
   

www.itcon.org - Journal of Information Technology in Construction - ISSN 1874-4753 

 

 ITcon Vol. 30 (2025), Afolabi et al., pg. 1 

PREDICTING MENTAL WORKLOAD OF USING EXOSKELETONS 
FOR CONSTRUCTION WORK: A DEEP LEARNING APPROACH  

SUBMITTED: May 2024 

REVISED: September 2024 

PUBLISHED: Januar 2025 

EDITOR: Žiga Turk 

DOI: 10.36680/j.itcon.2025.001 

Adedeji Afolabi, Research Associate 

Virginia Polytechnic Institute and State University, Virginia, United States 

adedeji@vt.edu 

Anthony Yusuf, Ph.D Student 

Virginia Polytechnic Institute and State University, Virginia, United States 

anthonyy@vt.edu 

Abiola Akanmu, Associate Professor 

Virginia Polytechnic Institute and State University, Virginia, United States 

abiola@vt.edu 

SUMMARY: Exoskeletons are gaining attention as a potential solution for addressing back injury in the 

construction industry. However, using active back-support exoskeletons in construction can trigger unintended 

consequences which could increase the mental workload of workers. Prolonged increase in mental workload could 

impact workers’ wellbeing and productivity. Predicting mental workload during exoskeleton use could inform 

strategies to mitigate the triggers. This study investigates two machine-learning frameworks for predicting mental 

workload using an active back-support exoskeleton for construction work. Laboratory experiments were 

conducted wherein electroencephalography (EEG) data was collected from participants wearing an active back-

support exoskeleton to perform flooring tasks. The EEG data underwent preprocessing, including band filtering, 

notch filtering, and independent component analysis, to remove artifacts and ensure data quality. A regression-

based Long Short-Term Memory (LSTM) network and a hybrid model of convolutional neural network and LSTM 

were trained to forecast future time steps of the processed EEG data. The performance of the networks was 

evaluated using root mean square error and r-squared. An average root mean square error of 0.162 and r-squared 

of 0.939 indicate that the LSTM network has a better predictive power across all the EEG channels. Results of the 

comparison between the actual and predicted mental workload also show that about 75% of the variance in the 

actual mental workload is captured in the predicted mental workload. This study enhances understanding of the 

unintended consequences of using exoskeletons in construction work. The results highlight the effectiveness of 

various convolutional neural network methods in identifying key EEG data features, offering guidance for 

algorithm selection in future applications. Additionally, the study identifies the most suitable brain channels for 

assessing mental workload during exoskeleton use, aiding the development of EEG devices that optimize cost-

effectiveness, explanatory power, and minimal channels. This study provides valuable insights for stakeholders to 

understand the impact of mental workload while using exoskeletons and discovering opportunities for mitigation. 
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1. INTRODUCTION 

The prevalence of work-related musculoskeletal disorders (WMSDs) among construction workers is a growing 

concern. The United States Bureau of Labor Statistics (BLS) reported that workers in the construction industry are 

1.23 times more likely to sustain WMSDs compared with workers in other industries (BLS, 2020), with the back 

being the most commonly affected body part. For example, floor layers experience back injuries at a rate 1.7 times 

higher than workers in other industry sectors resulting in an average of 26 days away from work. This leads to 

significant financial loss for construction firms due to workers’ compensation costs. In the United States, 

Bhattacharya (2014) reported that more than US$400 million is expended annually on construction workers' 

compensation due to WMSDs. In severe situations, back injuries could result in permanent disability and premature 

exit from the workforce (Nihar Gonsalves et al., 2023). 

Exoskeletons are emerging as a potential solution to WMSDs, particularly back-support exoskeletons, which are 

wearable devices designed to support the back during work (N. Gonsalves et al., 2023; Ogunseiju et al., 2022). 

These devices could be broadly classified as passive or active depending on their method of augmentation. Passive 

back-support exoskeletons use dampers and springs to provide support to the back, while active back-support 

exoskeletons rely on electrical motors to provide greater support to the back (Okunola et al., 2023). These devices 

have been shown to reduce the risk of back injuries by decreasing muscle activity (Bosch et al., 2016), range of 

motion (Okunola et al., 2023), body discomfort (Gonsalves et al., 2021; Kim et al., 2019), and rate of exertion 

(Alemi et al., 2020; Baltrusch et al., 2021). For instance, Bosch et al. (2016) found that exoskeletons reduced back 

muscle activity by 35-38% during assembly work. Koopman et al. (2020) reported a 13-21% reduction in the range 

of motion of the back during static bending and an average of 14% during lifting tasks. Gonsalves et al. (2021) 

observed a 100% reduction in perceived discomfort at the back among exoskeleton users.  

Despite these benefits, there are potential drawbacks to using exoskeletons in construction, such as difficulty 

working in confined spaces (Nussbaum et al., 2019), increased fall risks due to the weight of the device 

(Alabdulkarim et al., 2019; Kim et al., 2019; Massardi et al., 2023), discomfort in other body parts (N. Gonsalves 

et al., 2023; Gonsalves et al., 2021), restrictions in movement (Fox et al., 2019), catch and snag risks (de Looze et 

al., 2016; Kim et al., 2019), and thermal discomfort (Liu et al., 2021). Gonsalves et al. (2021) found that 

exoskeletons may cause discomfort in other parts of the body, such as the chest and thigh regions. This is because 

exoskeletons could redirect loading from one part of the body to another (Picchiotti et al., 2019). The devices could 

also be challenging to adjust to fit (N. Gonsalves et al., 2023; Gorgey, 2018), and improper adjustment can lead to 

uneven loading and balancing, increasing user awareness of the device and distracting from tasks and surroundings 

(Bequette et al., 2020; Marchand et al., 2021). These unintended consequences could increase workers’ mental 

workload (Bequette et al., 2020).  

