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SUMMARY: Asphalt pavement cracks constitute a prevalent and severe distress of surfacing materials and before 

selecting the appropriate repair strategy, the type of deterioration must be classified to identify root causes. 

Efficient detection and classification minimize concomitant costs and simultaneously increase pavement service 

life. This study adopts convolutional neural networks (CNN) for asphalt pavement crack detection using secondary 

data available via the CRACK500 dataset and other datasets provided by GitHub. This dataset had four types of 

cracks viz.: horizontal, vertical, diagonal and alligator. Five pre-trained CNN models trained by ImageNet were 

also trained and evaluated for transfer learning. Emergent results demonstrate that the EfficientNet B3 is the most 

reliable model and achieved results of 94% F1_Score and 94% accuracy. This model was trained on the same 

dataset by performing transfer learning on pre-trained weights of ImageNet and fine-tuning the CNN. Results 

revealed that the modified model shows better classification performance with 96% F1_Score and 96% accuracy. 

This high classification accuracy was achieved by a combination of effective transfer-learning of ImageNet weight 

and fine-tuning of the top layers of EfficientNet B3 architecture to satisfy classification requirements. Finally, 

confusion matrices demonstrated that some classes of cracks performed better than others in terms of 

generalization. Further additional advancement with fine-tuned pre-trained models is therefore required. This 

study showed that the high classification results resulted from using a successful transfer learning of ImageNet 

weights, and fine-tuning. 

KEYWORDS: Convolutional Neural Networks; CNN; Deep Learning; Transfer Learning, Multiclass 

Classification; Asphalt Pavement.  
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1. INTRODUCTION 

Asphalt pavement cracking is a serious issue that significantly impairs surface performance. A pavement crack is 

defined as an unintended discontinuity or a damage compromising the integrity of the pavement surface. These 

cracks are frequently attributed to external environmental factors, such as moisture variations, subgrade expansion, 

chemical shrinkage, frost, precipitation, flooding, ultraviolet (UV) radiation, and the repeated passage of heavy 

loads (Baduge et al., 2023). Surface cracks facilitate water infiltration into the pavement structure, further 

worsening the damage and ultimately compromising the pavement's base. Cracks can be classified into various 

types, including longitudinal, transverse, diagonal, block, alligator, and irregular patterns (Canestrari and Ingrassia, 

2020). 

While cracks represent a key indicator of pavement condition assessment (Guo et al., 2022), traditional crack 

classification mostly relies on time-consuming, costly and risky manual inspection (Yang et al., 2020). Moreover, 

manual inspection is inefficient and unreliable due to human subjectivity and tacit knowledge of inspectors. Indeed, 

extant literature reports variations in routine inspection practices and significant differences in crack classification 

outcomes (Dais et al., 2021). To augment inspection performance, advancements in AI offer innovative deep 

learning (DL) solutions to enhance crack detection accuracy and efficiency while minimizing human error (Tran 

et al., 2021). As an established DL technology, convolutional neural networks (CNN) have achieved advanced 

human-competitive performance in computer vision activities like object identification, image classification, and 

semantic segmentation (LeCun et al., 2015, Krizhevsky et al., 2017). Unlike traditional image analysis methods 

that depends on manually defined rules, CNNs automatically extract multi-level feature representations (Liu et al., 

2019). Several studies have highlighted the growing efficacy of CNNs as a robust tool for crack detection 

(Gopalakrishnan et al., 2017, Mandal et al., 2018, Huyan et al., 2020). 

However, training a CNN requires enormous volumes of properly collected data to ensure that adequate training 

data is available to engender accurate outcomes and avoid underfitting (i.e., CNN performs poorly on training data 

and new data from the problem domain) (Kim et al., 2018). Transfer learning techniques, which leverage 

knowledge from previously trained CNN models, are utilized to mitigate the risk of underfitting (Yang et al., 2020). 

These CNNs are employed in transfer learning by utilizing weights pre-trained on the ImageNet dataset. ImageNet 

provides a publicly accessible database of images designed to support the training of large-scale object recognition 

models (Feng et al., 2019). Various studies have applied transfer learning to establish classifiers for crack detection 

viz.: MobileNet (Hou et al., 2021, Hernanda et al., 2022); VGG (Gopalakrishnan et al., 2017, Dung et al., 2019, 

Rubio et al., 2019, Guzmán-Torres et al., 2022, Brien et al., 2023); GoogleNet (Jang et al., 2019, Yang et al., 2021, 

Elghaish et al., 2022); U-Net (Liu et al., 2019, Yang et al., 2021, Matarneh et al., 2024); Res-Net (Augustauskas 

and Lipnickas, 2020, Wang and Guo, 2021, Yoon et al., 2022); Inception (Feng et al., 2019, Ali et al., 2022, Wu et 

al., 2021a); AlexNet; YOLO (Liu et al., 2022c, Teng et al., 2022); and EfficientNet (Teng et al., 2022, Liu et al., 

2022b). 

