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SUMMARY: The increasing digitalization of the construction industry, driven by Building Information Modeling 

(BIM) and the rise of digital twins, necessitates a holistic approach to worker well-being. Understanding how 

digital tools and processes, including BIM-based workflows and digital twin applications, impact the 

psychological and physiological states of construction workers is crucial for improving safety, productivity, and 

overall job satisfaction. This study integrates construction practices and neuroscience by systematically reviewing 

quantitative parameters and tools for assessing worker well-being within various digital construction workflows, 

with a specific focus on BIM and digital twin applications. We identify key stress detection parameters (e.g., EDA, 

HRV) and tools from medical research applicable to construction management for enhancing worker well-being 

and mitigating risks.  A comprehensive literature review synthesizes findings from multiple disciplines, focusing 

on stress detection techniques and their application in optimizing digital construction processes, specifically within 

BIM-driven projects and the development and utilization of digital twins. Results highlight stress detection 

parameters and tools offering valuable insights into worker experience, emphasizing the need for both qualitative 

and quantitative measures in project management, particularly within the context of BIM and digital twin 

technologies. A holistic, interdisciplinary approach merging ergonomics, neuroscience, and construction 

methodologies is crucial for enhancing worker experience in increasingly digitalized construction environments. 

Integrating stress detection technologies into construction management processes, especially those leveraging 

BIM and digital twins, is essential for promoting worker well-being and safety, while acknowledging limitations 

in current systematic research.  Future exploration includes developing human-centered digital tools within BIM 

and digital twin workflows and applying medical findings to improve construction workflows. This research aims 

to inspire construction professionals to prioritize worker well-being and adapt their methodologies to address the 

unique challenges of digital transformation in the industry, leveraging the potential of BIM and digital twins to 

create safer and more productive work environments. 
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1. INTRODUCTION 

The increasing digitalization of the construction industry, accelerated by the COVID-19 pandemic and driven by 

technologies such as Building Information Modeling (BIM) and digital twins, necessitates a critical reassessment 

of the relationship between workers and their built environment. While the importance of quality workspaces has 

long been recognized, the pandemic highlighted a global dissatisfaction with existing conditions (Melone and 

Borgo, 2020; Amerio et al., 2020; Alraouf, 2021).  Advanced technologies offer opportunities to improve worker 

well-being and optimize construction processes; however, current Building Information Models (BIM) and digital 

twin applications primarily rely on ontologies mapping building data (.ifc) and sensor data (e.g., SOS ontology).  

These models, while comprehensive in representing building systems and sensor networks, typically lack the 

integration of human-centric data to assess occupant comfort and well-being. This critical gap highlights the need 

for a deeper investigation into the impact of digital tools on workers’ conscious and unconscious responses. 

The increasing use of BIM and digital twins in construction projects necessitates a careful consideration of how 

these technologies affect workers' well-being (Getuli et al., 2019). While the importance of user experience and 

well-being has been traditionally acknowledged, few studies have evaluated these aspects through scientific well-

being detection within the context of digital construction workflows. Despite significant advancements in medical 

research on stress detection, the application of these findings in construction design and management remains 

limited.  This gap is particularly significant given the rising prevalence of stress as a major contributor to reduced 

productivity and efficiency in modern workplaces (Feng et al., 2021; Attallah, 2020). The challenge lies in 

effectively identifying and addressing stress even when workers are unaware of their own high-stress levels 

(Sağbaş et al., 2020).  The development of real-time stress detection methods is crucial for improving worker 

health and safety (Getuli et. al, 2014, 2018, 2020, 2023). 

Neurodesign principles offer a valuable framework for investigating the effects of environmental factors and 

biometric parameters on worker behavior in digital construction environments.  While interest in the impact of 

digital design on public health is growing, a significant research gap persists (Burton et al., 2011). This research 

systematically reviews state-of-the-art tools and quantitative parameters for assessing well-being and stress 

detection within digital construction workflows, specifically focusing on the integration of human-centric data into 

BIM and digital twin models. This systematic review will identify key technologies and parameters suitable for 

application in construction design and management. The aim is to integrate findings from various disciplines 

(environmental psychology, medicine, construction, and design) for the development of a holistic framework and 

a better understanding of how human factors can be considered in BIM-driven and Digital Twin-enabled 

construction processes to improve the overall well-being of construction workers. 

This research employs a systematic literature review to identify state-of-the-art tools and quantitative parameters 

for assessing worker well-being and stress detection within digital construction workflows, with a specific focus 

on applications within BIM and digital twin environments.  The review begins with an extensive literature search 

across three primary scientific databases: Scopus, Web of Science, and PubMed.  These databases were selected 

for their comprehensive coverage of peer-reviewed journals and conference proceedings in relevant fields, 

including environmental psychology, ergonomics, medicine, construction, architecture, and design. The search 

was not limited to recent publications to maximize inclusiveness and obtain a broader understanding of existing 

research. 

The search strategy involved a multi-stage process.  First, the research scope was defined, and relevant keywords 

were identified.  This was followed by an initial screening of search results, focusing on articles directly related to 

well-being and stress detection within the context of digital construction processes. A subsequent in-depth analysis 

of selected articles was conducted, using a qualitative approach to identify the most significant and representative 

studies for further analysis. The analysis focused on identifying the main well-being detection techniques and tools 

employed in research across relevant disciplines and assessing their potential application to construction, 

particularly in relation to BIM and digital twin technology.  This systematic analysis investigates the applicability 

of stress detection tools currently used in medicine to the evaluation of worker well-being in digital construction 

settings. 

 



 

 

 
ITcon Vol. 29 (2024),  Getuli et al., pg. 1259 

2. APPLIED METHODOLOGY 

The research methodology, summarized in Figure 1, comprises two main phases: data gathering and analysis of 

relevant literature.  The initial phase involved a comprehensive literature search across three primary databases 

(Scopus, Web of Science, and PubMed) to identify relevant studies on stress detection techniques and tools filtering 

those than that can be applied to the construction industry, suitable for assessing worker well-being within the 

context of increasingly digitalized construction workflows, specifically within BIM and digital twin environments. 

This interdisciplinary search spanned environmental psychology, ergonomics, medicine, construction, 

architecture, and design literature to capture a wide range of perspectives and methodologies. 

The subsequent phase involved a systematic review and analysis of the selected articles, focusing on techniques 

and parameters relevant to the assessment of worker well-being.  This process involved a detailed qualitative 

analysis of the articles, identifying and categorizing the most significant and representative studies, ultimately 

leading to a synthesis of findings and the identification of key parameters and tools for future implementation in 

the construction industry.  The analysis specifically explored how established stress detection techniques and 

parameters from medical research can be applied to assess worker well-being in BIM-driven and digital twin-

enabled construction projects. 

 

Figure 1: Systematic process of literature review. 

2.1 Data collection 

To identify relevant literature on stress and well-being detection methods applicable to the construction industry, 

a systematic search was conducted across three major databases: Scopus, Web of Science, and PubMed. These 

databases were selected for their comprehensive coverage of peer-reviewed journals and conference proceedings 

relevant to the interdisciplinary nature of this research, spanning environmental psychology, ergonomics, 

medicine, construction, architecture, and design.  The search was not limited by publication date to ensure the 

inclusion of a wide range of relevant studies, maximizing the comprehensiveness of the review. 

