International Building Code and the International Fire Code were used to demonstrate the proposed 

approach, showing promising results with 95% precision and 94% recall. A similar information extraction 

technique was implemented for extracting regulatory requirements from the International Energy Conservation 

Code and also demonstrated promising results (Zhou and El-Gohary 2017). Another integral part of NLP is the 

Part Of Speech (POS) tagging, where each word in a sentence is assigned a specific part-of-speech tag (noun, verb, 

adjective, etc.) which is crucial for understanding the grammatical structure of a sentence. The proposed algorithm 

was tested in extracting energy requirements from Chapter four of the 2012 International Energy Conservation 

Code, and the results showed 98.5% precision and 97.4% recall. Xue and Zhang (2021) suggested a novel 

approach, combining deep learning models with error-fixing transformational rules, to improve the accuracy of 

the existing POS taggers on building codes. Although their work demonstrated enhanced performance, the 

resulting POS tagger still contains errors, which could affect the performance of the entire NLP based code 

checking system. The proposed model reached a 91.89% precision without error-driven transformational rules and 

a 95.11% precision with error-driven transformational rules, which outperformed the 89.82% precision achieved 

by the state-of-the-art POS taggers. 

To support ACC there is a need not only to extract concepts from the regulatory document but also to transform 

them into logical statements. Such a transformation method was proposed in the work of Zhang and El-Gohary 

(2015b). Their approach begins with a rule based, semantic NLP approach and rule-based information extraction. 

Then, the extracted information instances are transformed into logical clauses using a set of pattern-matching-

based rules. Results of implementation for chapter 19 from the International Building Code (IBC) were compared 

to a manual rule extraction and showed precision and recall over 98%. However, this approach was only 

implemented on quantitative requirements and was affected by six different causes of errors. The information 

extraction technique was further improved by Zhou and El-Gohary (2016a) who proposed a supervised ML 

multilabel text classification algorithm to classify regulatory clauses prior to information extraction. Four types of 

multilabel classification evaluation metrics were used to measure the performance of the proposed approach. Based 

on the testing data, across the four types of metrics, the proposed algorithm achieved overall recall and precision 

values from 97.32 to 98.69% and from 86.51 to 92.70%, respectively. 

A critical step in this information extraction process involves identifying key terms that convey semantic 

information in each design rule. Named Entity Recognition (NER), a sub-task in NLP, focuses on identifying these 

entities in unstructured text and assigning them labels based on predefined classes. Schönfelder and König (2021) 

proposed a supervised deep learning transformer model to extract relevant terms from German regulatory 

documents. Their method achieved weighted performance scores of over 95% precision and 95% recall. However, 

further investigation is needed to explore whether the proposed model outperforms rule-based approaches. In 

addition, extraction of concepts from the regulatory documents is not sufficient to support ACC, and the complex 

task of extracting the semantic relations between entities must be addressed as well. In an attempt to do so, Li et 

al. (2020) proposed a joint extraction model using a hybrid deep learning algorithm with a decomposition strategy 

and demonstrated it using the Chinese code to extract multiple relations. The proposed model achieved an average 

precision, recall, and F-1 measure of 88.08%, 85.19%, and 86.61%, respectively. Although the proposed approach 

showed potential, limited entity and relationship types were addressed. 
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In another effort by Wang and El-Gohary (2022) two alternative deep learning models, a CNN-based model and 

an RNN-based model, were developed and evaluated for extracting domain-specific relations from construction 

safety regulations. In this case, the CNN model achieved a weighted precision, recall, and F-1 measure of 82.7%, 

81.1%, and 81.3%, respectively. Still, the identified relationships are most likely not exhaustive. One of the 

contributions of their work is that the presented approach has the capability to directly produce a structured 

representation for the extracted requirements as a query-graph. This structure further facilitates the identification 

of implicit information through edge traversal. 

To address semantic parsing's early stages, Kruiper et al. (2021) introduced SPaR, a shallow parsing approach for 

ACC. Using a small dataset of 200 sentences, they developed a sequence tagging model that achieved an F1-score 

of 79.93% in identifying terms from Scottish Building Regulations. The approach focused on term recognition but 

was limited by challenges with complex multi-word expressions and dataset scalability. Building on this, Fuchs et 

al. (2022) advanced the field by developing a neural semantic parser for extracting building regulations using 

LegalRuleML (LRML). Their methodology translated natural language regulatory clauses into machine-

interpretable format, improving parsing performance. Through data augmentation and normalization, they 

enhanced BLEU scores from 36.8% to 60.7% and format-specific F1 scores from 35.0% to 48.0%. Despite 

significant progress, challenges remain in maintaining annotation consistency and handling complex regulatory 

clauses. 

Not all regulatory requirements can be interpreted automatically, some are too complex and require human 

comprehension. To gain some insights of the computability of different code requirements, Zhang and El-Gohary 

(2018) proposed a clustering approach to identify different types of code requirements in terms of computability. 