Mental workload refers to the cognitive resources needed to perform tasks (J. Y. Chen et al., 2017). A prolonged 

increase in mental workload can result in distraction, emotional distress, anxiety, and stress, which can negatively 

affect workers’ overall well-being and performance. High mental workload has been linked to performance issues 

that can increase the risk of accidents (Hopstaken et al., 2015; Lee et al., 2012) due to reduced ability to identify 

and evaluate hazards under new and varying work conditions (Alotaibi & Gambatese, 2024). To address these 

concerns, site managers often employ observation strategies to monitor and report the mental state of their workers 

while using exoskeletons (Pourmazaherian et al., 2021). However, these strategies could be subjective and time-

consuming, limiting the feedback from workers (Alotaibi & Gambatese, 2024). Real-time monitoring of workers’ 

mental workload during exoskeleton use could inform strategies to reduce the triggers, but there has been limited 

research on models for predicting mental workload during exoskeleton use.  

Electroencephalogram is an objective method of measuring brain activity. Signals from this method are often used 

to infer mental workload, due to the high temporal resolution, convenience, and cost-effectiveness of the device 

(Cheng et al., 2022). Machine learning techniques, particularly deep learning, provide opportunities for extracting 

insightful features from EEG data that could be used to predict mental workload (Qin & Bulbul, 2023b). Long 

Short-Term Memory (LSTM) network, a type of recurrent neural network, can learn long-term dependencies 

between time steps of data and predict future sequences (Wang et al., 2018). LSTM network has been applied to 

sequential learning tasks like construction equipment activity analysis (Hernandez et al., 2019), construction 

workers’ safety harness usage (Guo et al., 2023), mixed reality learning environments (Ogunseiju et al., 2023) and 

fatigue detection and early warning systems (Liu et al., 2020) that need historical time-series data for decision-

making. Furthermore, combining convolutional neural networks (CNN) and LSTM could lead to better results 
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(Huang et al., 2022; Longo, 2022). This is because CNNs perform well at capturing spatial relationships, while 

LSTMs are effective at modeling temporal dependencies within individual and multiple EEG recordings (Wang et 

al., 2018; Zhang et al., 2021). Therefore, this study investigates the extent to which workers’ mental workload due 

to exoskeleton use can be predicted from EEG data using the LSTM and the combination of CNN and LSTM. 

Using flooring tasks as a case study, this paper compares actual and predicted mental workload during work with 

an active back-support exoskeleton. This paper comprises six sections. After the introduction in “Section 1”, 

“Section 2” describes the background by highlighting the evaluation of mental workload and machine learning for 

mental workload prediction. This is followed by Sections 3 – 6, which represent the methodology, results, 

discussion, and conclusion and limitation sections, respectively. The study contributes to the limited knowledge of 

the unintended consequences of using wearable devices like exoskeletons in construction work. The findings 

inform the effectiveness of different convolutional neural network variations in detecting significant features of 

EEG data, guiding algorithm choices for future applications. Additionally, the results shed light on the most 

appropriate brain channels for assessing mental workload during exoskeleton use, which can aid in the design of 

EEG devices that offer optimal cost-effectiveness and minimal channels while providing better explanatory power. 

2. BACKGROUND 

2.1 Evaluation of Mental Workload 

Research indicates a relationship between mental workload, and task demand and performance (Fan & Smith, 

2017). Low or high levels of mental workload can negatively impact task execution and increase error rates 

(Mastropietro et al., 2023). Over-concentration on a task can limit attention to other stimuli, leading to reduced 

vigilance and situational awareness that may expose construction workers to hazards (Chen et al., 2016). In this 

study, exoskeleton use may demand attention, potentially diverting mental resources needed to avoid risks such as 

falls and catch and snags (N. Gonsalves et al., 2023; Zhu et al., 2021). This increased mental workload can cause 

stress or distraction, hindering productivity and safety, making mental workload prediction a key area of interest 

in ergonomics (Young et al., 2015). 

To assess mental workload, both subjective and objective measures have been employed. Subjective methods 

involve questionnaires such as the NASA Task Load Index, work profiles, and the Subjective Workload 

Assessment Technique (Mitropoulos & Memarian, 2013). However, these methods could be prone to errors and 

bias and may disrupt workers’ tasks due to the time and effort required to complete them  (Hwang et al., 2018). 

Moreover, subjective measures do not facilitate real-time data collection for mental workload prediction (Hwang 

et al., 2018). On the other hand, objective measures capture physiological metrics such as heart rate, pupillometry, 

electrodermal activity, functional magnetic resonance imaging (fMRI), functional near-infrared spectroscopy 

(fNIRS), and electroencephalography (EEG), providing access to real-time data (Cheng et al., 2022; Ryu & 

Myung, 2005). Among these, EEG is preferred for its direct measurement of brain activity from the central nervous 

system, unlike other metrics such as heart rate and electrodermal activity that are connected to the peripheral 

nervous system (Hwang et al., 2018). Also, EEG devices are portable, and suitable for mental workload assessment 

during construction activities (Cheng et al., 2022). Brain activity obtained from EEG is a suitable indicator of 

mental workload, particularly during physically demanding tasks such as construction work (Chen et al., 2016; 

Qin & Bulbul, 2023b).  