The search strategy employed a multi-stage process.  Initially, the research scope was clearly defined, focusing on 

the identification of methods for detecting stress and well-being indicators.  A set of keywords was then developed, 

encompassing terms related to "well-being," "stress," "detection," "measurement," and "construction," alongside 

synonyms and related terms to ensure a comprehensive search.  Search fields were set to "title" and "topic" using 

Boolean operators to combine keywords and refine results. The search results were limited to peer-reviewed papers 

and conference proceedings published in English and Italian, further narrowing the focus to areas directly relevant 

to the research objectives (architecture, design, engineering, psychology, medicine, and sociology), while 

explicitly excluding irrelevant fields (e.g., agricultural research). 
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This initial search yielded 397 articles.  A preliminary screening was conducted within the databases to filter out 

irrelevant articles based on title and abstract.  Subsequently, a manual review of the remaining articles was 

undertaken by the authors to ensure alignment with the research objectives and to exclude articles that, while 

meeting the initial search criteria, did not fully address the research questions. This rigorous multi-stage approach 

ensured the selection of high-quality, relevant studies for the in-depth analysis presented in this research.  

A filtering process have beeen done, Papers in peer-reviewed articles and conference proceedings focused on the 

proposed theme, this process included the removal of irrelevant articles, duplicates as well as dissertations and 

theses.  

This preliminary review has been implemented by the reading of abstracts and the keywords of the remaining 

papers. In this case, the filtering criteria have been the following: 

• Although the filtering of the selection area, searches still show the use of the keywords in different settings 

or with other meanings. 

• Although the keywords refer to the macro area of research, they were not the focus of the main addressed 

issue 

After applying these filtering criteria, the total number of relevant publications was quite low compared to the first 

total shown by the selected databases (see Table 1).  

Table 1: Total number of manually reviewed articles. 

Database Total Total after 1st screening 

Wos 98 71 

Scopus 48 5 

Ebsco 152 5 

Total 298 83 

Following the initial screening, 298 articles remained for in-depth analysis, ultimately leading to the selection of 

83 articles that provided the most relevant and representative insights into stress detection and well-being 

assessment methods in the construction industry context. While this subset does not represent the entirety of the 

relevant literature, it constitutes a robust and representative sample for this study. 

To gain a comprehensive overview of the research landscape and identify key themes, a keyword analysis was 

performed using the Voyant Tool Software1 software on the keywords extracted from the selected articles. Figures 

2, 3, and 4 visually represent the most frequent keywords identified in each of the three databases (Web of Science2, 

Scopus3 and Pubmed4).  These visualizations use a network graph representation, where nodes represent keywords 

and links represent the co-occurrence of keywords within the articles. The size of each node reflects the frequency 

of the keyword, while the color indicates automatic clustering based on semantic similarity.  This technique 

provides insights into the key themes and concepts explored within the selected literature. Note that the 

visualizations are presented separately for each database due to limitations within the software, which prevented 

the integration of data across all three sources. 

The keyword analysis revealed a cluster of highly interconnected terms related to stress detection, including "stress 

detection," "sensor," "quality," "mental health," "feasibility," "stress level," "reliability," "database," "validity," 

"parameter," and "value."  Further analysis revealed related terms such as "galvanic skin response," 

"electrocardiogram," and "heart rate variability," providing a granular view of the specific parameters and 

measurement techniques discussed in the literature.  The co-occurrence network of these keywords highlights the 

central themes of this study and provides a valuable context for the subsequent in-depth analysis of selected 

methodologies. 

 
1 https://www.vosviewer.com 
2https://access.clarivate.com/login?app=wos&alternative=true&shibShireURL=https:%2F%2Fwww.webofknowl

edge.com%2F%3Fauth%3DShibboleth&shibReturnURL=https:%2F%2Fwww.webofknowledge.com%2F&roa

ming=true 
3 https://www.scopus.com/search/form.uri?display=basic#basic 
4 https://pubmed.ncbi.nlm.nih.gov 

https://www.vosviewer.com/
https://access.clarivate.com/login?app=wos&alternative=true&shibShireURL=https:%2F%2Fwww.webofknowledge.com%2F%3Fauth%3DShibboleth&shibReturnURL=https:%2F%2Fwww.webofknowledge.com%2F&roaming=true
https://access.clarivate.com/login?app=wos&alternative=true&shibShireURL=https:%2F%2Fwww.webofknowledge.com%2F%3Fauth%3DShibboleth&shibReturnURL=https:%2F%2Fwww.webofknowledge.com%2F&roaming=true
https://access.clarivate.com/login?app=wos&alternative=true&shibShireURL=https:%2F%2Fwww.webofknowledge.com%2F%3Fauth%3DShibboleth&shibReturnURL=https:%2F%2Fwww.webofknowledge.com%2F&roaming=true
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Figure 2: Web of Science keywords. 

 

Figure 3: Pubmed keywords. 

 

Figure 4: Scopus keywords  
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2.2 Analysis of relevant articles 

Table 2: Main stress detection tools and stress parameters according to reviewed articles. Part one. 

AUTHORS STRESS DETECTION TOOL STRESS PARAMETERS 
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Debard et al. 2020 √       √ √          

Zhang et al. 2020      √            √ 

Attallah 2020 √         √         

Maheshwaran et al. 

2020 
      √     √       

Sağbaş et al. 2020  √              √   

Delmastro et al. 2020 √  √     √ √          

Anusha et al. 2020 √  √     √           

Rachakonda et al. 

2019 
√  √          √     √ 

Feng et al. 2021       √  √         √ 

Liao et al. 2018       √  √          

Abdi et al. 2018       √ √ √     √ √   √ 

Li et al. 2018   √   √           √  

Minguillon et al. 2018 √      √ √ √  √        

Affanni et al. 2018       √ √           

Liu et al. 2018     √   √           

Healy et al. 2018   √   √           √  

Elzeiny et al. 2018      √ √ √ √    √   √   

Mozos et al. 2017 √  √     √ √       √  √ 

Mozos et al. 2017 .      √           √ 

Vildjiounaite et al. 

2017 
√ √                √ 

Vildjiounaite et al. 

2017 
√    √   √ √          

Acerbi et al. 2017 √  √     √ √          

Tillotson 2017 √      √ √ √         √ 

Kostopoulos et al. 
2017 

    √             √ 

Zalabarria et al. 2017     √    √      √    

Pandey et al. 2016     √   √ √          

Zhao et al. 2016       √           √ 

Abburi et al. 2016   √    √           √ 

Kalas et al. 2016       √   √         

Kalimeri et al. 2016 √      √ √  √         

Reanaree et al. 2016 √   √   √  √ √        √ 

Vries et al. 2015 √      √ √ √      √    

Bin et al. 2015     √  √ √ √    √      

Ghaderi et al. 2015     √   √ √  √    √    

Salazar-Ramirez et al. 

2014 
    √   √ √          

Lin et al. 2014       √           √ 

Vizer et al. 2009   √    √           √ 

Ruzanski et al. 2005       √           √ 

Rani et al. 2002 √  √      √          

Pu et al. 2020       √     √       

Sriramprakash et al. 
2017 

    √   √ √          

Qiao et al. 2017       √     √      √ 
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Table 2: Main stress detection tools and stress parameters according to reviewed articles. Part two. 

AUTHORS STRESS DETECTION TOOL STRESS PARAMETERS 
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Kikhia et al. 2016 √       √           

Burton et al. 2011       √           √ 

Pascoe et al. 2017       √ √ √   √      √ 

Uem et al. 2016 √      √ √ √       √   

King et al. 2002       √     √       

Sharma et al. 2012 √      √  √ √    √   √ √ 

Wells et al. 2014       √     √       

Following the initial selection, 83 articles were thoroughly analyzed to identify the most significant and 

representative studies. This in-depth, qualitative analysis aimed to provide a comprehensive review of the existing 

literature and to present a detailed overview of the subject matter.  This research focused on two key aspects which 

are of primary importance in digtial processes:  Stress Detection Tools and Stress Parameters. Stress Detection 

Tools refer to the specific instruments and technologies used to collect data related to well-being and stress. Stress 

Parameters, on the other hand, encompass the physiological and psychological indicators used to quantify 

deviations from a state of well-being and, primarily, to measure stress levels.   