To enable analysis of the complex requirements (such as requirements with multiple nested clauses), researchers 

proposed the use of sentence and document templates. Zhang and El-Gohary (2019a) even suggested an automated 

approach based on unsupervised ML for such template extraction. The achieved accuracy for the final set of 

templates was promising but limited and stood at 76%. A machine learning-based method to automatically extract 

hierarchies of such complex requirements was also explored and achieved a precision of 89%, a recall of 76%, and 

an F1-measure of 82% (Zhang and El-Gohary 2019b). 

Information extraction from regulatory documents is a challenging task that has been tackled with variety of 

methods, including deep learning (Zhang and El-Gohary 2020b, 2021, 2022a) and transfer learning (Zhang and 

El-Gohary 2020a). Zhang and El-Gohary (2020a) proposed transfer learning techniques to train a deep neural 

network for generating semantically-enriched building-code sentences for semantic analysis of the code for 

supporting automated compliance checking. These efforts contribute to the development of more scalable, flexible, 

and intelligent ACC systems, showcasing the potential of ML in improving interpretation of regulatory documents. 

Whether dealing with regulatory compliance, building codes, contractual documents (Salama and El-Gohary 

2011a; b), or other construction documents like requests for proposals (Uhm et al. 2015), common challenges in 

automating compliance checks persist. Amongst these challenges are the complexity of translating requirements 

into computer-interpretable rules, ambiguity, inconsistency, and the variability of construction projects. ML 

emerges as a promising direction to enhance automation, streamline the analysis of diverse documents, and 

facilitate the translation of complex requirements into computationally interpretable rules. 

3.2 Computer readable representation of the design 

Two critical aspects need to be considered to enable automation in the code checking process: accurate 

interpretation of regulatory documents, and availability of high-quality, semantically rich design data, both in 

machine-readable formats. Despite the widespread adoption of BIM, challenges in rendering machine-readable 

design information persist and may hinder the adoption of ACC in practice. Ensuring the accuracy, completeness, 

and consistency of design data is fundamental to the success of any ACC system. The papers reviewed in this 

section present ML applications to tackle these issues. Karmakar and Delhi (2024) examined the obstacles in 

implementing ACC systems in the Indian construction industry. Their focus was on understanding the practical 

considerations in application of ACC systems, especially in pre-construction permit compliance. Through a focus 

group study, they identified key challenges such as manual data preprocessing of BIM Models and the limited 

scope of the code checking system that focuses on only explicit and simple building code clauses. The research 

highlighted the need for automated data preprocessing, including intelligent model filling and semantic 



 

 

 ITcon Vol. 30 (2025), Alnuzha & Bloch, pg. 30 

enrichment. They also propose the use of ML for automatic semantic enrichment, aiming to improve the industry's 

adaptation and user experience of ACC systems.  

The use of a variety of software packages in the AEC industry necessitates effective information sharing between 

the stakeholders. The IFC schema was designed to facilitate such information exchange, which is at the core of the 

existing ACC platforms as well. BIM based ACC requires accurate and rich semantic information to be explicitly 

expressed in the IFC. Semantic enrichment of BIM models is a process aiming to supplement the missing 

information automatically to enable an ACC process. Bloch and Sacks (2018) proposed the use of ML algorithms 

for semantic enrichment of BIM models and compared them with rule-based approaches for space classification. 

Since accurate information about the functionality of spaces in a building is at the heart of many regulatory 

requirements, automatically supplementing this information would support a range of regulatory compliance 

checks. Their experiments demonstrated the superiority of ML in correctly identifying spaces within apartments, 

as opposed to rule-inferencing, which proved less effective due to the absence of unique distinguishing geometric 

features. However, the ability to implement such methods is dependent upon the availability of a large, labeled, 

data set of design variations. Generalizability is an issue as well since the proposed method was demonstrated for 

classification of functional spaces in residential apartments, the applicability for other building types has not been 

explored.  

Missing information is not the only limitation of BIM based ACC, as existing information may be misrepresented 

or incorrectly mapped into the IFC representation (Koo et al. 2021; Lai and Deng 2018; Pazlar and Turk 2008). 

Addressing possible mapping errors between BIM native models and IFC representations, Koo and Shin (2018) 

applied Support Vector Machine (SVM) to accurately identify such misclassifications. The proposed approach 

aimed to ensure accurate BIM - IFC class mappings for seamless data exchange, which is another important 

preprocessing step for ACC. Their work highlighted the need for model integrity checks. In this case as well, 

limitations around generalizability to different building types were noted.  

Expanding on classification tasks, Wu et al. (2022) introduced a method for classifying AEC objects in BIM using 

invariant signatures that encapsulate geometric, locational, and metadata aspects. Their research showed that 

invariant signatures, coupled with the random forest algorithm, achieved remarkable object classification accuracy 

(99.6% F1 measure). This approach holds promise for various BIM applications, including cost estimation, 

automated code compliance checking, energy analysis, etc. However, as in the previously mentioned efforts, large 

datasets are needed for implementation. 