Given the aforementioned context of rapidly evolving technology development, this present study introduces a 

modified pre-trained CNN model based on EfficientNetB3 to detect different types of asphalt pavement surface 

cracks. Therefore, this study investigates the classification performance of different ImageNet pre-trained models 

on the Crack500 dataset and employs transfer learning and fine-tuning to enhance the classification accuracy of 

the pre-trained models.  

1.1 Convolutional neural networks for crack detection 

Images can be classified using CNN in three categories namely: 1) semantic segmentation - which offers 

information about the specific length, width or location of any crack due to its capability of assigning a class label 

to each pixel (Li et al., 2018, Liu et al., 2019, Choi and Cha, 2020, Yang et al., 2021); 2) patch classification – 

where each patch is assigned a class label after dividing images into patches; and 3) boundary box regression – 

where the box bounds the identified crack and shows its location and boundaries (Zhang et al., 2019). However, 

the latter two categories have been extensively used for identifying cracks and have proven positive outcomes 

(Cha et al., 2017, Feng et al., 2019). Unlike these two categories which are implemented at block level, semantic 

segmentation is implemented at pixel level and has gathered application momentum in recent studies (Tang et al., 

2022).  

To identify and categorize cracks in asphalt pavements, Tran et al. (2021) utilized an improved faster R-CNN 
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(RetinaNet) to train and label asphalt images. The results of this study revealed that the RetinaNet’s classification 

accuracy was 84.9% considering both the type and severity level of cracks. Similarly, Li et al. (2022) established 

a strategy for pavement surface condition index (PCI) using a genetic algorithm (GA) and CNN algorithm.  The 

authors classified pavement crack type in five thousand pavement distress images with an accuracy reaching 98%, 

and image processing time of 0.047 seconds. To understand the crack features in the intricate fine-grain asphalt 

pavement background, Wu et al. (2021a) employed a full CNN to combine features acquired from various scales 

of convolutional kernels, the DenseNet and the deconvolution network to accomplish pixel-level recognition. 

Emergent results indicated that the adopted method reported significant segmentation results for twelve types of 

cracks. Teng et al. (2022) developed DeepLab_v3+, a pixel-level segmentation CNN, to segment cracks by 

calculating their length and width to a reported accuracy and F-score values of 80, 97.5 and 78% respectively. Fan 

et al. (2022) reported upon the results of a deep residual convolutional neural network (Parallel ResNet) to develop 

a pavement crack detection and measurement system with high-performance i.e., precision (94.27%), recall 

(92.52%) and F1 (93.08%). Based on a spatial channel hierarchical network, a more accurate and efficient crack 

detection process was proposed by Pan et al. (2020) using the Visual Geometry Group 19 (VGG19). To examine 

inner cracks in the turbine blade thermal barrier coating, Shi et al. (2022) used VGG19 in addition to a Multi-Scale 

Enhanced-Faster R-CNN (MSE-Faster R-CNN) to create prospective crack locations. Results showed that the 

suggested approach can precisely locate cracks on different scales (89.8%) and detect them (80.6%). 

Recent studies have employed a variety of CNNs, including Tan et al. (2021) who utilized the YOLOv3 to automate 

the recognition of sewage pipe deficiencies. The study concentrated on enhancing the model structure, bounding 

box prediction, data expansion and loss function. The proposed model achieved a mean average precision (mAP) 

value of 92%, which is greater than the level of accuracy achieved in previous related studies. Lu et al. (2022) 

utilized YOLOv5 and the multiple sliding windows method to detect defects in ceramic tiles surfaces.  

Similarly, Yao et al. (2022) developed twelve distinct attention models for pavement crack detection using 

YOLOv5. Their study demonstrated that the model could process images at a rate of 13.15 ms per image while 

achieving a precision of 94.4%.  Li et al. (2020) employed U-Net with alternately updated clique (CliqueNet), 

called U-CliqueNet to separate cracks from the background of tunnel images. The developed network  was trained 

on a large dataset containing 50,000 images and tested on 10,000 images. The model attained positive results with 

92.25% mean pixel accuracy (MPA), 86.96% mean intersection over union (MIoU), 86.32% precision and 83.40% 

F1-score. Liu et al. (2019) employed U-Net for concrete crack detection in raw images, achieving precision values 

of 0.9 across various complex scenarios. Huyan et al. (2020) constructed a U-shaped model structure by utilizing 

convolution, pooling, transpose convolution, and concatenation operations. Their results indicated that the model 

achieved 99.01% accuracy, 98.56% precision, 97.98% recall, and 98.42% F-measure with a learning rate of 10^2. 

Recently, several studies adopted the generative network along with the DL models. For instance, Mazzini et al. 