EEG data comprises time-stamped cognitive patterns based on frequency oscillations, categorized into delta (1–4 

Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (13–25 Hz), and gamma (≥ 25 Hz) bands (Ke et al., 2021). These 

frequencies correspond to different brain states across different brain regions. For instance, the delta band is 

associated with deep sleep, theta with powered thinking, alpha with alertness and concentration, beta with 

attentional processing, and gamma with high mental activity and information processing (Ke et al., 2021). The 

alpha and theta frequency bands in specific brain regions are correlated with cognitive processes (Kumar & Kumar, 

2016). The parietal and occipital regions of the brain play crucial roles in processing visual information (Teng & 

Postle, 2021). The parietal region is involved in interpreting and making sense of sensory data, including visual 

information (Abdurashidova et al., 2024). Meanwhile, the occipital region is key for encoding and decoding visual 

data (Xi et al., 2024). Also, the frontal region of the brain is essential for higher cognitive functions such as 

decision-making, problem-solving, planning, and emotional processing (Vaidya & Fellows, 2017; Xi et al., 2024). 
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Spüler et al. (2016) showed that alpha and theta activities in the parieto-occipital region are strong indicators of 

mental workload. Increases in mental workload correlate with increases in the frontal theta and decreases in parietal 

alpha activity (Käthner et al., 2014; Raufi & Longo, 2022). Changes in alpha band power in the parietal and 

occipital regions, and theta band power in the frontal midline, are also associated with mental workload (Sauseng 

et al., 2010; Spüler et al., 2016). Increased theta band power in the frontal regions of the brain has been shown to 

increase with the high mental workload during arithmetic operations, finger tapping, mental rotation, and lexical 

decision task (So et al., 2017), letter manipulation task (Itthipuripat et al., 2013) and simulated flight task (Hamann 

& Carstengerdes, 2022). Alpha band power in the parietal and occipital regions decreased with the increased 

mental workload during arithmetic problem-solving with increasing levels of difficulty (Spüler et al., 2016), text 

reading, and hyperlink selection (Scharinger, Kammerer, et al., 2015) and n-back task (Scharinger, Soutschek, et 

al., 2015). A combination of alpha and theta band power has been identified as a potential indicator of mental 

workload (Spüler et al., 2016). Specifically, the ratio of frontal theta to parietal and occipital alpha has been proven 

to be an essential physiological indicator of mental workload (Qin & Bulbul, 2023a). In other words, an increase 

in mental workload has been linked to an increase in frontal theta power and a reduction in parietal alpha power 

(Käthner et al., 2014; Raufi & Longo, 2022).  

In assessing the cognitive statuses of construction workers with EEG, prior studies (Cheng et al., 2022; Ke et al., 

2021; Qin & Bulbul, 2023a) have shown that EEG channels covering the frontal, temporal, parietal, and occipital 

regions of the brain are adequate. For instance, Qin and Bulbul (2023a) employed a 14-channel EEG device 

covering these four brain regions for mental workload evaluation in a construction assembly task with an 

augmented reality head-mounted display. Similarly, Ke et al. (2021) considered these four brain regions to measure 

the cognitive performance of construction workers. The ability to measure mental workload with EEG motivates 

the exploration of techniques for real-time prediction of mental workload. This, in turn, could open opportunities 

for exploring strategies for reducing mental workload due to exoskeleton use on construction sites. Machine 

learning has transformed the field of cognitive assessment by enabling the development of predictive models that 

can analyze complex and high-dimensional data. 

2.2 Machine Learning for Mental Workload Prediction  

Researchers have employed machine learning algorithms, including supervised and deep learning classifiers, to 

predict brain activity for a range of purposes such as learning and monitoring workforce health. For example, 

Dimitrakopoulos et al. (2017) used support vector machines to assess performance levels during arithmetic tasks 

using EEG data, while Zarjam et al. (2015) employed an artificial neural network to forecast workload levels 

during a mental arithmetic addition task based on EEG data. In construction, Jebelli et al. (2018a) similarly used 

a support vector machine to categorize stress levels in construction workers using EEG data. Despite the high 

performance of the resulting models, supervised learning techniques often involve manual feature extraction, 

which can be time-consuming and less suitable for real-time data analysis when assessing mental workload (Liu 

et al., 2019; Wang et al., 2023). In addition, EEG data can present challenges due to their low signal-to-noise ratio, 

making effective feature extraction difficult (Iftikhar et al., 2018).  

Deep learning algorithms, in contrast, automatically learn features from data, removing the need for manual 

processing. Unlike traditional machine learning, deep learning employs multi-layer models, allowing for a more 

advanced representation of the dataset (Wang et al., 2018). While deep learning models may require longer training 

times, they typically outperform simpler artificial neural networks (ANNs). Deep learning architectures include 

convolutional neural networks (CNNs) and recurrent neural networks (RNNs) (Mathew et al., 2021). CNNs are 

multi-layer feedforward artificial neural networks that process data to capture spatial and temporal dependencies 

(Wang et al., 2018; Zhang et al., 2021). They achieve this by stacking convolutional and pooling layers to learn 

features. In contrast, RNNs are deep learning models often employed for predicting sequential data (Staudemeyer 

& Morris, 2019; Wang et al., 2018). Each RNN unit features recurrent connections that enable the network to retain 

information over extended periods, allowing for the detection of patterns in sequential data (Wang et al., 2018). 