Dinis et al. (2022) offered a more comprehensive perspective on semantic enrichment by reviewing semantic 

enrichment methods for BIM, addressing the challenges of data integration, manual modeling updates, and 

interoperability constraints. They illustrated a wide range of semantic enrichment techniques, including ML 

algorithms, ontology-based systems, and semantic web technologies. By categorizing research efforts into specific 

BIM-related use cases, one of which is ACC, they highlighted the potential of semantic enrichment to support code 

checking.  

While most of the work on semantic enrichment relies on the properties of individual elements, relational 

information is of great value in the context of building design information. In an effort to leverage such relational 

information, Luo et al. (2022) introduce two-branch geometric-relational deep learning framework for BIM object 

classification. The framework was comprised of two synergistic branches: a geometric branch that extracts high-

level features from the shape information of BIM objects, and a relational branch that processes relational data to 

learn the interaction patterns among objects within their BIM context. Despite demonstrating improved 

classification accuracy and flexibility, the authors acknowledged certain challenges. These include issues related 

to potential mislabeling, loss of relational data in IFC files, the necessity for more comprehensive datasets to 

encompass a wider array of BIM objects and relationships, and the existing coarse definitions of BIM object types 

that may limit detailed domain-specific applications.  

In the context of ACC, enriching BIM models goes beyond just adding semantic information; it's about ensuring 

that the design information aligns with the regulatory documents. This alignment is crucial to enable automated 

checking workflows. In 2016, Zhang and El-Gohary (2016a) suggested another semi-automated technique to 

extend IFC using machine learning for relationship classification, aiming to more efficiently incorporate regulatory 

concepts into BIM-based ACC. Their method matched document concepts to IFC entities and classified the 

relationships using syntactic, semantic and machine learning techniques. Four main ML algorithms were tested, 
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and the best performing algorithm achieved 88.2% precision. Following this, Zhang and El-Gohary (2016c) 

expanded on their work with a comprehensive approach that combines concept extraction, matching and 

classifying relationships to semi-automatically extend BIM with regulatory concepts. Their approach demonstrated 

87.9% precision and 91.7% F1-measure, illustrating the potential to improve ACC workflows. A major limitation 

of these significant contributions is that the methods were tested on a limited scope of regulatory documents, hence 

additional testing is needed to examine scalability and handle more complex requirements. In addition, the ability 

to evaluate the results of these methods is dependent on developing a benchmark against which testing results can 

be compared, which requires extensive manual work.  

More recently Zheng et al. (2022) proposed an innovative knowledge-informed automated rule checking 

framework comprising four key components: ontology-based knowledge modeling, semantic enrichment, 

enhanced rule interpretation, and checking execution. They established a domain-specific ontology to represent 

critical domain knowledge, improving the generalization of alignment between regulatory concepts and design 

concepts. Their unsupervised semantic alignment method achieved an impressive 90.1% accuracy rate, reducing 

manual effort, and enhancing alignment accuracy. The authors emphasized knowledge-informed conflict 

resolution and introduced a domain-specific text classification method for rule interpretation. The framework was 

demonstrated in a prototype system using open-source tools. However, like previous efforts, the presented 

ontology and rule sets were focused on a narrow set of standards. Wider applicability across regulatory domains 

has not been explored. Additionally, the presented framework did not encompass parsing IFC files, a significant 

barrier to real-world engineering implementations. 

It is obvious that despite recent advancements, some challenges in the field persist, including the need for extensive 

efforts for BIM preprocessing and limited coverage of regulatory scope (Zhang and El-Gohary 2016a, 2014, 2015a; 

Zheng et al. 2022). The reviewed publications underline the need for future work to enhance the scalability, 

precision, and applicability of ML for ACC systems. Future research must focus on broadening the scope of 

regulatory document testing, exploring more sophisticated ML techniques, and developing more diverse datasets.  

3.3 Checking mechanism 

As the industry still heavily relies on document-based information sharing and management, NLP is a potential 

solution to process such unstructured data effectively. Locatelli et al. (2021) illustrate the close relationship 

between NLP, BIM, and semantic topics, with NLP acting as a bridge between document-centric and information-

based approaches. Similarly, NLP can serve as a bridge between the regulatory documents and the design 

information to facilitate an automated compliance check. In this section, we review the publications that focus on 

bridging this gap and publications that illustrate a complete checking workflow that includes both processing of 

the regulatory text and of the design. 

Researchers have been actively exploring innovative approaches to streamline and enhance the ACC process, with 

a focus on bridging the gap between regulatory textual requirements and digital building model representations. 

One such approach was introduced by Zhang and El-Gohary (2013), where semantic modeling, semantic NLP 

techniques, and logic reasoning were combined for processing of textual regulatory documents. To extract and 

formalize requirements into a computer-readable format, they relied on a set of integrated algorithms, including 

semantic machine-learning-based algorithms for text classification (TC), syntactic-semantic rule-based algorithms 

for information extraction (IE), semantic rule-based algorithms for information transformation (ITr), and logic-

based algorithms for compliance reasoning (CR). The combined TC, IE, and ITr algorithms were successfully 

tested for extracting and formalizing quantitative requirements from the 2006 International Building Code, 

achieving high precision and recall rates of 96% and 92%, respectively. 