(2020) proposed a CNN to augment data of highly textured images within the framework of semantic 

segmentation. In their study  a Generative Adversarial Network (GAN) was used to develop a semantic layout, 

and a texture synthesizer (based on a CNN), to produce a new image. This approach was evaluated using the 

dataset of German Pavement Distress and the results of evaluation revealed a substantial improvement in prediction 

performance. Pei et al. (2021) developed a method using advanced deep convolutional generative adversarial 

networks (DCGANs) to solve the problem of crack identification in asphalt pavement small size images. The 

outcomes presented that the average precision of the proposed model is 90.32%. Dong et al. (2022) used StyleGAN 

and a feature fusion model to solve the issue of realizing precise and effective pixel-level segmentation of 

pavement damage. Results showed that the suggested model segmentation could achieve above 0.918 mAP (mean 

Average Precision) value for segmentation, and it has evident benefits for the map and cross cracks segmentation. 

1.2 Pre-trained CNN for crack detection 

Existing CNN models have a tendency for being quite complex and require a huge dataset to prevent overfitting 

and therefore, to solve these problems transfer learning is increasingly utilized (Dawson et al., 2023). Transfer 

learning is a machine learning technique that uses pre-trained DL models to resolve a new problem that is related 

to the original problem the model was initially trained to solve (Pan and Yang, 2010). Recently, transfer learning 

in DL has been widely applied across various approaches. For example, to assess the effectiveness of DCNNs in 

the pavement cracks classification, Ranjbar et al. (2021) used different pre-trained networks, namely: DenseNet-

201, GoogleNet, AlexNet, SqueezNet, ResNet-18, ResNet-50, ResNet-101 and Inception-v3. In this study, a more 
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efficient technique for crack segmentation was created using a wavelet transform module with more regularized 

metrics. According to the study's findings, retrained classifier models produced accurate results with a confusion 

matrix-based performance range of 94% to 99%.  Moreover, the constructed wavelet module was capable of clearly 

segmenting crack pixels [ibid]. Wu et al. (2021b) used DenseNet, multi-scale CNN and SVM classifier to segment 

12 different crack types and produce superior pavement crack segmentation comparing to the most sophisticated 

alternative methods Hernanda et al. (2022) employed a DL CNN with a pre-trained SSD MobileNetV2 network 

after altering the hyperparameter. Results showed a higher mean average precision (mAP) of 0.0869 and a lower 

total loss training of 0.6028. Ha et al. (2022) classified five types of cracks (alligator crack, longitudinal crack, 

transverse crack, pothole and patching) by developing a system utilizing SqueezeNet, U-Net and Mobilenet-SSD 

models together. Emergent results reported that the system accuracy was 91.2%. Fan et al. (2022) adopted the 

Parallel ResNet to develop a deep residual CNN to establish a high-performance system to detect and measure 

pavement crack. The highest scores for precision (94.27%), recall (92.52%) and F1 (93.08%) were achieved [ibid]. 

Another pretrained deep CNN model for crack identification is presented using hybrid images and GoogLeNet 

(Jang et al., 2019).  

The proposed model was tested and validated utilizing various sizes of concrete sampling and showed that macro- 

and micro-cracks were effectively identified utilizing hybrid images. Qu et al. (2022) also modelled crack 

segmentation using a CNN network and transformer. To increase the performance of the feature representation, 

the authors employed UNet++ and polarized self-attention. In addition, they replaced the last layer of feature 

extraction by the transformer. The study results exhibited that the developed model showed its efficacy with F-

score values of 0.856, 0.700 and 0.637 on three different datasets. Xu and Liu (2022) proposed a detection method 

under small samples by combining a generative adversarial network (GAN) and a CNN architecture. After training 

and analyzing the dataset using the transfer learning technique, results showed that the detection accuracy 

improved considerably from 80.75% to 91.61% thus, proving the effectiveness of the extended data. 

Recently, several studies compared various CNNs and reported different results (Cha et al., 2017, Feng et al., 2019, 

Liu et al., 2022b, Matarneh et al., 2024). Yang et al. (2021) evaluated the performance of three CNNs, namely: 

AlexNet, ResNet18 and VGGNet13 and concluded that ResNet18 (accuracy 98.8%) outperforms the other two 

models. Another study assessed four CNNs (i.e., Inception-V3, VGG-16, VGG-19 and Resnet-50) and compared 

them with the proposed customized CNN model (Ali et al., 2022). The authors  developed their CNN model based 

on spatial or sequential features and Adam optimizer for crack localization and detection in concrete structures 

using eight datasets. The research concluded that all models performed well on a small set of various training data; 

though, as the quantity and diversity of the training data increased, generalization performance decreased, and 

overfitting resulted. Additionally, the tailored CNN and VGG-16 models showed superior cracking localization 

and identification for concrete structures. (Wang and Guo 2021) developed transfer learning-based methods for 

fatigue crack initiation sites identification using three CNNs (i.e., feature pyramid network (FPN), ResNet-101 

and VGG-16), to extract features along with the backbone model - a faster R-CNN.  