However, traditional RNNs like the Elman Network can be time-consuming to train and challenging due to the 

vanishing and exploding gradient problems (Van Houdt et al., 2020). Advanced architectures such as long short-

term memory (LSTM) networks have been developed to address these challenges. LSTM uses a memory block 

consisting of input, output, and forget gates (Yusuf et al., 2023). This structure enables each recurrent unit to 

capture long-term relationships across different time scales, making LSTM effective for predicting complex time 

sequence data, such as EEG data. As a result, LSTM has been used in various contexts for predicting mental 
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workload. For example, Yoo et al. (2023) and Yusuf et al. (2023) leveraged LSTM to develop a model for predicting 

cognitive load from EEG data. Zhang (2022) used LSTM to evaluate mental workload evaluation during an 

envisioning task. In construction, Qin and Bulbul (2023b) used LSTM on EEG data captured during a framing 

task to predict mental workload.  

EEG signals contain intricate spatial and temporal patterns that are challenging to capture using manually 

engineered features and conventional machine learning algorithms (Jenke et al., 2014). Therefore, mental workload 

prediction often requires considering both spatial and temporal dependencies in EEG data (Cebecí et al., 2020; 

Varatharajah et al., 2017). CNNs are effective at capturing spatial relationships within individual EEG recordings, 

while LSTMs excel at capturing temporal dependencies across multiple EEG recordings (Wang et al., 2018; Zhang 

et al., 2021). In CNN-LSTM, by combining both CNN and LSTM, the model can leverage the complementary 

strengths of each component where CNN can be used for local features extractions from sequential data while 

LSTM can be employed to handle sequence and long-term temporal dependencies, enhancing prediction accuracy 

(Zhang et al., 2021; Zhao et al., 2017). Huang et al. (2022) compared XGBoost, CNN, LSTM, and CNN-LSTM 

in assessing mental workload among drivers. The study reported better performance with CNN-LSTM. Longo 

(2022) used CNN-LSTM in modeling mental workload and predicting brain rate from EEG data. The study 

reported that predictions by CNN-LSTM are better than those by CNN. Despite the potential of LSTM and CNN-

LSTM for forecasting EEG data, limited studies have investigated their use in predicting mental workload during 

exoskeleton use in construction. Furthermore, there is limited understanding of how effective these classifiers are 

in forecasting mental workload during exoskeleton use. Therefore, this study explores the prediction of the mental 

workload of construction workers from EEG data using the LSTM and the combination of CNN and LSTM during 

exoskeleton use. 

3. METHODOLOGY 

This section describes the procedure employed to achieve the objective of the study including the experimental 

design to collect brain activity of participants performing flooring tasks with an exoskeleton, preprocessing of the 

brain activity data, and prediction of mental workload using the data (Figure 1).  

 

Figure 1: Overview of the research methodology. 

3.1 Experimental Design and Data Collection 

3.1.1 Participants 

Eight male graduate students (N = 8) were recruited to perform a simulated flooring task with an active back-

support exoskeleton. Similar sample sizes have been used in previous studies (Poliero et al., 2020; Wei et al., 

2020). The average age, weight, and height of participants is 30 years, 79.8 kg, and 1.84 m respectively. None of 

the participants reported any prior musculoskeletal injury that could impact their participation in the study.  
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3.1.2 Exoskeleton 

The active exoskeleton used for the study is Cray X shown in Figure 2. The Cray X, from German Bionic, weighs 

7kg and can provide a lifting support of about 30kg. Cray X consists of a frame and strap pads of different sizes 

for the legs, chest, shoulders, and waist. The frame includes a 40V battery and motor. The exoskeleton provides 

different levels of support for bending, lifting, placing, and walking.  

 
Figure 2: Active (CrayX) back-support exoskeleton. 

3.1.3 Task 

The flooring task involved lifting, placing, and installing 20-floor tiles in each bay of a wooden frame comprising 

six bays. Each bay can fit 20 floor tiles (Figure 3). The participants were asked to lift and place 20 timber tiles 

(10kg) beside each bay, and subsequently install the stacked tiles in each bay. Each tile weighs 0.5kg. A cycle of 

the flooring task includes lifting, placing, and installation of the timber floor tiles (20) in each bay. The task 

comprises six cycles given that the participants installed the tiles in six bays. Before commencing the tasks, the 

participants received instructions on how to perform the task. The participants performed the flooring task with an 

active back-support exoskeleton while wearing an EEG headset (see Section 3.1.4).  

 

Figure 3: Experimental layout of the simulated flooring task. 

3.1.4 EEG Device 

Emotiv EPOC+, a wireless EEG headset, was used in this study to collect brain activity (see Table 1) while 

performing the flooring task described in Section 3.1.3. The EEG device records the electrical activity of the brain 

through contact between electrodes embedded in various portions of the headset and the scalp. The electrodes 

capture activations in channels located in four regions of the brain such as the frontal, temporal, parietal, and 

occipital regions (Figure 4). The channels in these regions are shown in Table 1. The headset also has 2 reference 

electrodes (DMS and DRL) located on the P3 and P4 channels following the 10-20 international EEG system. 

Data from these channels were captured at a frequency of 128 Hz. Researchers have used wireless headsets for 

similar studies due to their lightweight design and affordability (Cheng et al., 2022).  
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Table 1: Emotiv EPOC-Plus, Brain regions, and channels. 

Emotiv EPOC-Plus Brain Regions Channels 

 

 

Frontal lobe AF3, AF4, F3, F4, FC5, FC6, F7, and F8 

Temporal lobe T7 and T8 

Parietal lobe P7 and P8 

Occipital lobe O1 and O2 

 

Figure 4: Electrode Location on Scalp (Ke et al., 2021). 