Li and Cai (2015) introduced a framework that addresses recurrent underground utility incidents. These incidents 

are often caused by non-compliance with spatial rules specified in utility documents and a lack of awareness 

regarding utility locations. Li and Cai (2015) implemented an NLP algorithm to extract spatial rules from textual 

utility documents and convert them into a computer-interpretable format. Using spatial reasoning, they interpreted 

spatial relationships from utility documents such as positioning, direction, and distance, into actionable rules. 

These rules were then applied in a Geographic Information System (GIS) to automate the depth estimation of 

underground utilities and verify their compliance with regulations. Wang et al. (2023) also leveraged NLP 

techniques, for fire code compliance checking. Their proposed framework comprises three key subtasks: building 

model parsing, code knowledge translation, and compliance check result. They introduced a structured NLP 
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approach to process spatial geometric stipulations in fire codes, enabling the review of component relationships 

within building models. Empirical testing demonstrated the system's ability to achieve superior recall compared to 

manually formulated gold standards. However, it has some limitations, particularly in expanding logical 

expressions to cover a broader range of codes. There is also room for extending the approach to different building 

types.  

Locatelli et al. (2021) and Wang et al. (2023) highlight the ongoing challenge of translating complex, often 

ambiguous regulatory texts into computable formats that accurately reflect the intent and applicability of the 

regulations. Furthermore, as discussed in Peng and Liu (2023), reliance on NLP to transform specifications into 

checking rules raises concerns about the accuracy and reliability of rule generation. Natural language's inherent 

ambiguity and complexity can pose significant challenges in accurately capturing the code requirements, 

potentially leading to oversimplifications or misinterpretations in the automated rules. 

Zhang and El-Gohary (2020c) continued to refine ACC methodologies by proposing a ML-based approach for 

semantic matching between building codes and BIM models. Their approach focused on three key components: 

the generation of semantic representations that blend domain-specific and general word embeddings, a similarity-

based method for matching building-code concepts to IFC elements, and a supervised learning-based approach for 

matching building-code relations to IFC relations. The preliminary results show that the proposed approach 

achieved an accuracy of 77% for matching building-code concepts to IFC elements, and 78% for matching 

building-code relations to IFC relations. One of the primary contributions lies in their methodology for modeling 

semantic meanings within domain-specific text. By combining domain-specific word embeddings with general 

word embeddings, their approach harnessed both domain-specific knowledge and broader semantic context. They 

illustrate how the system discerns the semantic depth behind the term 'Horizontal sliding power-operated door' 

found in building codes and aligns it with the 'IfcDoor' entity. In this case, the 'Horizontal sliding power-operated 

door' was also recognized as a subtype of the broader 'IfcDoor' category. Recognizing that the detailed descriptor 

'Horizontal sliding power-operated' enriches the base concept of 'door' with specific functional attributes, allows 

the system to identify it as a particular kind of 'IfcDoor'. The successful experiment demonstrated the capability to 

accurately capture the semantic complexities embedded within building-code concepts and deduce their 

relationships to IFC elements. Despite the benefits, the reliance on domain-specific embeddings indicates the 

importance of creation and maintenance of extensive domain-specific knowledge bases. This dependency raises 

questions about the flexibility and adaptability of such systems to new codes and regulations without extensive 

retraining or updating of embeddings. 

Zhang and El-Gohary (2023) introduced another approach for automated IFC-regulation semantic information 

alignment. This method leveraged transformer-based models to establish connections between regulatory concepts 

and the concepts within the IFC schema. To enhance alignment accuracy, the authors incorporated natural-language 

definitions and an IFC knowledge graph, providing contextual information for fine-tuning a pretrained 

transformer-based model through transfer learning. The approach achieved an average precision of 84.3%, recall 

of 83.3%, and an F1 measure of 83.8% in concept alignment. The results highlight the method's limitations in fully 

capturing the complexity of regulatory requirements and building design relationships. The reliance on transformer 

models and an IFC knowledge graph hints at underlying challenges which are relevant to all efforts to implement 

ML for ACC, that is the potential for overfitting to specific regulatory contexts and the difficulty in generalizing 

across the varied landscape of building codes and design practices. Nevertheless, integrating ML into the 

regulations – design alignment process represents a significant advantage over traditional hard-coded rules, as it 

allows for much more flexibility.  

In line with these advancements, Chen et al. (2024) proposed a compliance-checking framework that integrated 

large language models (LLMs) with deep learning models and ontology-based domain knowledge. Their approach 

sought to minimize the need for extensive manual feature engineering. The framework utilized deep learning 

models to classify regulatory texts into relevant categories, thereby enhancing the accuracy of information 

extraction by pre-processing the input for the LLMs. Still, challenges in handling nested or conditional clauses 

within regulatory texts persisted. 