The ResNet model outperformed the other two in terms of accuracy and training expense. Pozzer et al. (2021) used 

thermographic and regular photos taken from a variety of distances and angles to test the effectiveness of multiple 

deep neural network models in concrete cracks identification. The MobileNetV2 performed admirably in detecting 

multiclass damages in thermal pictures while in contrast, the VGG 16 model showed improved precision by 

reducing the rate of erroneous detections [ibid]. Elsewhere, Elghaish et al. (2022) evaluated four pre-trained CNN 

models (i.e., AlexNet, VGG16, VGG19 and GoogleNet) in crack detection for highways and observed that the 

accuracies of all pre-trained models are higher (97.72%) than averages and the calculated accuracies for AlexNet 

and GoogleNet models by more than 5%.  

The application of AlexNet, SE-Net, and ResNet with a variety of configurations was explored by Liu et al. (2022a) 

who applied a two-step data pre-processing to decrease the bias of the CNN model. The study used data 

augmentation in the beginning to increase the dataset. The original image was then transformed into a binary black-

and-white image using a crack extraction technique; the ResNet with 50 layers exhibited the highest test accuracy.  

Loverdos and Sarhosis (2022) evaluated different DL networks (U-Net, DeepLabV3+, U-Net (SM), LinkNet (SM) 

and FPN (SM)) to advance automation in brick segmentation and crack detection of masonry walls.  Emergent 

findings revealed that DL offers superior outcomes than conventional image-processing techniques for brick 

segmentation. 
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Table 1: Comparison between existing studies used transfer learning and optimisation methods for crack detection 

and classification. Part One. 

Reference  Aim  Method Results  Limitations 

Dawson et 

al., (2023) 

To evaluate the 

performance of different 

CNN architectures for 

carbonate rock 
classification using 

transfer learning. 

Used datasets with varying 

sizes (7k, 42k, 104k 

images), trained nine CNN 

architectures, and applied 
transfer learning. 

Inception-v3 achieved 92% 

accuracy on the largest 

dataset; dataset size strongly 

affects performance. 

Models showed overfitting 

on smaller datasets; findings 

highlight challenges for 

small geological datasets. 

Ranjbar et 

al. (2021) 

To develop a reliable 

system for pavement 

crack detection and 
classification using pre-

trained deep CNNs and 

wavelet transform. 

Retrained pre-trained 

DCNNs (e.g., AlexNet, 

ResNet) using transfer 
learning, with wavelet 

transform for 

segmentation. 

Achieved reliable crack 

classification with accuracies 

ranging from 94% to 99%; 
wavelet transform improved 

segmentation. 

Some models showed slower 

performance; requires large 

labeled datasets for training 
despite using transfer 

learning. 

Hernanda et 

al. (2022) 

Optimize road pothole 

and crack detection 
using CNN with SSD 

MobileNet V2 and 

hyperparameter tuning. 

Adjust hyperparameters in 

pre-trained CNN and 
compare mAP and loss 

values with prior systems. 

Improved detection with 

optimal mAP and reduced 
loss values. Validated 

effectiveness of the approach 

in road inspections. 

Dataset and pre-trained 

model dependency may limit 
adaptability to new 

conditions or datasets. 

Ha et al. 

(2022) 

Automate detection, 

classification, and 
severity assessment of 

road cracks using deep 

learning models. 

Use SqueezeNet, U-Net, 

and Mobilenet-SSD 
models for segmentation 

and severity evaluation. 

Achieved 91.2% accuracy 

for crack type and severity 
detection. Demonstrated 

enhanced performance for 

pavement management 

systems. 

Limited crack types and 

specific dataset constraints 
reduce generalizability. 

Fan et al. 
(2022) 

Develop a high-
performance pavement 

crack detection method 

addressing noise and 

topology issues. 

Introduced Parallel ResNet 
to minimize noise and 

accurately identify cracks 

in public datasets 

(CrackTree200, CFD). 

Achieved high precision and 
recall scores (e.g., F1 score 

~95%). Enhanced ability to 

segment crack features 

amidst noise. 

Dependency on specific 
datasets and computational 

complexity for large-scale 

real-world deploymen 

Qu et al. 
(2022) 

Address challenges in 
long dependencies and 

global context loss in 

crack segmentation 

using CNN and 
transformer techniques. 

Developed CrackT-Net 
using enriched features 

(RF UNet++) with 

transformers for better 

feature representation and 
segmentation. 

Improved F1 scores across 
datasets (e.g., DeepCrack: 

0.859). Enhanced global 

context understanding and 

segmentation capabilities. 