 

3.2 Data Preprocessing 

EEG data are susceptible to contamination from intrinsic and extrinsic artifacts, particularly when subjects are 

engaged in physical activities like construction work (Jebelli et al., 2018b). These artifacts impact the quality of 

the signals. Intrinsic artifacts are triggered by movements such as eye blinking and muscle movement, while 

extrinsic artifacts are caused by external influences such as noise from wires and electrode popping. This study 

used the framework proposed by Jebelli et al. (2018b) to reduce the artifacts in the EEG data obtained from the 

simulated task. The EEG data were fed into EEGLAB, a MATLAB toolbox for processing physiological data 

(Delorme & Makeig, 2004). The extrinsic artifacts were removed using a Bandpass filter with cut-off frequencies 

of 0.5 and 65 Hz (Jebelli et al., 2018b). Another extrinsic artifact due to noise from wires was removed using a 

notch filter applied at a frequency of 60Hz. The intrinsic artifacts were removed using independent component 

analysis (ICA) (Mantini et al., 2008). The EEG data was decomposed using the Extended Infomax method into 14 

components, representing the 14 channels of the EEG device, and displayed using a scalp heatmap to reject the 

intrinsic artifacts (Frølich & Dowding, 2018). Preprocessed data from eight (8) channels were utilized for this 

study. This includes channels AF3, AF4, F3, and F4 positioned in the frontal-mid region, channels O1 and O2 

located in the occipital region, and channels P7 and P8 located in the parietal region of the scalp. As explained in 

Zection 2.1, studies have shown that these brain regions have strong correction with mental workload (Hamann & 

Carstengerdes, 2022; So et al., 2017; Spüler et al., 2016). 
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3.3 Prediction of EEG Data 

3.3.1 Long short-term memory network 

LSTM network was used in this study to forecast subsequent values of EEG data based on the preprocessed data 

obtained from Section 3.2. LSTM neural network processes data by iterating over current time steps and retaining 

useful information to help with the processing of new data points. The regression LSTM neural network consists 

of four layers: an input layer, the LSTM layer, the fully connected layer, and a regression layer (Yusuf et al., 2023). 

The input layer accepts the input time-series data and transfers this to the LSTM layer. The LSTM layer comprises 

a cell, an input gate, an output gate, and a forget gate. The LSTM layer comprises a cell, an input gate, an output 

gate, and a forget gate (Staudemeyer & Morris, 2019). The cell stores long-term time-series data and uses the gates 

to control the flow of the data within and out of the cell. The forget gate decides which information should be 

ignored in the cell (Van Houdt et al., 2020). The LSTM layer comprises 128 hidden units. The number of hidden 

units determines how much information or data is learned by the layer. More hidden units could result in better 

results but are more likely to result in overfitting of the training data. This is addressed through regularization (e.g., 

dropout) and early stopping during training (Moon et al., 2015; Wu et al., 2021). The fully connected layer does 

the discriminative learning in the LSTM network. It learns weights that can identify features in the training data. 

The regression layer determines the performance metrics needed for the prediction task. The process involved in 

the LSTM operation is illustrated in Equations (1) to (5), where 𝑏 and 𝑊 are bias vectors and weight matrices, 

respectively. The function σ refers to the sigmoid function. The forget gate layer, denoted as 𝑓𝑡, controls how much 

prior information from ℎ𝑡−1 is combined with 𝑝𝑡. When 𝑓𝑡 is equal to 1, the model retains the previous information, 

while a value of 0 means that the model discards it entirely. The input gate layer, 𝑖𝑡, selects which data to preserve 

in the cell state 𝑐𝑡, working in conjunction with 𝑝𝑡. The output layer determines the information to be released and 

processed, involving the cell state 𝑐𝑡 and filtered input 𝑂𝑡. The LSTM hidden state ℎ𝑡 is updated at every time step 

t. The variable 𝑝𝑡 encompasses key aspects of power production predictions, such as the output of the pooling 

layer at time t and serves as an input to the LSTM memory cell. Figure 5 depicts the LSTM architecture. 

𝑖𝑡 = 𝜎(𝑊𝑝𝑖𝑝𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑊ℎ𝑖𝑐𝑡−1 + 𝑏𝑖)             Equation (1) 

𝑓𝑡 = 𝜎(𝑊𝑝𝑓𝑝𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑊𝑐𝑓 𝑐𝑡−1 + 𝑏𝑓)     Equation (2) 

𝑂𝑡 = 𝜎(𝑊𝑝𝑜𝑝𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑊𝑐𝑜𝑐𝑡 + 𝑏𝑜)         Equation (3) 

                 𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝜎(𝑊𝑝𝑐𝑝𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐)         Equation (4) 

                        ℎ𝑡 = 𝑂𝑡 ∗ 𝜎(𝐶𝑡)                 Equation (5) 

 

Figure 5: LSTM architecture. 

3.3.2 CNN-LSTM 

In addition to the LSTM network described in Section 3.3.1, the performance of the CNN-LSTM was evaluated. 

The CNN-LSTM (Figure 6) combines CNN layers with LSTM layers. This combined architecture aims to leverage 

the strengths of both models to improve the prediction performance for EEG data. The architecture consists of an 

input layer, two 1D convolutional layers with a kernel size of 5 and 32 filters, two Batch Normalization (BN), and 

rectified linear unit (ReLU) activations layers. The input layer serves as the entry point for the input data. The 

Batch Normalization layer normalizes the input data, improving training stability and performance. The ReLU 
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activation layer introduces non-linearity and helps the network learn complex relationships in the data. The learned 

relationships are accepted by the LSTM layer (similar to that described in Section 3.3.1) which captures temporal 

dependencies in the data. The LSTM layer is followed by a fully connected layer and regression layer. The fully 

connected layer maps the output of the LSTM layer to the desired output size, which is equal to the number of 

channels in the input data. The regression layer serves as the output layer for the predicted EEG data.  