Li et al. (2024a) further enhanced the reasoning capability of intelligent compliance-checking systems by 

integrating LLMs with knowledge graphs. Their framework evaluated multiple LLMs, including ChatGPT-3.5, 

ChatGLM-6B, and ERNIE Bot, to determine the most effective model for processing construction schemes. 

Among these, ChatGPT-3.5 achieved the highest accuracy, demonstrating superior performance in both 
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quantitative and qualitative compliance checks, with an overall accuracy of 72%. The study also highlighted 

several limitations that required further attention. The dataset utilized in the experiments was relatively small and 

did not encompass all types of construction schemes, suggesting that further evaluation across complex and diverse 

scenarios is needed. Additionally, the current knowledge graph of construction standards was constructed 

manually, which was labor-intensive and time-consuming.  

Another well-known challenge when dealing with ML applications, in any domain, is the need for large, labeled 

data sets. To overcome the challenge of data scarcity in applying ML for ACC, Bloch et al.(Bloch et al. 2023, 

2024) proposed using Graph Neural Networks (GNNs) to assess code compliance while relying on a synthetic data 

set for training. The authors illustrate a proof of concept for implementing a GNN model that was trained on a 

synthetic data set for code compliance checking. Specifically, they demonstrated a GNN based workflow for 

checking accessibility requirements in single-family houses. This research marks a significant departure from 

traditional approaches to ACC, showcasing a potential ML based workflow that elevates the need for rule 

interpretation. Despite the promising outcomes, such alternative methods have significant limitations. For 

example, the dynamic nature of regulations might necessitate retraining the model to accommodate changes. We 

can assume that the complexity of updating rule sets vs. the complexity of retraining ML models will highly depend 

on the regulations at hand. Overall, it remains unclear which approach poses greater difficulty. 

To sum up, although the publications in this group present a full checking procedure, most are predominantly 

focused on regulatory text analysis. Therefore, we observe a strong link between the work in group 1 and in group 

3, especially in the significant role of NLP techniques. The main challenge addressed in the publications in group 

3 is bridging the gap between regulatory requirements and digital building model representations. Building on 

insights from prior research, the proposed integration of advanced technologies like ML, NLP, LLM, and GNN 

into compliance checking frameworks marks a significant step toward realizing highly automated systems. 

However, the effectiveness of these methods across various regulations and different scenarios (such as different 

building types) remains unclear. 

4. OPPORTUNITIES AND CHALLENGES IN ML IMPLEMENTATION FOR ACC 

Research efforts in ACC are mostly focused on interpretation of regulations and processing of design information. 

These are interconnected and complementary efforts as the aim usually remains true to the initial process definition 

by Eastman et al. (2009). Hence most of the work follows the four stages: rule interpretation, preprocessing of 

design, implementation, and report. While a portion of the reviewed publications illustrate this entire procedure, 

most of the existing work is predominantly focused on the translation of regulatory documents into computer 

readable representations. Interpreting regulations expressed in natural text to extract and define relevant rules 

requires significant domain knowledge and a deep understanding of the regulations. Despite the recent advances, 

human expertise is indispensable for resolving ambiguities and inconsistencies often encountered in regulatory 

documents. 

We can see a shift towards exploring the potential of ML for processing design data, and even transforming the 

entire checking process to a ML based process. Currently, preprocessing design data is a significant manual effort, 

required to resolve inconsistencies, misrepresentations, and errors, as well as supplementing rich and specific 

information needed for checking. Furthermore, alignment between the regulatory concepts and the concepts 

represented in the design is yet another task that requires human comprehension and manual engineering work. In 

these settings, the automated code compliance checking process becomes semi-automated at best, as the manual 

efforts simply shift from the actual checking process to rule interpretation and fulfilling design information 

requirements. Accompanied by the restricted range of regulations that currently can be checked automatically 

(mostly prescriptive and simple requirements), the significance of ACC and its contribution to the industry has 

become limited. The need for more advanced and sophisticated approaches is evident. 

Indeed, we can see a variety of approaches and methods that have been investigated in the reviewed publications. 

Table 2 presents the techniques that have been implemented in more than four publications in the set of publications 

that we reviewed. While this analysis provides an overview of current methods, it also reveals important areas for 

further research. This highlights a significant gap in understanding the comparative efficiency of these techniques. 

By applying various techniques for checking the same set of regulations, researchers can directly compare 

performance metrics like accuracy, precision, recall, and processing time. This will provide a deeper understanding 

of each method's strengths and limitations, potentially leading to the development of more effective hybrid 
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solutions. Such comparative work is currently unavailable, which forms an existing knowledge gap and a valuable 

direction for future research. In addition, while some ML methods, such as BiLSTM, and Word2Vec have been 

extensively studied (Table 2), promising approaches like GNNs (Bloch et al. 2023, 2024) have received limited 

attention in the ACC context. Similarly, emerging trends like large language models (LLMs) still possess strong 

capabilities that remain largely unexplored in the current literature (Chen et al. 2024; Fuchs et al. 2022; Li et al. 

2024a; Zhang 2023). 

Table 2: Most utilized techniques. 