Computational cost of 
transformer models and 

reliance on specific datasets. 

Xu and Liu 

(2022) 

Develop crack detection 

methods using small 

sample datasets with 

GANs for data 
augmentation and CNN 

for detection 

Applied GANs for data 

augmentation and CNN 

models with transfer 

learning to improve 
accuracy. 

Increased accuracy from 

80.75% to 91.61% after 

GAN-based augmentation. 

Significant improvement in 
crack detection for limited 

datasets. 

Limited effectiveness for 

highly diverse datasets. 

Dependency on GAN-

generated data quality. 

 

Table 1 provides a comprehensive summary of various studies utilizing transfer learning (TL) techniques for crack 

detection and classification. Although TL methods have achieved significant success in this domain, a critical 

review of the literature reveals several limitations. Notably, only a limited number of studies have undertaken a 

systematic evaluation of multiple pre-trained CNN models, highlighting the need for a more thorough investigation 

into their comparative performance in crack classification. Furthermore, prior research has addressed the 

optimization of pre-trained CNN architectures, with most efforts confined to applying existing optimization 

algorithms to enhance these models. A detailed comparative analysis of pre-trained CNN models, however, can 

yield valuable insights into the potential of fine-tuning their architectural layers to improve performance. This 

approach not only refines the models but also contributes to the development of robust, automated TL-based 

systems for crack classification. 

 

To address these gaps, the present study goes beyond the standard application of transfer learning by emphasizing 

comprehensive model evaluation, layer optimization, and generalizability. Unlike prior works that primarily test 

pre-existing architectures, this study explores the structural adaptability of pre-trained CNNs, demonstrating how 

fine-tuning specific layers can significantly improve model performance. Additionally, the study introduces a 

robust methodology for selecting optimal architectures tailored to crack detection, which fills a critical gap in the 

literature. 
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Table 1: Comparison between existing studies used transfer learning and optimisation methods for crack detection 

and classification. Part Two. 

Reference  Aim  Method Results  Limitations 

Matarneh et 

al., (2024) 

Optimize pre-trained 

CNNs for detecting 

and classifying 

pavement cracks with 
a focus on 

DenseNet201 and 

other architectures. 

Compared ten pre-trained 

models, optimized 

DenseNet201 with feature 

selection and noise-
resistance methods. 

DenseNet201 and GWO 

optimizer achieved highest 

accuracy and noise 

robustness. Highlighted 
effectiveness of transfer 

learning in reducing training 

time and errors. 

Inconsistent performance of 

other CNN models (e.g., 

VGG16) and dependency on 

pre-trained models for 
scalability. 

Lu et al. 

(2022) 

Develop an 

intelligent YOLOv5-
based system for 

defect detection in 

ceramic tiles. 

Optimized YOLOv5 with 

Shufflenetv2 backbone and 
multiple sliding windows 

for feature extraction and 

classification. 

Improved mAP to 96.73%, 

with reduced parameters and 
computational cost compared 

to baseline YOLOv5. 

Limited to ceramic tiles with 

specific defect 
characteristics; effectiveness 

may vary for other surface 

types. 

Liu et al. 

(2022a) 

Classify asphalt 

pavement crack 
severity levels using 

CNNs and 

thermography. 

Compared thirteen CNN 

models using datasets of 
visible, infrared, and fused 

images; applied transfer 

learning. 

EfficientNet-B3 achieved the 

best accuracy for all image 
types. Infrared imaging 

improved detection in low-

light conditions. 

Misclassification occurred 

primarily at medium and 
high severity levels. Dataset 

biases and varying imaging 

conditions may affect 

reliability. 

Wang and Guo 
(2021) 

Automate 
identification of 

fatigue crack 

initiation sites in 

engineering 

structures. 

Employed Faster R-CNN 
with VGG-16, ResNet-101, 

and FPN as feature 

extractors for transfer 

learning. 

ResNet-101 achieved the 
highest accuracy (95.9%), 

balancing precision and 

training costs. 

Limited by small dataset size 
and image characteristics like 

low contrast and resolution. 

Yang et al. 

(2021) 

Use deep learning to 

detect and recognize 

structural cracks. 

Compared AlexNet, 

VGGNet13, ResNet18, and 

YOLOv3 for crack 

detection and recognition. 

ResNet18 provided superior 

image recognition, while 

YOLOv3 excelled in real-

time crack area detection 

with high precision. 

Dependency on manually 

collected and augmented 

datasets; performance varies 

under adverse environmental 

conditions like poor lighting. 

Pozzer et al. 

(2021) 

Assess deep learning 

methods for detecting 

defects in damaged 

concrete using 
thermal and regular 

imaging. 

Trained CNN models 

(MobileNetV2, VGG16) 

on thermal and regular 

images for multiclass 
defect detection (cracks, 

spalling). 