Figure 6: CNN-LSTM architecture (Adapted from Qin et al. (2024)). 

3.3.3 Training LSTM and CNN-LSTM 

The LSTM and CNN-LSTM networks were trained with the preprocessed time-series EEG data from the channels 

mentioned in Section 3.2 to output future time steps of EEG values. The training was conducted using MATLAB 

R2023a, installed on a machine with NVIDIA GeForce RTX 3080 GPU and 32GB memory. The EEG data from 

these channels were initially split into training, validation, and testing, accounting for 70%, 10%, and 20% of the 

data respectively. To address concerns such as overfitting and training divergence, both the predictors and targets 

were normalized to zero mean and unit variance (Srivastava et al., 2014). The choice of hyperparameters plays a 

crucial role in determining the performance of models (Arnold et al., 2024). Consequently, in this study, the Adam 

optimizer, an extension of stochastic gradient descent, with a batch size of 128 using a mean-squared loss function 

was used for the training (Kingma & Ba, 2014). This ensures that the learning steps during training are scale-

invariant to parameter gradients. Additionally, employing the same padding helped retain the features of the EEG 

signals during the convolution process, preventing the loss of valuable information. Additionally, 200 epochs were 

employed, along with a learning rate of 0.001. These hyperparameters were selected to optimize the training 

process and enhance the performance of the LSTM and CNN-LSTM networks. 

 

3.3.4 Performance evaluation 

The performance of the LSTM and CNN-LSTM models was evaluated using the Root Mean Square Error (RMSE) 

and R-squared. RMSE is a standard statistical metric for computing accuracy. RMSE is generally used to evaluate 

the difference between the actual and predicted values from the model. RMSE is sensitive to large and substantial 

errors compared to other metrics like mean absolute error because the squared term in the formula (Equation 6) 

emphasizes greater errors exponentially than smaller ones (Persson & Ståhl, 2020). RMSE can be determined with 

Equation (6), where Ai and Pi are the actual and predicted EEG datasets respectively, and n is the number of EEG 

datasets. The lower the RMSE, the better a model would fit a dataset. However, given that RMSE could be 

misleading if some features are not normally distributed or if there is uncertainty in data (Hodson, 2022), R-squared 

was also determined (See Equation 7). The R-squared (R2), coefficient of determination, which indicates the 

goodness-of-fit and describes the variance in the response of a regression model, was computed following Renaud 

and Victoria-Feser (2010). The R2 value ranges from 0 to 1. The higher the R2 value, the better a model fits a 

dataset.  
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𝑅𝑀𝑆𝐸 = √∑(𝑃𝑖−𝐴𝑖)2 𝑛⁄    Equation (6) 

𝑅2 = 1 −  
∑(𝑝𝑖−𝑎𝑖)2

∑(𝑝𝑖−𝑎𝑖)2           Equation (7) 

3.4 Mental workload  

After predicting the EEG data, the mental workload of the actual (preprocessed) EEG data (from Section 3.2) and 

the predicted EEG data from Section 3.3.1 were determined. First, this was achieved by computing the dataset’s 

power spectral density using the Welch Method (J. Chen et al., 2017). Power spectral density (PSD) represents the 

power of the EEG signal at different frequency bands and is useful for assessing different states of cognitive 

functions (Kumar & Kumar, 2016). The Welch method involves dividing EEG signals of length L into M 

overlapping segments. The modified periodogram for each segment was then calculated using a Hamming 

window. Subsequently, the periodograms were averaged to alleviate the variance of the resulting PSD estimates. 

The expression for the Welch method in computing PSD for each N-point time series in the mth segment (out of 

M segments) is represented by Chiu et al. (2023) as follows: 

𝑃𝑥𝑚,𝑀(𝑓) =
1

𝑁
|∑ 𝑥𝑚(𝑛)𝑒𝑁−1

𝑛=0
−

𝑗2𝜋𝑛𝑘
𝑁 |

2

  Equation (8) 

The PSD for the entire series, 𝑃𝑤, can be expressed as:  

𝑃𝑤(𝑓) =
1

𝑀
∑ 𝑃𝑥𝑚,𝑀(𝑓)𝑀−1

𝑚=0                                     Equation (9) 

Where Px is the Power spectral density; M is the Number of segments; m is the Segment index; N is the length of 

each segment; n is the Sample index; k is the Normalizing constant; and f is the Frequency variable. 

Secondly, the relative band power of the windowed or segmented data in theta and alpha frequency bands was 

determined from the PSD values. Researchers have identified theta and/or alpha power as suitable indicators of 

mental workload (Scharinger, Soutschek, et al., 2015; Spüler et al., 2016). Lastly, the mental workload of each 

segment was determined by dividing the mean power in the theta band of the frontal channels (AF3, AF4, F3, and 

F4) with the mean power in the alpha band of the occipital (O1 and O2), and parietal alpha channels (P7 and P8) 

using Equation 10. The approximate spectral limits of the theta and alpha frequency bands are 4–8 Hz and 8–14 

Hz respectively (Simon et al., 2011). 

MW(t) =
𝜃𝑓 (t)

𝛼𝑝(t) 
                                                         Equation (10) 

Where, MW(t) denotes the mental workload at time t, and θf(t) and αp(t) are the mean spectral power of frontal 

theta and occipitoparietal alpha rhythms at time t respectively.  

4. RESULTS  

This section presents the performance of the LSTM and the CNN-LSTM models represented by the RMSE and 

R2 scores, and the mental workload. The mental workload shows the comparison between the predicted and actual 

PSD values, the average power, and the comparison between the predicted and actual mental workload. 