# Techniques References 

1 NLP (Natural Language 

Processing) 

(Chen et al. 2024; Fuchs et al. 2022, 2023; Guo et al. 2021; Kruiper et al. 2021, 

2024; Li et al. 2020; Li and Cai 2015; Peng and Liu 2023; Purushotham et al. 

2024; Salama and El-Gohary 2013, 2011a; b, 2016; Schönfelder and König 

2021; Uhm et al. 2015; Wang and El-Gohary 2022, 2023a; b; Xu et al. 2019, 

2020; Xu and Cai 2021; Xue et al. 2024; Xue and Zhang 2020a; b, 2021, 2022; 

Zhang 2023; Zhang and El-Gohary 2012a; b, 2013, 2016a, 2015a; b, 2016b, 

2017, 2019a; b, 2020a; b, 2021, 2022a; b, 2018; Zheng et al. 2022; Zhou and 

El-Gohary 2014a; b, 2015, 2016a; b, 2017, 2021; Zhou et al. 2022a; b) 

2 Ontology-Based Methods (Guo et al. 2021; Kruiper et al. 2024; Li and Cai 2015; Peng and Liu 2023; Uhm 

et al. 2015; Xu and Cai 2021; Xue and Zhang 2022; Zhang and El-Gohary 

2012a; b, 2013, 2015b, 2016b, 2017; Zheng et al. 2022; Zhou and El-Gohary 

2014b, 2015, 2017, 2021; Zhou et al. 2022a; b) 

3 BiLSTM (Bidirectional Long 

Short-Term Memory) 

(Chen et al. 2024; Kruiper et al. 2021; Li et al. 2020, 2024a; Wang and El-

Gohary 2023a; b; Xue and Zhang 2021; Zhang and El-Gohary 2019b, 2020a; b, 

2021, 2022a; b) 

4 Unsupervised ML (Word2Vec) (Guo et al. 2021; Li et al. 2020; Li and Cai 2015; Peng and Liu 2023; Wang and 

El-Gohary 2022, 2023a; Zhang and El-Gohary 2019b, 2020c; Zheng et al. 2022; 

Zhou and El-Gohary 2014b, 2021) 

5 SVM (Support Vector Machine) (Koo and Shin 2018; Salama and El-Gohary 2016; Wu et al. 2022; Zhang and 

El-Gohary 2016a, 2020c; Zhou and El-Gohary 2014a, 2016a; b) 

6 Transformer models (e.g. BERT) (Chen et al. 2024; Fuchs et al. 2022, 2023; Kruiper et al. 2021; Li et al. 2024a; 

Schönfelder and König 2021; Wang and El-Gohary 2024; Xue et al. 2024; Xue 

and Zhang 2021; Zhang and El-Gohary 2023; Zhou et al. 2022b) 

7 NB (Naive Bayes) (Salama and El-Gohary 2016; Zhang and El-Gohary 2016a; Zhou and El-

Gohary 2014a, 2016a; b) 

8 MLP (Multi-Layer Perceptron) (Wang and El-Gohary 2022, 2023b; Zhang and El-Gohary 2019b, 2020c) 

9 Unsupervised ML (GloVe) (Wang and El-Gohary 2023a; b; Zhang and El-Gohary 2021, 2022b) 

10 NN (Nearest Neighbors) (Zhang and El-Gohary 2016a; Zhou and El-Gohary 2014a, 2016a; b) 

While there is a noticeable shift towards more sophisticated methods in ACC, our literature review revealed three 

persistent challenges that were pointed out by many researchers. Table 3 presents the identified challenges and the 

research papers that discuss them. The challenge that has been mentioned in 59 out of 71 reviewed publications is 

the scalability of the proposed approaches. Many researchers have emphasized the importance of testing the 

proposed methods on different regulations and standards to ensure their adaptability and broad applicability. The 

reviewed publications are usually focused on specific test cases, and while they present valid solutions, it is not 

clear how the same methods will perform in different scenarios. This scalability issue is crucial because building 

codes and regulations can vary significantly across jurisdictions, requiring ACC systems to be flexible and capable 

of accommodating diverse regulatory frameworks.  
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Table 3: Addressed Challenges. 

Challenges Scalability Data needs Benchmark 

Machine readable 

regulations 

(Fuchs et al. 2022, 2023; 

Kruiper et al. 2021, 2024; Li et 

al. 2020; Purushotham et al. 

2024; Salama and El-Gohary 

2013, 2016; Schönfelder and 

König 2021; Uhm et al. 2015; 

Wang and El-Gohary 2022, 

2023a; b; Xu et al. 2019; Xu and 

Cai 2021; Xue et al. 2024; Xue 

and Zhang 2020b, 2021, 2022; 

Zhang and El-Gohary 2012a; b, 

2015b, 2016b, 2019b, 2020a; b, 

2021, 2022a; b, 2018; Zhou and 

El-Gohary 2014a; b, 2015, 

2016a; b, 2017; Zhou et al. 