MobileNetV2 achieved 

79.7% accuracy in thermal 

imaging for multiclass 

damage detection; VGG16 
reduced false positives 

effectively. 

Limited generalizability to 

diverse conditions; model 

performance varies 

significantly with viewpoint 
and distance in real-world 

settings. 

Louati et al., 

(2022) 

Optimize CNN 

architecture and 

compression jointly 
using bi-level 

optimization. 

Employed co-evolutionary 

migration-based algorithm 

(CEMBA) for architectural 
design and filter pruning. 

Achieved lightweight, 

optimized CNN architectures 

with reduced parameters 
while maintaining high 

accuracy on CIFAR and 

ImageNet datasets. 

High computational cost for 

the optimization process; 

limited evaluation on small-
scale datasets and specific 

architectures. 

In summary, this study addresses these gaps by: 

• Conducting a systematic comparison of five pre-trained CNN models, evaluating their transfer learning 

potential for crack detection to identify the most effective architecture. 

• Introducing a novel approach to optimize CNN layers, focusing on refining internal structures to enhance 

both accuracy and computational efficiency. 

• Evaluating performance using diverse datasets, including varying crack types and environmental settings, 

to ensure the model's robustness and generalizability. 

• Highlighting fine-tuned transfer learning as a strategy to mitigate overfitting and enhance the adaptability 

of pre-trained CNNs for crack detection tasks. 

2. METHODOLOGY 

This empirical research adopted a positivist philosophy and deductive reasoning (Edwards et al., 2020) to analyze 

secondary image data obtained from open-source databases to accurately model the phenomenon under 

investigation. Such an approach has been extensively used previously to evaluate risk factors impacting upon 

public-private partnerships (Kukah et al., 2022); assess the risk associate with sustainable housing (Adabre et al., 

2022); and model construction machinery stability (Edwards et al., 2019). Therefore, this well-established 
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approach is deemed suitable for the present study. 

2.1 Transfer learning 

The primary objective of transfer learning is to improve the learning of the target prediction function by leveraging 

knowledge from the source domain and associated learning tasks (Pan and Yang, 2010). Transfer learning typically 

employs four key techniques viz.: transferring instances knowledge; transferring feature representations 

knowledge; transferring parameter knowledge; and transferring relation knowledge (Pan and Yang, 2010). There 

are four basic types of transfer learning used in CNN networks viz.: network transfer learning; adversarial transfer 

learning; instance-based transfer learning; and mapping transfer learning (Tan et al., 2018). The use of transfer 

learning has proven effective in pavement crack detection (Gopalakrishnan et al., 2017, Joshi et al., 2022, Liu et 

al., 2022b, Ranjbar et al., 2021, Xu and Liu, 2022).  

When using CNN to categorize the asphalt pavement cracks severity, there are two primary processes (Figure 1). 

First, very large picture datasets for the source domain (frequently ImageNet which has 1.2 million images with 

1000 categories) are used to train the CNN model (Deng et al., 2009). The pre-trained CNN network (otherwise 

known as the CNN trained network), is available via web resources (Paszke et al., 2019). Secondly, the architecture 

for the target domain is the pre-trained CNN architecture. Unlike existing studies which focused on utilizing the 

existing pre-trained CNN architectures, this study retrained the pre-trained convolutional layers parameters, then 

modified the fully connected layers (FC layers) to satisfy the requirements of the stated output labels (four labels 

in this case viz.: alligator; diagonal; horizontal; and longitudinal). The modified pre-trained CNN model is then 

improved (trained and assessed) using the study dataset. 

 

Figure 1: A transfer learning strategy using a trained CNN for identifying asphalt pavement cracks. 

2.2 Performance evaluation metrics 

The most typical accuracy measures for the crack classification task involve precision, accuracy, recall, F1 score 
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and confusion matrix (Yacouby & Axman, 2020). Classification accuracy is defined as the total number of correct 

predictions divided by the total number of predictions made for a given dataset (Ilse et al., 2020) and is calculated 

as follows:  

                                                                  (1)                               

Precision as shown in equation (2) is another metric which calculates the total of correct positive predictions made. 

Thus, precision is a metric used to calculate the accuracy for the marginal class (Ilse et al., 2020).  

                                                                                                             (2)                                                                                                            

Recall as shown in equation (3) is a metric that measures the proportion of correct positive predictions out of all 

possible positive instances. In contrast to precision, which reflects the accuracy of positive predictions, recall 

provides insight into the number of missed positive predictions. Therefore, recall gives an indication of the model's 

coverage of the positive class (Ilse et al., 2020). 

                                                                                                                  (3) 

The F1-score combines both precision and recall into a single metric, effectively capturing both aspects of model 

performance. After calculating precision and recall for either a binary or multiclass classification task, these two 

metrics are used to compute the F1-score (Ilse et al., 2020) as shown in equation (4). 