4.1 Performance of the LSTM and CNN-LSTM Models 

Figures 7 and 8 illustrate the RMSE and R2 values, respectively, for the EEG channels of the test data in the LSTM 

and CNN-LSTM models. It can be observed that the LSTM model outperformed the CNN-LSTM model across 

all the channels. Channels P7 and AF3 have the lowest RMSE of 0.1147 and 0.1267 respectively.  A previous study 

has indicated that a RMSE value closer to zero gives a better predictive power (Miyamoto et al., 2022). In the 

LSTM model, the lowest RMSE values in the frontal, parietal, and occipital lobes were recorded in channels AF3 

(0.127), P7 (0.115), and O1 (0.130), respectively. For the CNN-LSTM model, the lowest RMSE values in the 

frontal, parietal, and occipital lobes can be observed in channels AF3 (0.418), P8 (1.069), and O1 (1.013), 

respectively. Overall, the RMSE values were higher across all channels in the CNN-LSTM model compared to the 

LSTM model, a trend also observed when considering the overall brain regions. 
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Figure 7: RMSE for LSTM and CNN-LSTM models. 

As shown in Figure 8, the LSTM model consistently achieved R2 values of more than 0.8 across all channels. The 

highest R2 values in the LSTM model were in channels AF4 (0.963) in the frontal lobe, P7 (0.992) in the parietal 

lobe, and O2 (0.992) in the occipital lobe. In contrast, the CNN-LSTM model’s highest R2 values were found in 

channels AF4 (0.447) in the frontal lobe, P8 (0.726) in the parietal lobe, and O2 (0.218) in the occipital lobe, 

respectively. The R2 values of the overall brain regions for the LSTM model were higher than the R2 values of the 

CNN-LSTM model. 

 

Figure 8: R2 for LSTM and CNN-LSTM models. 

4.2 Mental workload 

4.2.1 Comparison between predicted and actual PSD  

Figures 9a-e show the predicted (i.e., using the LSTM model) and actual power spectral density of the AF3, AF4, 

O1, O2, and P7 EEG channels for the data of the test participants. These five EEG channels have the lowest RMSE 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

AF3 AF4 F3 F4 P7 P8 O1 O2

Frontal lobe Parietal lobe Occipital lobe Overall

regions

R
M

S
E

LSTM CNN-LSTM

0

0.2

0.4

0.6

0.8

1

AF3 AF4 F3 F4 P7 P8 O1 O2

Frontal lobe Parietal lobe Occipital lobe Overall

regions

R
2
 

LSTM CNN-LSTM



 

 

 ITcon Vol. 30 (2025), Afolabi et al., pg. 12 

and the highest R2 values with the LSTM model. The predicted and actual data are represented with the red and 

blue lines, respectively. Figure 9a-e indicates that at less than 20Hz the EEG channels (i.e., AF3, AF4, O1, O2, 

and P7) show some consistency between the predicted and actual PSD values for the theta (4 - 8 Hz), and alpha (8 

- 12 Hz) frequency bands.  

 

 

 

Figure 9: Predicted and actual power spectral density of the (a) AF3, (b) AF4 (c) O1 (d) O2, and (e) P7 channels. 

4.2.2 Average power 

The actual and predicted average spectral power for the eight (8) EEG channels are shown in Figure 10. The 

predicted and actual average spectral power for the eight (8) EEG channels is presented based on the theta (4 - 8 

Hz), and alpha (8 - 12 Hz) frequency bands. Figure 10 indicates that in the theta frequency band, there were major 
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differences in the actual and predicted average spectral power in the F4 (17.6%), P8 (40.4%), and O1 (65.1%) 

channels. Similarly, in the alpha frequency band, the major differences in the actual and predicted average spectral 

power were noticed in the AF4 (50.8%), F3 (31.6%), P8 (56.7%), and O1 (86%) channels. 

 

Figure 10: Predicted and actual spectral power. 

4.2.3 Comparison between predicted and actual mental workload 

The extent to which mental workload due to exoskeleton-use can be predicted is illustrated in the scatter diagram 

in Figure 11. The plot has an R2 score of 0.7485 indicating a strong correlation between the predicted and the 

actual mental workload.  

 

Figure 11: Comparison of predicted and actual values of the mental workload. 

5. DISCUSSION 

This section discusses the insights obtained from the results and the implications of the findings. The study 

discusses the performance of the LSTM and CNN-LSTM models and the prediction of the mental workload of 

exoskeleton users.  
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5.1 Performance of the LSTM and CNN-LSTM Models 

The comparison between the LSTM and CNN-LSTM models demonstrates that the LSTM model outperforms the 

CNN-LSTM model across all EEG channels in terms of both RMSE and R² values. The LSTM model achieved 

an average RMSE of 0.16 and an average R² of 0.94, while the CNN-LSTM model attained an average RMSE of 

0.94 and an average R² of 0.26 across all channels. Since RMSE measures the difference between actual and 

predicted EEG signals, the lower RMSE in the LSTM model indicates minimal discrepancies between the actual 

and predicted EEG values (Chicco et al., 2021). The higher R² values of the LSTM model further reveal its ability 

to explain a greater proportion of variance in the actual EEG data compared to the CNN-LSTM model. In contrast, 

the higher RMSE values observed in the CNN-LSTM model suggest that this hybrid approach may not be as 

effective in capturing the complexities of EEG data for mental workload prediction. The additional complexity 

introduced by combining two models may not have been necessary or beneficial in this context, as shown by its 

suboptimal performance compared to the LSTM model alone. This study also identified the EEG channels whose 

activity can be predicted with reduced errors. Channels in the frontal (AF3 and AF4), occipital (O1 and O2), and 

parietal (P7) lobes had the lowest RMSE and the highest R2 values with the LSTM model. These channels have 

been shown in previous studies (So et al., 2017; Spüler et al., 2016) to have strong correlations with mental 

workload. These findings have practical applications in construction as accurate prediction of brain activity is 

essential for optimizing the use of exoskeletons and identifying potential safety risks (Chen et al., 2016; Qin & 

Bulbul, 2023b). By proactively managing mental workload, construction firms can enhance worker safety and 

productivity. The study highlights the potential of LSTM for monitoring and predicting mental workload in 

construction settings, providing a reliable tool for improving the safety and well-being of workers relying on 

exoskeletons.  