2022a; b) 

(Fuchs et al. 2022, 2023; Kruiper 

et al. 2021, 2024; Li et al. 2020; 

Salama and El-Gohary 2016; 

Schönfelder and König 2021; 

Wang and El-Gohary 2022, 

2023a; b; Xu et al. 2019, 2020; 

Xu and Cai 2021; Xue et al. 

2024; Xue and Zhang 2021, 

2022; Zhang and El-Gohary 

2019a; b, 2020a; b, 2021, 2022a; 

b; Zhou and El-Gohary 2014a; b, 

2016a; b; Zhou et al. 2022b) 

(Kruiper et al. 2024; Salama and El-

Gohary 2013; Schönfelder and 

König 2021; Wang and El-Gohary 

2022, 2023b; Xue and Zhang 2020a; 

b; Zhang and El-Gohary 2020b, 

2021, 2022a; b; Zhou and El-Gohary 

2014a, 2016a; b, 2017; Zhou et al. 

2022b) 

38 28 16 

Machine readable 

design 

(Bloch and Sacks 2018; Dinis et 

al. 2022; Fei et al. 2022; Koo 

and Shin 2018; Wu et al. 2022; 

Zhang and El-Gohary 2016a, 

2015a, 2016c; Zheng et al. 

2022) 

(Bloch and Sacks 2018; Dinis et 

al. 2022; Fei et al. 2022; Koo and 

Shin 2018; Luo et al. 2022; Wu et 

al. 2022; Zheng et al. 2022) 

(Bloch and Sacks 2018; Dinis et al. 

2022; Wu et al. 2022; Zheng et al. 

2022) 

9 7 4 

Checking 

mechanism 

(Bloch et al. 2023, 2024; Chen et 

al. 2024; Guo et al. 2021; Li et 

al. 2024a; Peng and Liu 2023; 

Wang and El-Gohary 2024; 

Zhang and El-Gohary 2013, 

2017, 2020c, 2023; Zhou and 

El-Gohary 2021) 

(Bloch et al. 2023, 2024; Guo et 

al. 2021; Li et al. 2024a; Zhang 

and El-Gohary 2020c, 2023; 

Zhou and El-Gohary 2021) 

(Bloch et al. 2023; Chen et al. 2024; 

Li et al. 2024a; Li and Cai 2015; 

Wang and El-Gohary 2024; Zhang 

and El-Gohary 2017, 2020c, 2023; 

Zhou and El-Gohary 2021) 

12 7 9 

Furthermore, when machine learning models are trained, they are typically designed for a specific target, such as 

a particular regulatory requirement. However, their performance when accommodating a broader range of targets, 

such as different regulatory requirements or varying building codes, remains unclear. Different requirements may 

necessitate entirely different training sets to capture the unique characteristics of each regulation. This variability 

poses a significant challenge for the scalability and generalizability of ML-based ACC systems and defines an 

important direction for future research. This also introduces the second challenge, which is the need for good 

quality data sets for training. The lack of training data has been mentioned in 42 publications out of the 71 reviewed 

publications (see Table 3). The diversity of building codes and regulations means that ML models must be trained 

on a wide variety of datasets that accurately reflect this variability. However, compiling such datasets is not 

straightforward; it requires extensive data collection, labeling, normalization, and validation efforts to ensure that 

the training data is comprehensive and representative.  

Finaly, 29 out of 71 reviewed publications mention the difficulty that arises due to the absence of benchmarks or 

baselines in the ACC field, which makes it challenging to evaluate and compare the developed models consistently. 

This absence also complicates efforts to identify the strengths and weaknesses of each method, making it difficult 

to understand which techniques are most suitable for specific types of regulations or design complexities. 
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Moreover, without a common baseline for evaluation, researchers cannot effectively measure progress in the field, 

and it is much harder to progress with adoption of these methods in the industry. 

Surprisingly, the reliability of the results was not discussed in the reviewed publications. Reliability is always an 

issue when dealing with ML, especially in the context of ACC, the non-deterministic results present a significant 

challenge. Although the reviewed work demonstrated high accuracy in most cases, ML introduces a level of 

uncertainty to the results. This uncertainty can pose challenges in critical decision-making processes, such as 

building permitting where code compliance checking is a significant factor. Currently, there are no methods for 

quantifying and managing these uncertainties and no research direction has been identified for proposing 

uncertainty aware decision-making frameworks tailored for ACC applications. These could be for example hybrid 

approaches that combine the strengths of both rule-based systems and ML models to leverage the benefits of both 

but at the same time mitigate the impact of the non-deterministic results provided by ML techniques. Such hybrid 

approaches will seek to reduce the needed manual effort in the checking process but expand the scope of 

regulations that can be checked automatically.  

5. CONCLUSIONS 

Results of the literature review shed light on the current landscape and the future prospects of automated code 

checking research. The literature demonstrates the widespread application of ML-based approaches to enhance 

ACC processes. Notably, there has been a significant focus on transforming regulatory documents into machine-

readable representations, with over 60% of reviewed publications discussing the use of ML for interpreting 

regulatory requirements. In this field, ML and NLP techniques have played a pivotal role in preprocessing 

regulatory documents, extracting key terms, and transforming information into logical statements. For dealing with 

design information, efforts have been made to enhance the semantic enrichment of BIM models. In this field, 

various ML algorithms have been explored from the classic supervised ML models to the more advanced graph-

based learning techniques.  