                                                                                                                                      (4) 

The classification problem is frequently related to the multi-class classification, which classifies instances into 

three or more classes (Ilse et al., 2020). Precision, recall and F1 score can be classified into three categories for 

multi-class classification viz.: ‘macro’, ‘micro’ and ‘weighted’.  In macro averaging, the multiclass predictions are 

reduced into various sets of binary predictions, the corresponding metric is determined for each of the binary cases, 

and the results are averaged for k classes (Luo & Uzuner, 2014) as shown in equations (5), (6) and (7). 

                                                                                    (5) 

                                                                                          (6) 

                                                                                                 (7)                                                

Micro averaging treats the entire set of data as an aggregate result and calculates 1 metric rather than k metrics 

that get averaged together. Like macro, weighted determines the weighted mean by taking label imbalance into 

account (Luo & Uzuner, 2014) as shown in equations (8), (9), and (10).  

                                                              (8)       

                                                          (9) 

                                                            (10) 

2.3 Pre-trained models hyperparameters 

The CNN model was developed based on web resources (Paszke et al., 2019). This online repository contains an 

op-for-op PyTorch reimplementation of various pre-trained models. Five pre-trained models are used in this study; 

details about the models are provided in Table 2. 
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Table 2: The pre trained CNN model details. 

In these pretrained models the raw images are pre-processed by resizing and normalising all images to become 

224 × 224. The learning rate (0.001), training epoch (10) and batch size of 64.  

2.4 Dataset 

The study utilised public datasets that were obtained from the GitHub website. The main dataset used is 

CRACK500, consisting of 500 images, each with a size of around 2,000 × 1,500 pixels. The images were taken 

on the main campus of Temple University using mobile phones. Yang et al. (2019) augmented the images number 

by splitting each image into 16 separate regions without overlap. Only the regions that included more than 1,000 

pixels of crack were retained. This method increased the size of the training dataset by incorporating 1,896 

additional photos. To evaluate the pre-trained CNN models, additional datasets from GitHub are combined with 

the primary dataset to create 2,380 pavement crack images. The dataset's images are divided into four groups (to 

represent the four types of cracks: longitudinal, horizontal, diagonal and alligator) as shown in Table 3. A random 

selection of 20% of the collected images were pooled to create the test set (see Table 3).  

Table 3: Dataset groups summary. 

Dataset Longitudinal Horizontal Diagonal Alligator Total 

Train 547 546 543 209 1845 

Test 160 160 160 55 535 

Total  707 706 703 264 2380 

3. RESULTS 

This section presents and discusses the results of the study, including results of the loss, and accuracy metrics.   

3.1 Loss 

 

Figure 2:  Loss curves of the training and validation for (a) DenseNet121, (b) EfficientNetB0, (c) EfficientNetB3, 

(d) MobileNet, and (e) MobileNetV2. 

The loss value varied throughout the first few epochs but as the epoch increased, it decreased and proceeded to 

No. Model name Total params 

1 DenseNet121 7M 

2 EfficientNetB0 4M 

3 EfficientNetB3 10.8M 

4 MobileNet 3.2M 

5 MobileNetV2 2.2M 
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converge (refer to Figure 2). Among all models, DeneseNet121 was the most volatile, whereas the variations of 

the other four models were smoother as shown in Figure 2 (a,b,c,d and e). However, the EfficientNet-B3 model 

has the smoothest variation among all other models and tended to converge faster than the other four models.  

3.2 Accuracy metrics 

The purpose of this research was to identify and classify cracks utilising a dataset of pavement images and five 

pre-trained CNN models: DenseNet-121, EfficientNet-B0, EfficientNet-B3, MobileNet, and MobileNetV2. These 

models were trained and tested, and subsequently validated. Each pre-trained CNN model performance was 

measured using several key metrics, including, F1-score, recall, accuracy, and precision, which are commonly 

utilised to assess CNN model performance.  

Accuracy, for example, serves as an indicator of the model’s ability to correctly identify and categorize cracks 

relative to the total number of detection iterations performed. Figure 3 presents the accuracy metric values of 

MobileNet started out very high with an accuracy of 0.6475 during the whole training procedure. Contrarily, 

DenseNet-121 started with a moderate accuracy of 0.4580, whereas MobileNetV2, EfficientNetB0 and 

EfficientNet-B3 started with comparatively low accuracy of 0.3263, 0.3581 and 0.3870, respectively. Conversely, 

the EfficientNet-B3 accuracy metrics increased quickly as the epoch augmented and suddenly exceeded that of 

DenseNet-121 around Epoch 9.  

The recall metric reflects the ability of the model to correctly detect positive instances. A strong relationship exists 

between the number of positive instances detected and recall; with the greater recall values indicating a greater 

number of correctly identified positive instances.  