After an initial reading, a second phase focused on identifying the main well-being detection techniques and 

parameters described in the selected literature. 

To pinpoint the most commonly used tools, a comprehensive review was conducted to identify the most recurrent 

parameters and well-being measurement tools across various fields.  This involved a careful and thorough reading 

of the shortlisted articles, leading to a synthesis of the most relevant findings and a schematization of the key 

results. The authors employed a systematic categorization of the identified techniques, aiming to gain a clear 

understanding of the overall landscape before undertaking a more detailed investigation of individual 

subcategories.  This process enabled the identification of most techniques and parameters prior to focused analysis. 

This careful review revealed a crucial insight: while direct well-being measurement is often challenging from a 

purely medical perspective, deviations from a state of well-being, specifically through stress recognition, can be 

quantified. Consequently, the categorization of the reviewed articles (Table 2) presents a codification of well-being 

based on the analysis of stress recognition indicators, as identified in scientific studies. 

After identifying the most frequently used techniques via keyword analysis, a synthesis of the findings was 

undertaken. This resulted in the grouping of methodologies into two main categories: stress detection tools and 

stress detection parameters. Each category was then further classified into subcategories based on the specific 

techniques employed, leading to a multi-level classification.  This approach provided a clear summary of the 

deployed tools and identified trends, highlighting the most frequently used techniques while minimizing less 

common ones. This classification acknowledges that multiple categories may overlap due to the multi-parametric 

nature of much of the research.  A detailed description of the main technologies and well-being measurement tools 

is provided in the following section. 

3. LITERATURE REVIEW FINDINGS 

This section presents key findings from the literature review, focusing on stress detection parameters and tools 

applicable to enhancing worker well-being within the context of the increasingly digitalized construction industry.  

While the impact of the built environment on well-being is widely acknowledged, and smart technologies are 

increasingly prevalent,  research directly applying these advancements to assess and improve the health and well-

being of construction workers remains limited.  This study addresses this gap by focusing on the application of 

established stress detection techniques and parameters from psychological and medical research to the construction 

sector.  The following discussion highlights key parameters and tools identified as having potential use in the 
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design, management, and evaluation of construction projects, particularly within the context of BIM and digital 

twin technologies.  However, it acknowledges limitations arising from inconsistencies between the methodologies 

developed within the medical field and their direct applicability to the construction industry, as detailed below. 

3.1 Identification of the main stress detection parameters for stress detection to be 

implemented for evaluating immersive experience  

The following sub-paragraph outlines the output of the research investigation through a brief synthesis of the main 

techniques adopted for stress detection.  As follows, 10 kinds of stress detection adopted data have been identified 

as well as 6 main techniques to collect them. The following list represents the techniques most used in medicine 

and psychology for which exist technology and techniques that could be used also in immersive environments for 

planning process, management and control of virtual reality setting, as well as the detection of quality experience 

(Figure 5). 

3.1.1 Electrodermal activity (EDA) 

Electrodermal activity (EDA), also known as galvanic skin response (GSR) or skin conductance (SC), is a 

physiological measure reflecting the activity of the sweat glands and providing an objective index of emotional 

arousal and stress. EDA measures changes in skin conductance due to sweat production, which is directly related 

to the sympathetic nervous system's activity. Higher EDA values generally correspond to increased arousal, 

anxiety, or stress.  The measurement is based on the principle that sweat glands are controlled by the sympathetic 

nervous system, which is activated during stress responses.  

Increased sweat gland activity leads to increased electrical conductivity of the skin, which can be measured using 

non-invasive sensors. EDA's non-invasive nature makes it a particularly useful tool for studying stress and 

emotional responses in various settings, and it has been widely used in numerous studies employing wearable 

devices (Acerbi et al., 2017; Anusha et al., 2020; Debard et al., 2020; Delmastro et al., 2020; Kalimeri and Saitis, 

2016; Minguillon et al., 2018; Mozos et al., 2017) or embedded sensors (Affanni et al., 2018; Sriramprakash et 

al., 2017; Zalabarria et al., 2017). While generally considered a reliable indicator of stress, it's important to note 

that EDA can also be influenced by other factors, such as temperature and hydration, requiring careful 

consideration of these variables in the interpretation of results. 

3.1.2 Heart Rate Variability (HRV) 

Heart Rate Variability (HRV) is defined as the standard deviation of the intervals between successive heartbeat 

signals. It reflects the body’s ability to adapt to stress and changing environmental conditions by assessing the 

dynamics of the autonomic nervous system. A higher HRV is generally associated with good health and 

psychological well-being, while a lower HRV may indicate stress or overload. HRV can be easily monitored using 

wearable devices, sensors, or traditional electrocardiogram (ECG) systems. Recent studies have even explored the 

combination of HRV data with social media microblogs to gather real-time information about well-being (Acerbi 

et al., 2017; Debard et al., 2020; Rani et al., 2002) or other monitoring tools with specific sensors (Mozos et al., 

2017; Reanaree et al., 2016; Sriramprakash et al., 2017; Zalabarria et al., 2017)(Mozos et al., 2017)(Feng et al., 

2021). 

3.1.3 Electroencephalogram (EEG) 

Electroencephalogram (EEG) is a technique used to detect and monitor real-time stress levels in daily life by 

utilizing specific headsets equipped with electrodes that measure electrical activity in the brain. This non-invasive 

technique (when using scalp surface electrodes) allows for the assessment of stress through the analysis of 

brainwave patterns. Numerous studies have demonstrated the correlation between EEG signals and stress levels, 

employing various devices ranging from traditional electrodes to helmets designed for EEG monitoring (Attallah, 

2020; Elzeiny & Qaraqe, 2018; Kalas & Momin, 2016; Reanaree et al., 2016) (Kalimeri and Saitis, 2016). 

Although from a medical point of view it could be a non-invasive method thanks to the use of scalp surface, from 

a perspective of stress monitoring, on the contrary, it is quite intrusive since it requires the use of electrodes. 

3.1.4 Electromyogram (EMG) 

Electromyography (EMG) is a technique used for measuring the electrical activity of muscles, which can provide 

valuable insights into muscle response and tension. By assessing the electrical signals generated when muscles 

contract, EMG serves as a potential indicator of stress levels in individuals. When a person experiences stress, 
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muscle tension often increases, which can be detected using EMG sensors placed on the skin over the targeted 

muscles. This method has been employed in various studies to analyze real-time stress responses, making it a 

useful tool for understanding how physical and psychological stressors impact muscular activity (Elzeiny and 

Qaraqe, 2018; Ghaderi et al., 2015; Minguillon et al., 2018).  

While EMG can be a powerful tool for stress detection, its application in built environments poses certain 

challenges. The dynamic nature of construction sites—with constant movement and noise—can interfere with 

EMG readings, making it difficult to isolate muscle activity related to stress from other muscular movements. 

Despite these challenges, EMG remains a promising method for monitoring physical tension and stress in various 

settings, including workplaces. 

3.1.5 Cortisol 

Cortisol is a steroid hormone produced by the adrenal glands, playing a critical role in regulating various bodily 

functions, including metabolism, immune response, and, importantly, the body's reaction to stress. Often referred 

to as the "stress hormone," cortisol is released in response to stressful situations and helps prepare the body for a 

"fight or flight" response by increasing glucose availability, enhancing brain function, and modulating immune 

responses. Its levels fluctuate throughout the day, typically peaking in the morning and gradually declining 

throughout the day. Salivary cortisol is commonly used as a biomarker for measuring stress levels, as it provides 

a non-invasive means of assessing cortisol concentrations in the body.  