5.2 Mental Workload 

The study identified the best-performing EEG channels in predicting mental workload. Specifically, the frontal 

(AF3 and AF4), occipital (O1 and O2), and parietal (P7) lobes were found to be effective in the mental workload 

predictive model. These channels align with previous studies indicating strong correlations between these brain 

regions and mental workload (Alpizar et al., 2020). The identified channels in this study could help in designing 

EEG devices that provide optimal cost-effectiveness with better explanatory power and minimum channels (Wang 

et al., 2017). The overlap observed between the predicted and actual power spectral density (PSD) in the theta and 

alpha frequency bands for each examined EEG channel (AF3, AF4, O1, O2, and P7) confirms the effectiveness of 

the LSTM model in capturing patterns related to mental workload (Spüler et al., 2016). These bands are known 

for indicating mental workload and cognitive states such as alertness and relaxation (Kumar & Kumar, 2016; 

Sauseng et al., 2010; Spüler et al., 2016). However, discrepancies between predicted and actual PSD begin to 

emerge in the beta and gamma band regions at frequencies over 20 Hz in most of the channels. This suggests that 

higher frequency bands may present challenges in prediction and warrant further investigation in future research. 

Furthermore, the strong correlation (R² = 0.7485) between predicted and actual mental workload highlights the 

LSTM model's reliability in forecasting cognitive load during exoskeleton use. This finding supports previous 

studies asserting the feasibility of predicting mental workload (Borghini et al., 2014; Missonnier et al., 2006; Qin 

& Bulbul, 2023b). 

These results have practical applications for the construction industry. Accurate prediction of mental workload can 

inform decisions on task assignments, work schedules, and breaks, optimizing worker performance and 

minimizing safety risks (Chen et al., 2016; Cheng et al., 2022; Qin & Bulbul, 2023b).  Proactive management of 

mental workload can enhance worker safety and productivity (Chen et al., 2016; J. Y. Chen et al., 2017), 

contributing to more sustainable and effective use of exoskeletons in construction. The findings provide valuable 

insights into the potential of machine learning models like LSTM for monitoring and predicting mental workload 

in construction settings. This holds promise for improving the safety and well-being of construction workers using 

exoskeletons for physically demanding tasks. Future research could continue to explore the use of these EEG 

channels and frequency bands in predicting mental workload, especially at higher frequencies, to further improve 

the accuracy and applicability of these models. 
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6. CONCLUSIONS AND LIMITATIONS  

This study presents the extent to which mental workload due to exoskeleton use can be predicted from EEG data 

using LSTM and CNN-LSTM networks. EEG data were obtained from an experimental study where participants 

performed flooring tasks with an active back-support exoskeleton. The data were preprocessed and trained with 

the LSTM and the hybrid CNN-LSTM network. The study showed that the LSTM network (avg. RMSE = 0.16, 

avg. R2 = 0.94) outperformed the CNN-LSTM network (avg. RMSE = 0.94, avg. R2 = 0.26). A comparison of the 

actual and predicted power spectral density indicates good consistency in all the EEG channels in the theta and 

alpha frequency bands. About 75% variance in the actual mental workload was captured in the prediction. The 

results of this study contribute to the limited literature on the impact of unintended consequences of using 

exoskeletons for construction work. This research adds to the limited literature on the unintended consequences of 

using exoskeletons in construction work. It may motivate further studies on using deep learning for real-time 

mental workload prediction when employing other technological interventions in construction projects. The 

findings provide insights into the effectiveness of various convolutional neural network variations for identifying 

key features of EEG data, which can guide future algorithm selections. Moreover, the results offer insights into 

the most suitable brain channels for assessing mental workload during exoskeleton use, supporting the 

development of EEG devices that balance cost-effectiveness and explanatory power with minimal channels. 

The study may have been limited due to the sample size of eight participants which was used to train the deep 

learning models. Training data with a larger sample could improve the performance of the model and enhance its 

generalizability. Future studies could consider a larger sample size to enhance the generalizability of the findings. 

Future studies can also explore the use of other deep learning models or hybrid approaches to generate accurate 

and robust models for advancing mental workload prediction in exoskeleton use. In addition, the performance of 

other time-series-based data augmentation techniques such as scaling, permutation, and generative adversarial 

networks, in generating synthetic data could be explored. Given the performance of LSTM, future research could 

also explore the application of LSTM models in real-time monitoring of mental workload during exoskeleton use. 

Additionally, further investigation into the factors influencing the performance of different models can provide 

valuable insights for enhancing prediction accuracy and ensuring safe and effective exoskeleton use in various 

work environments. This study focused on active back-support exoskeleton. Future studies could explore the extent 

to which similar prediction models could be developed for passive back-support exoskeletons. Comparison of the 

performance of the prediction models could inform if different models would be needed or if similar models would 

work for both exoskeleton types. 
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