The conducted review allows us to answer the posed research questions. Addressing RQ 1, we see that ML-based 

approaches have been primarily focused on the interpretation of regulations. While other parts of the ACC process 

have been addressed as well, they have not been thoroughly examined. In addition, while a variety of techniques 

have been investigated, some remain underexplored. For example, we found only three papers that utilized 

GPT(Chen et al. 2024; Li et al. 2024a; Zhang 2023), a powerful large language model that has demonstrated 

remarkable capabilities across various domains. The potential of GPTand similar advanced language models in 

interpreting and applying building codes remains largely unexplored in the ACC field. These observations 

highlight a significant opportunity for further research and development. 

As for the second research question (RQ 2), ML offers significant opportunities for advancing ACC by enabling 

the automation of complex regulatory checks, even in the face of inherent ambiguities in natural language and the 

complexity of design. However, integration of ML solutions with ACC presents several challenges. As shown in 

Table 3, most of the existing research efforts point to three main challenges which are scalability, lack of data sets 

for training, and lack of benchmarks for evaluation of the models. Surprisingly, the fact that ML models are not 

deterministic, and the implication of that on the ACC procedures, was rarely mentioned in the reviewed 

publications. This may indicate two things: either researchers strongly believe in the ability to achieve very 

accurate results using ML, or that the practical implementation and integration in the industry of the suggested 

developments has not been investigated yet. This leads to the last question posed in this work (RQ 3), which aims 

to identify the promising future research directions. From this study, several directions for further research are 

evident: 

1. Exploration and comprehensive evaluation of additional techniques: 

Several ML techniques have been explored for specific tasks of automated compliance checking (Table 2). 

However, some promising technologies such as GNNs, LLMs, transfer learning and ensemble models have not 

been sufficiently investigated in this context. To fully understand the capabilities of different approaches for ACC, 

it is essential to test these methods across various regulations and diverse design contexts. Further research is 

needed to consider and evaluate additional techniques and algorithms. A thorough evaluation and comparison 

between the performance of different methods for ACC will provide insights into the strengths and limitations of 

each approach, allowing more informed decisions about where and how each technique should be deployed. In 
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addition, further investigation into how to breakdown the regulatory documents into specific tasks and how to 

match each task with the most suitable approach for solution is needed as well. 

2. Testing across different scenarios: 

Further work is needed for enhancing the scalability of ML models within the ACC domain. This requires testing 

the performance of each investigated method in different scenarios (different regulations, different building types, 

different design complexity, etc.). Here, scarcity of labeled data sets, both containing design information and 

regulatory information, is a notable challenge. Further efforts for synthetic data generation may be beneficial for 

advancing ML-based ACC solutions. Another direction is collecting and managing data sets from the industry. By 

fostering a culture of open collaboration and data sharing among researchers, practitioners, regulatory bodies, and 

industry stakeholders, we can create a more robust foundation for ACC development. The underlying questions in 

this context are what kind of data is needed and how should it be labeled? How should the data be represented in 

terms of appropriate formats for ML applications?  

3. Developing standardized benchmarks: 

Currently, the lack of consistent benchmarks makes it challenging to objectively evaluate and compare different 

ACC approaches. This includes not only ML models, but also other methods that have been considered. Without 

standardized metrics and test cases, it is difficult to determine the relative effectiveness of various methods, 

particularly when applied to different regulatory contexts and design scenarios. Benchmarks could help bridge the 

gap between research and practice by ensuring that ACC solutions are rigorously tested and validated before 

deployment in real-world applications. In this domain, human experts have traditionally performed the design 

review tasks, while using their own knowledge, experience, and the ability to comprehend and interpret both 

regulations and the design. Currently there are no measures, or any studies to capture the rate of mistakes that these 

experts make, and therefore it is difficult to establish a baseline for assessing the performance of any automated 

tools.  

4. Integration of Hybrid Approaches: 

Each ACC approach has specific capabilities and inherent limitations. Therefore, integrating different techniques 

into a hybrid approach could potentially lead to a more automated and efficient ACC process. Such approaches 

can be designed to leverage the strengths and mitigate the limitations of each technique, aiming to provide more 

flexibility, reduce the manual effort required in the checking process and extend the scope of regulations that can 

be automatically checked. Integrating diverse methods into a unified framework holds the potential to significantly 

enhance the automation levels within the ACC process while maintaining satisfactory checking accuracy. 

To sum up, this paper presents a comprehensive literature review on the use of ML for ACC. Through this review 

we have explored the benefits and strength of various ML techniques utilized for ACC. Our analysis revealed the 

main limitations and persisting challenges in this domain and highlighted the existing knowledge gaps and 

directions for future research. 
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