Researchers often analyze salivary samples to determine cortisol levels, which can offer insights into a person's 

stress load and overall emotional well-being. While salivary cortisol assessment is widely used in medical and 

psychological research (Pascoe et al., 2017; Qiao et al., 2017; Wells et al., 2014) , its application in built 

environments -such as workplaces or construction sites- presents specific challenges. Collecting saliva samples 

typically requires controlled settings and appropriate timing to ensure accuracy, making it less practical for real-

time stress monitoring in dynamic environments. 

3.1.6 Human Body Temperature 

Body temperature is a critical physiological parameter that can reflect an individual's physical and mental state. It 

is generally maintained within a narrow range in healthy individuals, typically around 98.6°F (37°C). Variations 

in body temperature can indicate different levels of stress, as the body often reacts to stressors—both physical and 

psychological—through thermoregulation. When a person experiences stress, their body may exhibit changes in 

temperature due to hormonal responses, increased metabolic activity, and alterations in blood flow. Research has 

shown that measuring changes in body temperature can provide insights into stress levels. Higher body 

temperatures may be associated with elevated stress due to increased metabolic processes, while lower 

temperatures could indicate relaxation or reduced stress.  

Various methodologies exist for detecting changes in body temperature, including contact sensors that measure 

temperature directly through skin contact and non-contact sensors that gauge surface temperature from a distance 

via infrared technology. Many studies detect stress through this method by means of contact sensors ((Bin et al., 

2015; Rachakonda et al., 2019) or non-contact sensors ((Elzeiny and Qaraqe, 2018). The ability to monitor body 

temperature provides a valuable means of assessing stress, as it correlates with other physiological responses to 

stressors, offering a comprehensive view of an individual's well-being. By analyzing temperature data, researchers 

and health professionals can gain a deeper understanding of the relationship between physiological states and stress 

levels. 

3.1.7 Pupil diameter 

Pupillometry is the measurement of pupil size and reactivity, serving as a vital index for investigating various 

psychological phenomena and emotional states. The diameter of the pupil can indicate an individual's level of 

arousal, cognitive load, and emotional response, providing insights into their well-being. Pupils can undergo two 

primary changes: dilation, known as mydriasis, and constriction, referred to as miosis. When an individual 

experiences stress, the body activates the sympathetic nervous system as part of the fight-or-flight response. This 

activation often results in mydriasis, or pupil dilation, as the body prepares for heightened alertness and awareness 

of potential threats. Changes in pupil size can be measured using specialized equipment, allowing researchers to 

analyze pupil reactivity as an indicator of stress levels.  
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Various studies have effectively employed pupillometry to assess stress responses, showcasing its potential as a 

reliable tool in psychological and physiological research (Al Abdi et al., 2018; Gunawardhane et al., 2013). By 

monitoring pupil size and its fluctuations in response to different stimuli, pupillometry provides valuable data on 

the relationship between physiological states and emotional well-being, offering a non-invasive means of studying 

stress and other psychological conditions. 

3.1.8 Breathing rate 

Breathing rate, or the number of breaths taken per minute, is a vital physiological parameter that can provide 

insights into an individual’s stress levels. Under normal conditions, the average breathing rate for adults is 

approximately 12 to 20 breaths per minute. However, this rate can be significantly altered by psychological stress 

and emotional responses.  

When a person experiences stress, the respiratory pattern may change, often becoming shallower or more rapid, a 

phenomenon known as hyperventilation. During hyperventilation, the breathing rate can increase to between 25 

and 40 breaths per minute, which may lead to feelings of anxiety or panic. This change in breathing patterns can 

be reliably captured using wearable devices equipped with sensors designed to monitor respiratory function (Can 

et al., 2019; Mozos et al., 2017) or through specialized tools that measure respiratory activity (Al Abdi et al., 

2018). By assessing breathing rate and patterns, researchers can gain valuable insights into an individual's stress 

responses and emotional states. This biomarker is not only useful for understanding stress-related health issues but 

can also inform interventions aimed at promoting relaxation and well-being. 

3.1.9 Sensor data (accelerometer and gyroscope) 

Sensor data obtained from accelerometers and gyroscopes can serve as valuable indicators of stress levels in 

individuals. An accelerometer is a device that measures linear acceleration, providing real-time information about 

motion, position, and orientation. It can capture data related to physical activity, posture, and movement patterns.  

When applied in the context of stress monitoring, accelerometers can help identify changes in activity levels that 

may be associated with stress responses. For instance, increased agitation, fidgeting, or less movement may 

indicate heightened stress. Research has shown that analyzing accelerometer data can provide insights into how 

stress manifests physically, thus enabling a better understanding of its impact on an individual's behavior (Debard 

et al., 2020; Sağbaş et al., 2020). 

Gyroscopes, on the other hand, measure angular velocity and orientation, allowing for a more comprehensive 

analysis of motion dynamics. By combining data from both accelerometers and gyroscopes, researchers can gain 

a detailed understanding of how stress influences both physical activity and body movement patterns. These 

sensors, when integrated into wearable devices, create opportunities for continuous monitoring and real-time 

feedback regarding an individual's stress levels based on their physical activity profile. 

3.1.10 Real-time Video-Facial Muscle Detection 

Video-facial muscle detection is an innovative technique that leverages machine learning models, particularly 

support vector machines (SVM), to identify and classify facial expressions associated with stress. This approach 

analyzes the movements and contractions of facial muscles through video data, enabling the detection of subtle 

changes that may indicate an individual's emotional state. Facial expressions are a significant indicator of 

psychological well-being, and certain muscle movements can be closely correlated with stress responses. By 

employing advanced algorithms, researchers can train machine learning models to recognize specific facial muscle 

patterns that correspond to various stress levels. For instance, furrowing of the brow, tightening of the jaw, or other 

facial cues may be analyzed to determine whether a person is experiencing stress. 

The integration of facial muscle detection with deep learning techniques enhances the accuracy and reliability of 

stress detection systems. Deep learning algorithms can automatically learn and extract features from video data 

without the need for extensive manual feature engineering, improving the overall efficiency of the classification 

process. This can lead to quicker and more accurate assessments of an individual’s stress levels based on their 

facial expressions. Using video-facial muscle detection as a stress monitoring tool opens up new possibilities in 

various contexts, from healthcare to workplace environments, where understanding emotional well-being is 

crucial. This non-invasive method can provide real-time insights into stress responses, helping individuals and 

organizations implement timely interventions to manage stress effectively. (Healy et al., 2018; Zhang et al., 2020). 
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3.1.11 Others 

Moreover, other studies focus on hand movements (Reanaree et al., 2016), tweeting content (Zhao et al., 2016) 

keyboard typing (Sağbaş et al., 2020; Vizer et al., 2009) and audio detection (Abburi et al., 2016). 

 

Figure 5: Non-intrusive and intrusive parameters for evaluating immersive experience. 

3.2 Identification of the main adopted techniques for stress detection to be implemented 

for evaluating immersive experience  

 

Figure 6: The main techniques adopted to detect well-being variables. 
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In this section the main techniques used for collecting stress detection’s parameters have been outlined and 

synthesised as schematically reported. As mentioned in the previous paragraph, several parameters could be 

analysed for stress detection purposes and along this line, the main adopted techniques to detect (sometimes even 

simultaneously) well-being variables have been analysed (Figure 6). 

Among others, it is worth mentioning: 

3.2.1 Wearable devices 

Wearable devices have emerged as powerful tools for stress detection, primarily due to their versatility, non-

intrusiveness, and accessibility. These devices, designed to be worn on the body, include a variety of sensors 

capable of monitoring physiological parameters such as heart rate variability (HRV), electrodermal activity (EDA), 

breathing rate (BR), and hand movement. Their ability to collect and analyze real-time data makes them 

particularly suited for daily stress detection studies. (Anusha et al., 2020; Debard et al., 2020; Delmastro et al., 

2020; Mozos et al., 2017) 

The widespread availability of these devices has contributed to their popularity among consumers and researchers 

alike, as they can be easily integrated into everyday life, promoting regular monitoring of stress levels. Many 

wearable devices are designed to be user-friendly and can seamlessly fit into a person's routine, often resembling 

everyday accessories like watches or fitness trackers. In addition to more common physiological metrics, some 

advanced wearable systems are capable of collecting electrocardiogram (ECG) measurements. Notable examples 

include systems like Biopac MP150, MP35, and Shimmer Sensing 3 (Can et al., 2019), which provide more 

comprehensive physiological data for stress analysis. These capabilities enable users and researchers to monitor 

health and stress indicators that can be correlated with emotional states and stress responses. 

The non-invasive nature of wearable devices allows for continuous monitoring without significant disruption to 

the user's daily activities; in some instances, these devices may be worn without the user's explicit awareness. This 

feature is particularly beneficial for longitudinal studies and ongoing stress management initiatives, as it enables 

unobtrusive data collection over extended periods. Overall, wearable devices represent a promising advancement 

in stress detection technology, facilitating better understanding and management of stress in various contexts. 

3.2.2 Smartphones 

Smartphones have emerged as common unobtrusive devices capable of collecting a wide range of physiological 

and behavioral data, making them valuable tools for stress detection. Equipped with various sensors and 

functionality, smartphones can extract multiple features that contribute to understanding an individual’s stress 

levels. Some of the key data points that smartphones can collect include: Accelerometer Data (This measures 

motion and can help assess physical activity levels and movement patterns); Audio Classification (Smartphones 

can analyze audio data to detect speech patterns and emotional tone, which may provide insights into stress-related 

vocal stress); Call Time and Duration (Data on the frequency and duration of calls may reflect social interactions, 

which can be correlated with stress levels); Light Sensor Data (Changes in ambient light conditions can affect 

mood and stress, and this data can be measured through smartphones); GPS Information (Location tracking can 

highlight changes in environment and context related to stress); Screen Mode Changing Frequency (Monitoring 

how often users switch their screens on and off may correlate with attentional demands and stress); Video Data 

(Capturing videos can be used for facial recognition and analysis of emotional expressions); Wi-Fi Connections 

(Frequency and patterns of connectivity can provide additional contextual information regarding a user's social 

environment). 

Research has shown that there is a significant correlation between stress levels and the various data collected 

through smartphones (Gjoreski et al., 2015). However, a study by Can et al. (2019) revealed low classification 

accuracy in stress detection when relying solely on smartphone data. This finding emphasizes the need for adopting 

a more integrated approach to stress monitoring. By combining smartphone data with additional data from 

wearable devices, researchers and practitioners can achieve a more comprehensive and accurate understanding of 

stress levels, leading to more effective stress management strategies. 

3.2.3 Machine learning 

Machine learning, a subset of artificial intelligence, plays a crucial role in processing and analyzing the vast 

amounts of data generated by wearable devices and smartphones. As these devices capture continuous streams of 
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physiological and behavioral data, such as heart rate, breathing rate, and galvanic skin response, the challenges 

associated with big data arise. The integration of machine learning techniques enables researchers and practitioners 

to extract meaningful insights from this complex data landscape, facilitating more accurate stress detection and 

analysis (Delmastro et al., 2020; Sağbaş et al., 2020). 

The continuous flow of data generated by wearables and smartphones not only necessitates algorithmic 

calculations to manage and analyze usage behaviors but also requires the application of sophisticated machine 

learning algorithms to derive reliable categorizations and identify patterns. Common classifiers used in this context 

include K-nearest neighbor (KNN) and support vector machines (SVM) (Ghaderi et al., 2015), which can 

effectively classify and predict stress levels based on the collected bio-parameters. 

Additionally, advancements in machine learning have led to the development of specialized models focused on 

emotion detection through human facial recognition. These models leverage deep learning techniques to analyze 

facial expressions and micro-expressions, providing a nuanced understanding of an individual's emotional state 

(Healy et al., 2018). By combining data from various sources and employing machine learning algorithms, 

researchers aim to improve the accuracy and reliability of stress detection systems, ultimately enhancing 

interventions and support for individuals experiencing stress. 

3.2.4 Neurosky headset 

The Neurosky headset is a wearable device designed to monitor and record the electrical activity of the brain using 

electroencephalography (EEG) technology. This headset employs electrodes to capture brain wave patterns, 

allowing for real-time monitoring of neurological activity associated with various mental states, including stress. 

By analyzing these electrical signals, the Neurosky headset provides valuable data regarding cognitive functions, 

emotional responses, and overall brain activity. 

EEG measurements produced by the Neurosky headset can help identify stress-related brain wave patterns, 

enabling researchers and practitioners to gain insights into how stress impacts cognitive processes and emotional 

regulation. The headset is particularly useful in environments where traditional methods of stress assessment may 

be impractical, offering a non-invasive way to investigate the neurophysiological aspects of stress. 

In addition to its standalone capabilities, the Neurosky headset can be complemented by other devices, such as an 

intelligent watch made using Arduino technology. This integration allows for the collection of additional 

physiological data, creating a more comprehensive assessment of an individual's stress levels as it combines both 

brain activity and other biometric measurements (Reanaree et al., 2016). The synergy between the Neurosky 

headset and supplementary wearable devices enhances the potential for more effective real-time stress monitoring 

and analysis. 

3.2.5 Applied sensors 

A number of applied sensors for Galvanic Skin Response (GSK), Electrocardiogram (ECG), 

Electroencephalogram (ECC) are available on the market. Differently from wearable and smartphones, these 

applied sensors are invasive, and the user is conscious of being under observation without specifically knowing 

the reason why. Although these kinds of applied sensors are different from each other, they can collect multiple 

signals or one single bio-parameter. At the same time, they can be both easily be portable and/or not movable 

(Attallah, 2020; Kalimeri and Saitis, 2016; Minguillon et al., 2018; Pandey et al., 2016). 

3.2.6 Images/video/ audio capturing tools 

Other fundamental tools to be considered other than smartphones are video, audio and image-capturing devices. 

Among them, especially used for reaching out to a large number of people rather than to an individual person, are 

video cameras and contact-free camera sensors. By guaranteeing a cost-effective system, these are the most 

frequently used tools to detect users' facial expressions (Abburi et al., 2016; Zhang et al., 2020). 

4. CONCLUSION AND DISCUSSIONS 

In order to utilize stress detection parameters for future applications within the analysis of well-being in building 

design, construction and management; this review summarizes the main technologies used in medicine. This 

investigation aims to educate designers about the actual impact of the digital environment on daily life and to 

encourage planners to create spaces that enhance users' well-being by considering the implications of digital 
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environments. To achieve this, a holistic approach is essential, as understanding the high potential of an 

interdisciplinary concept that bridges the medical field and design is crucial. Based on lessons learned from the 

COVID-19 pandemic, the role of this integrated approach is to create a comprehensive methodology that can 

bridge the gap between architects, engineers, and designers regarding the expressed or unexpressed responses of 

users to the digital impact of their environments. This review investigates stress bio-parameters that could be 

adopted in digital design to establish indicators of high-quality satisfaction for new environments. It emphasizes 

not only qualitative data, such as interviews and self-reported evaluations, but also quantitative data derived from 

physiological feedback that reveals unconscious responses. The authors have reported two main areas: stress bio-

parameters and associated tools that can serve as potential well-being indicators in design. The most common 

stress parameters and corresponding tools used in other fields have been presented to provide a complete overview 

of the current practices which digital design can incorporate, particularly non-invasive techniques for assessing 

the impact of design strategies on user satisfaction. 

Our bodies are influenced by the choices and design strategies employed by architects, engineers, and designers. 

There is a need for scientifically recognized methods to evaluate the implications of design for users' well-being, 

especially those that extend beyond traditional qualitative data, which may be subject to respondents' bias. The 

choice of the most suitable tool depends on the available resources, target demographics, and specific research 

objectives. Advanced techniques, such as video and image analysis through machine learning, can be beneficial 

for analyzing well-being in large populations. Thus, measurements of pupil diameter and facial muscle movements 

are essential for this type of analysis. For smaller sample sizes, where artificial intelligence may not be necessary, 

techniques such as Heart Rate Variability (HRV), Electrodermal Activity (EDA), and Breathing Rate (BR) can be 

more informative, as even ordinary wearables can easily monitor stress levels. It is advisable to adopt a 

transdisciplinary approach in which these technologies facilitate a more profound investigation into the 

relationship between users and the built environment. 

While it is widely recognized that human beings respond cognitively, emotionally, and physiologically to the built 

environment, interdisciplinary studies focusing on physiological well-being in relation to immersive design seem 

to be lacking. This gap, if addressed, could prove promising for the construction industry. Emerging fields such as 

"neuroarchitecture" or "neuro design" are exploring how architecture and enginerring studies can benefit from its 

intersection with neuroscience. Therefore, the adoption and implementation of practical methodologies in this 

conceptual model represents a central challenge for contemporary building design and construction. It is expected 

to assist digital design and construction researchers in integrating medical analyses of well-being into the design 

and process.  

In this sense the authors has identified a number of implications in cosntruction design and management where the 

introduction of stess detection can support more effective human centric digital processes: 

• Design Phase: During the design process, integrating stress bio-parameters, such as Heart Rate 

Variability (HRV) and Electrodermal Activity (EDA), enables architects and designers to create spaces 

that not only fulfill aesthetic and functional criteria but also enhance user well-being. By analyzing user 

feedback through physiological measures, designers can identify stressors in specific layouts and 

materials and adapt the design to promote comfort and reduce stress. 

• Construction Phase: In the construction phase, wearable devices that monitor stress levels in real-time 

can be invaluable for ensuring worker safety and health. Project managers can utilize data from these 

devices to identify stress patterns among workers, allowing them to implement supportive measures such 

as workload adjustment, breaks, or mental health resources. Understanding the physiological responses 

of workers helps create safer, more supportive work environments, ultimately leading to increased 

productivity. 

• Management Phase: Building management systems can benefit from continuous monitoring of 

occupants' stress levels using embedded sensors. Stress data can inform adaptive control systems that 

adjust environmental factors—such as lighting, temperature, and air quality—to optimize comfort for 

building users. Regularly assessing stress levels can ensure that the building environment remains 

conducive to the well-being of its occupants (Bruttini et al. 2023). 

• Post-Occupancy Monitoring: Post-occupancy evaluations utilizing stress detection technologies can 

yield insights into long-term user experiences within the built environment. By analyzing changes in 

stress indicators over time, facility managers can assess the effectiveness of design interventions and 

make data-driven adaptations to further enhance occupant satisfaction. 
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• Integration with Digital Twins: The concept of digital twins—virtual representations of physical 

structures—can leverage stress detection parameters to simulate and analyze how different design 

scenarios impact user experiences over time. By incorporating physiological data into digital twin models, 

stakeholders can forecast potential stress points and make informed design adjustments ahead of 

construction, leading to better outcomes. 

In this sense, the use of Building Information Models (BIM) could provide a robust framework for integrating 

stress detection parameters and technologies into the construction design and management process which are based 

on BIM Data. Infact, after this extented analysis the authors belive that by incorporating real-time physiological 

data into the BIM workflow, various benefits can be realized as syntetyzed int he following point:  

• Enhanced User-Centric Design: Integrating stress parameters within BIM allows for predictive 

modeling that anticipates how design changes could affect occupant well-being. Architects can modify 

layouts or material selections based on real-time stress data, ensuring that designs promote a conducive 

environment for users. 

• Dynamic Simulation of Stress Responses: BIM can facilitate dynamic simulations that incorporate 

stress indicators, enabling stakeholders to visualize the impacts of design decisions on user stress levels 

throughout different phases of the building lifecycle. This capability allows for preemptive adjustments 

that enhance occupant satisfaction. 

• Improved Construction Management: During the construction process, integrating wearables into the 

BIM framework allows project managers to monitor workers' health and stress levels alongside project 

timelines and resource allocation. This data can lead to more informed decisions related to workforce 

management, potentially minimizing stress-related injuries and improving productivity. 

• Adaptive Building Systems: Through the integration of stress detection technologies with BIM, building 

management systems can be developed that dynamically adapt to occupant stress levels. This means that 

facilities can respond proactively to changes in environmental conditions that may affect well-being, 

aligning with the real-time needs of occupants. 

• Comprehensive Data Analysis and Reporting: Utilizing BIM to aggregate data from stress detection 

technologies allows for comprehensive analyses that identify trends over time. Facility managers can use 

this information to make continuous improvements and support policies that prioritize occupant health 

and well-being. 

By embracing these technologies and integrating them with BIM, the construction industry can foster a more 

holistic and user-centric approach to building design and management. This not only enhances the quality of life 

for occupants but also leads to a more sustainable and successful built environment. 

REFERENCES 

Abburi, H., Shrivastava, M. and Gangashetty, S. V. (2016), “Improved Multimodal Sentiment Detection Using 

Stressed Regions of Audio”, PROCEEDINGS OF THE 2016 IEEE REGION 10 CONFERENCE 

(TENCON), pp. 2834–2837. 

Al Abdi, R.M., Alhitary, A.E., Abdul Hay, E.W. and Al-Bashir, A.K. (2018), “Objective detection of chronic stress 

using physiological parameters.”, Medical & Biological Engineering & Computing, Springer Verlag, Vol. 

56 No. 12, pp. 2273–2286, doi: 10.1007/s11517-018-1854-8. 

Acerbi, G., Rovini, E., Betti, S., Tirri, A., Ronai, J.F., Sirianni, A., Agrimi, J., et al. (2017), “A Wearable System 

for Stress Detection Through Physiological Data Analysis”, in Cavallo, F and Marletta, V and Monteriu, A 

and Siciliano, P (Ed.), AMBIENT ASSISTED LIVING, Vol. 426, pp. 31–50, doi: 10.1007/978-3-319-

54283-6\_3. 

Affanni, A., Bernardini, R., Piras, A., Rinaldo, R. and Zontone, P. (2018), “Driver’s stress detection using Skin 

Potential Response signals”, MEASUREMENT, Vol. 122, pp (Vito Getuli, 2014). 264–274, doi: 

10.1016/j.measurement.2018.03.040. 

Alessandro Bruttini, Philipp Hagedorn, Felix Cleve, Vito Getuli, Pietro Capone, Markus König (2023), A Semantic 

Digital Twin Prototype for Workplace Performance Assessment, pp. 1193-1205, doi:10.36253/979-12-215-

0289-3.118 



 

 

 
ITcon Vol. 29 (2024),  Getuli et al., pg. 1272 

Alraouf, A.A. (2021), “The new normal or the forgotten normal: contesting COVID-19 impact on contemporary 

architecture and urbanism”, Archnet-IJAR, Emerald Group Holdings Ltd., Vol. 15 No. 1, pp. 167–188, doi: 

10.1108/ARCH-10-2020-0249. 

Amerio, A., Brambilla, A., Morganti, A., Aguglia, A., Bianchi, D., Santi, F., Costantini, L., et al. (2020), “Covid-

19 lockdown: Housing built environment’s effects on mental health”, International Journal of 

Environmental Research and Public Health, MDPI AG, Vol. 17 No. 16, pp. 1–10, doi: 

10.3390/ijerph17165973. 

Anusha, A.S., Sukumaran, P., Sarveswaran, V., Surees Kumar, S., Shyam, A., Akl, T.J., Preejith, S.P., et al. (2020), 

“Electrodermal Activity Based Pre-surgery Stress Detection Using a Wrist Wearable”, IEEE Journal of 

Biomedical and Health Informatics, Institute of Electrical and Electronics Engineers Inc., Vol. 24 No. 1, 

pp. 92–100, doi: 10.1109/JBHI.2019.2893222. 

Attallah, O. (2020), “An Effective Mental Stress State Detection and Evaluation System Using Minimum Number 

of Frontal Brain Electrodes.”, Diagnostics (Basel, Switzerland), MDPI AG, Vol. 10 No. 5, doi: 

10.3390/diagnostics10050292. 

Bin, M.S., Khalifa, O.O. and Saeed, R.A. (2015), “Real-Time Personalized Stress Detection from Physiological 

Signals”, in Saeed, RA and Mokhtar, RA (Ed.), 2015 International Conference on Computing, Control, 

Networking, Electronics and Embedded Systems Engineering (ICCNEEE), pp. 352–356. 

Burton, E.J., Mitchell, L. and Stride, C.B. (2011), “Good places for ageing in place: Development of objective 

built environment measures for investigating links with older people’s wellbeing”, BMC Public Health, 

Vol. 11, doi: 10.1186/1471-2458-11-839. 

Can, Y.S., Arnrich, B. and Ersoy, C. (2019), “Stress detection in daily life scenarios using smart phones and 

wearable sensors: A survey”, Journal of Biomedical Informatics, Academic Press Inc., 1 April, doi: 

10.1016/j.jbi.2019.103139. 

Debard, G., De Witte, N., Sels, R., Mertens, M., Van Daele, T. and Bonroy, B. (2020), “Making Wearable 

Technology Available for Mental Healthcare through an Online Platform with Stress Detection Algorithms: 

The Carewear Project”, JOURNAL OF SENSORS, Vol. 2020, doi: 10.1155/2020/8846077. 

Delmastro, F., Martino, F.D. and Dolciotti, C. (2020), “Cognitive Training and Stress Detection in MCI Frail Older 

People through Wearable Sensors and Machine Learning”, IEEE Access, Vol. 8, pp. 65573–65590, doi: 

10.1109/ACCESS.2020.2985301. 

Elzeiny, S. and Qaraqe, M. (2018), “Blueprint to Workplace Stress Detection Approaches”, 2018 

INTERNATIONAL CONFERENCE ON COMPUTER AND APPLICATIONS (ICCA), pp. 407–412. 

Feng, Z., Li, N., Feng, L., Chen, D. and Zhu, C. (2021), “Leveraging ECG signals and social media for stress 

detection”, BEHAVIOUR \& INFORMATION TECHNOLOGY, Vol. 40 No. 2, pp. 116–133, doi: 

10.1080/0144929X.2019.1673820. 

Getuli, V., & Capone, P. (2018). Computational Workspaces Management: A Workflow to Integrate Workspaces 

Dynamic Planning with 4D BIM, doi: 10.22260/ISARC2018/0155 

Getuli, V., Capone, P., & Bruttini, A. (2020a). Planning, management and administration of HS contents with BIM 

and VR in construction: an implementation protocol. Engineering, Construction and Architectural 

Management, 28(2), 603–623, doi: 10.1108/ECAM-11-2019-0647 

Getuli, V., Capone, P., Bruttini, A., & Isaac, S. (2020b). BIM-based immersive Virtual Reality for construction 

workspace planning: A safety-oriented approach. Automation in Construction, 114, 103160, doi: 

10.1016/j.autcon.2020.103160 

Getuli, V., Capone, P., Bruttini, A., & Sorbi, T. (2020c). A proposal of a site object library for construction workers’ 

safety training using BIM-based immersive virtual reality, 20th International Conference on Construction 

Applications of Virtual Reality, PP. 184-195, ISBN 978-0-9927161-2-7. 



 

 

 
ITcon Vol. 29 (2024),  Getuli et al., pg. 1273 

Getuli, V., Capone, P., Bruttini, A., & Sorbi, T. (2021). A smart objects library for BIM-based construction site and 

emergency management to support mobile VR safety training experiences. Construction Innovation, 22(3), 

504–530, doi: 10.1108/CI-04-2021-0062 

Getuli, V., Fornasari, V., Bruttini, A., Sorbi, T., & Capone, P. (2023). Evaluation of Immersive VR Experiences for 

Safety Training of Construction Workers: A Semi-Qualitative Approach Proposal. In P. Capone, V. Getuli, 

F. Pour Rahimian, N. Dawood, A. Bruttini, & T. Sorbi (Eds.), CONVR 2023 - Proceedings of the 23rd 

International Conference on Construction Applications of Virtual Reality - Managing the Digital 

Transformation of Construction Industry (pp. 288–297). Firenze University Press, doi: 10.36253/979-12-

215-0289-3.27 

Getuli, V., Giusti, T., Capone, P., Sorbi, T., & Bruttini, A. (2018). A Project Framework to Introduce Virtual Reality 

in Construction Health and Safety. 166–175. 

Ghaderi, A., Frounchi, J. and Farnam, A. (2015), “Machine Learning-based Signal Processing Using Physiological 

Signals for Stress Detection”, 2015 22ND IRANIAN CONFERENCE ON BIOMEDICAL 

ENGINEERING (ICBME), pp. 93–98. 

Gjoreski, M., Gjoreski, H., Lutrek, M. and Gams, M. (2015), “Automatic Detection of Perceived Stress in Campus 

Students Using Smartphones”, Proceedings - 2015 International Conference on Intelligent Environments, 

IE 2015, pp. 132–135, doi: 10.1109/IE.2015.27. 

Gunawardhane, S.D.W., De Silva, P.M., Kulathunga, D.S.B. and Arunatileka, S.M.K.D. (2013), “Non Invasive 

Human Stress Detection Using Key Stroke Dynamics and Pattern Variations”, 2013 INTERNATIONAL 

CONFERENCE ON ADVANCES IN ICT FOR EMERGING REGIONS (ICTER), pp. 240–247. 

Healy, M., Donovan, R., Walsh, P. and Zheng, H. (2018), “A Machine Learning Emotion Detection Platform to 

Support Affective Well Being”, in Zheng, H and Callejas, Z and Griol, D and Wang, H and Hu, X and 

Schmidt, H and Baumbach, J and Dickerson, J and Zhang, L (Ed.), PROCEEDINGS 2018 IEEE 

INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), pp. 2694–

2700. 

Kalas, M.S. and Momin, B.F. (2016), “Stress Detection and Reduction using EEG Signals”, 2016 

INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, AND OPTIMIZATION 

TECHNIQUES (ICEEOT), pp. 471–475. 

Kalimeri, K. and Saitis, C. (2016), “Exploring Multimodal Biosignal Features for Stress Detection during Indoor 

Mobility”, in Nakano, YI and Andre, E and Nishida, T and Busso, C and Pelachaud, C (Ed.), ICMI’16: 

PROCEEDINGS OF THE 18TH ACM INTERNATIONAL CONFERENCE ON MULTIMODAL 

INTERACTION, pp. 53–60, doi: 10.1145/2993148.2993159. 

Melone, M.R.S. and Borgo, S. (2020), “Rethinking rules and social practices. The design of urban spaces in the 

post-Covid-19 lockdown”, TEMA-JOURNAL OF LAND USE MOBILITY AND ENVIRONMENT, No. 

SI, pp. 333–341, doi: 10.6092/1970-9870/6923. 

Minguillon, J., Perez, E., Lopez-Gordo, M.A., Pelayo, F. and Sanchez-Carrion, M.J. (2018), “Portable system for 

real-time detection of stress level”, Sensors (Switzerland), MDPI AG, Vol. 18 No. 8, doi: 

10.3390/s18082504. 

Mozos, O.M., Sandulescu, V., Andrews, S., Ellis, D., Bellotto, N., Dobrescu, R. and Ferrandez, J.M. (2017), “Stress 

detection using wearable physiological and sociometric sensors”, International Journal of Neural Systems, 

World Scientific Publishing Co. Pte Ltd, Vol. 27 No. 2, doi: 10.1142/S0129065716500416. 

Pandey, P., Lee, E.K. and Pompili, D. (2016), “A Distributed Computing Framework for Real-Time Detection of 

Stress and of Its Propagation in a Team”, IEEE Journal of Biomedical and Health Informatics, Institute of 

Electrical and Electronics Engineers Inc., Vol. 20 No. 6, pp. 1502–1512, doi: 10.1109/JBHI.2015.2477342. 

Pascoe, M.C., Thompson, D.R. and Ski, C.F. (2017), “Yoga, mindfulness-based stress reduction and stress-related 

physiological measures: A meta-analysis”, Psychoneuroendocrinology, Elsevier Ltd, 1 December, doi: 

10.1016/j.psyneuen.2017.08.008. 



 

 

 
ITcon Vol. 29 (2024),  Getuli et al., pg. 1274 

Qiao, S., Li, X., Zilioli, S., Chen, Z., Deng, H., Pan, J. and Guo, W. (2017), “Hair measurements of cortisol, DHEA, 

and DHEA to cortisol ratio as biomarkers of chronic stress among people living with HIV in China: Known-

group validation”, PLoS ONE, Public Library of Science, Vol. 12 No. 1, doi: 

10.1371/journal.pone.0169827. 

Rachakonda, L., Mohanty, S.P., Kougianos, E. and Sundaravadivel, P. (2019), “Stress-Lysis: A DNN-

Integrated Edge Device for Stress Level Detection in the IoMT”, IEEE TRANSACTIONS ON 

CONSUMER ELECTRONICS, Vol. 65 No. 4, pp. 474–483, doi: 10.1109/TCE.2019.2940472. 

Rani, P., Sims, J., Brackin, R. and Sarkar, N. (2002), “Online stress detection using psychophysiological signals 

for implicit human-robot cooperation”, ROBOTICA, Vol. 20 No. 6, pp. 673–685, doi: 

10.1017/S0263574702004484. 

Reanaree, P., Tananchana, P., Narongwongwathana, W. and Pintavirooj, C. (2016), “Stress and Office-Syndrome 

Detection using EEG, HRV and Hand Movement”, 2016 9TH BIOMEDICAL ENGINEERING 

INTERNATIONAL CONFERENCE (BMEICON). 

Sağbaş, E.A., Korukoglu, S. and Balli, S. (2020), “Stress Detection via Keyboard Typing Behaviors by Using 

Smartphone Sensors and Machine Learning Techniques”, Journal of Medical Systems, Vol. 44 No. 4, doi: 

10.1007/s10916-020-1530-z. 

Sriramprakash, S., Prasanna, V.D. and Murthy, O.V.R. (2017), “Stress Detection in Working People”, Procedia 

Computer Science, Vol. 115, pp. 359–366, doi: 10.1016/j.procs.2017.09.090. 

Turk Z. (1991). Integration of Existing Programs Using Frames, CIB Seminar Computer Integrated Future, 16-17 

September, Eindhoven, Netherlands. 

Vizer, L.M., Zhou, L. and Sears, A. (2009), “Automated stress detection using keystroke and linguistic features: 

An exploratory study”, INTERNATIONAL JOURNAL OF HUMAN-COMPUTER STUDIES, Vol. 67 No. 

10, pp. 870–886, doi: 10.1016/j.ijhcs.2009.07.005. 

Wells, S., Tremblay, P.F., Flynn, A., Russell, E., Kennedy, J., Rehm, J., Van Uum, S., et al. (2014), “Associations 

of hair cortisol concentration with self-reported measures of stress and mental health-related factors in a 

pooled database of diverse community samples”, Stress, Informa Healthcare, Vol. 17 No. 4, pp. 334–342, 

doi: 10.3109/10253890.2014.930432. 

Zalabarria, U., Irigoyen, E., Martinez, R. and Salazar-Ramirez, A. (2017), “Detection of Stress Level and Phases 

by Advanced Physiological Signal Processing Based on Fuzzy Logic”, in Grana, M and LopezGuede, JM 

and Etxaniz, O and Herrero, A and Quintian, H and Corchado, E (Ed.), INTERNATIONAL JOINT 

CONFERENCE SOCO’16- CISIS’16-ICEUTE’16, Vol. 527, pp. 301–312, doi: 10.1007/978-3-319-47364-

2\_29. 

Zhang, H., Feng, L., Li, N., Jin, Z. and Cao, L. (2020), “Video-based stress detection through deep learning”, 

Sensors (Switzerland), MDPI AG, Vol. 20 No. 19, pp. 1–17, doi: 10.3390/s20195552. 

Zhao, L., Li, Q., Xue, Y., Jia, J. and Feng, L. (2016), “A systematic exploration of the micro-blog feature space for 

teens stress detection.”, Health Information Science and Systems, Springer Science and Business Media 

LLC, Vol. 4 No. 1, p. 3, doi: 10.1186/s13755-016-0016-3. 

P. Capone, V. Getuli and T. Giusti (2014), “Constructability and safety performance based design: a design and 

assessment tool for the building process”, 31st International Symposium on Automation and Robotics in 

Construction and Mining (ISARC 2014), pp. 313-320, ISBN 978-0-646-59711-9, Scopus 2-s2.0-

84912544527. 

V. Getuli, P. Capone and A. Bruttini (2019), “ Game technology and Building information Modelling for the 

adoption of Virtual Reality in construction safety training: a prototype protocol”, 36th CIB W78 2019 

Conference - Advances in ICT in Design, Construction & Management in Architecture, Engineering, 

Construction and Operations (AECO), pp. 594-607, ISBN 9781861354877, https://eres.scix.net/pdfs/w78-

2019-paper-057.pdf 

  


	INTEGRATION OF HUMAN WELL-BEING IN DIGITAL CONSTRUCTION PROCESSES AND DIGITAL TWINS: A SYSTEMATIC REVIEW OF STRESS DETECTION PARAMETERS AND TOOLS TO SUPPORT HUMAN-CENTRIC CONSTRUCTION PROCESSES
	1. INTRODUCTION
	2. APPLIED METHODOLOGY
	2.1 Data collection
	2.2 Analysis of relevant articles

	3. LITERATURE REVIEW FINDINGS
	3.1 Identification of the main stress detection parameters for stress detection to be implemented for evaluating immersive experience
	3.1.1 Electrodermal activity (EDA)
	3.1.2 Heart Rate Variability (HRV)
	3.1.3 Electroencephalogram (EEG)
	3.1.4 Electromyogram (EMG)
	3.1.5 Cortisol
	3.1.6 Human Body Temperature
	3.1.7 Pupil diameter
	3.1.8 Breathing rate
	3.1.9 Sensor data (accelerometer and gyroscope)
	3.1.10 Real-time Video-Facial Muscle Detection
	3.1.11 Others

	3.2 Identification of the main adopted techniques for stress detection to be implemented for evaluating immersive experience
	3.2.1 Wearable devices
	3.2.2 Smartphones
	3.2.3 Machine learning
	3.2.4 Neurosky headset
	3.2.5 Applied sensors
	3.2.6 Images/video/ audio capturing tools


	4. CONCLUSION AND DISCUSSIONS
	References