 

Figure 3:  Accuracy metrics of the training and validation for (a) DenseNet121, (b) EfficientNetB0, (c) 

EfficientNetB3, (d) MobileNet, and (e) MobileNetV2. 

The results indicate that EfficientNet-B3 realized the highest recall rate at 94%, followed by DenseNet-121 at 

92%, EfficientNet-B0 at 89%, MobileNet at 86% and MobileNet V2 at 84%. F1-score is a performance measure 

that integrates both precision and recall into a single value, presenting a balanced assessment of a model's accuracy 

in categorization tasks. As shown in Table 4, EfficientNet-B3 achieved the highest F1-score at 94%, followed by 

DenseNet-121 at 92%, EfficientNet-B0 at 89%, MobileNet at 86%, and MobileNetV2 at 84%. 

The accuracy performance parameters for the pre-trained CNNs are showed and compared in Table 4. Notably, 
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MobileNetV2 and MobileNet exhibited the lowest performance among all accuracy measures when compared to 

the other models. In contrast, EfficientNet-B3 outperformed all other models, attaining the highest scores across 

all accuracy metrics, with values of 94% for accuracy, precision, recall, and F1-score. 

Table 4: Accuracy metrics summary. 

 Accuracy Precision Recall F1 score 

Macro Weighted Macro Weighted Macro Weighted 

DenseNet-121 0.92 0.91 0.92 0.91 0.92 0.91 0.92 

EfficientNet-B0 0.84 0.91 0.90 0.88 0.89 0.89 0.89 

EfficientNet-B3 0.94 0.92 0.94 0.94 0.94 0.93 0.94 

MobileNet 0.87 0.84 0.87 0.87 0.86 0.85 0.86 

MobileNetV2 0.84 0.86 0.86 0.81 0.84 0.83 0.84 

Learning rate = 0.01, batch size = 64, and Max. Epochs = 10 

4. DISCUSSION 

The classification classes of the evaluated dataset were classified with varying degrees of accuracy using the same 

pre-trained CNN models. The confusion matrix illustrates how well-trained models perform while categorizing 

various classes. Figure 4 (a,b,c,d,e) shows the normalised confusion matrix, out of these confusion matrices, the 

pre-trained models performed very effectively on the diagonal, longitudinal and alligator crack images. However, 

misclassifications appeared on the horizontal crack for EfficientNetB0.  

Moreover, the confusion matrices show that the alligator crack has less accuracy in the DenseNet121 and 

MobileNetV2 models. This could be because the alligator data set is smaller than other datasets. 

 

 

Figure 4: Normalised confusion matrix for (a) DenseNet121, (b) EfficientNetB0, (c) EfficientNetB3, (d) MobileNet, 

and (e) MobileNetV2. 
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The pre-trained CNNs accuracy is illustrated in Figure 5. The EfficientNetB3 realized the superior accuracy among 

the five pre-trained CNNs followed by DenseNet121 and MobileNet.  

 

Figure 5: Accuracy of five pre-train CNN models. 

4.1 Proposed approach: modifications in network architecture 

 

Figure 6: The original and modified architecture diagrams of EfficientNet B3. 

In this study, some modifications in EfficientNetB3 architecture are proposed to enhance the model performance. 

Specifically, the top layers of the model were replaced with dense, batch normalization, and dropout layers, as 

suggested by Ali et al. (2022). These modifications were applied to the B3 base architecture, utilizing the Swish 

activation function for the dense (fully connected) layers, as recommended by Ramachandran et al. (2018) and 



 

 

 
ITcon Vol. 29 (2024), Matarneh et al., pg. 1251 

employed by Tan and Le (2019) instead of the conventional ReLU activation function. Figure 6 illustrates the 

original EfficientNet-B3 baseline architecture alongside the proposed improvements. The original model was 

preserved, while the top layers of EfficientNet B3 architecture were restructured. In the original model, the top 

layers—comprising global average pooling 2D, dropout, and a dense layer—were prone to overfitting. In the 

modified architecture, these layers were replaced with dense, batch normalization, and dropout layers to improve 

performance and prevent overfitting.  

4.2 Implementation and performance evaluation metric 

In this experiment, a learning rate annealer was employed to reduce the learning rate after a specified number of 

epochs if the error rate remained unchanged. The validation accuracy was closely monitored to detect any potential 

plateau over a span of three epochs. If a plateau was observed, the learning rate was subsequently decreased by 

0.01. After, the EfficientNet B3 convolutional layers received fine-tuning using a Stochastic Gradient Descent 

(SGD) optimiser. The modified EfficientNets B3 was tested an evaluated using same dataset (Crack500). The 

improved EfficientNet B3 reports have better results than the original EfficientNet B3 architecture. The improved 

EfficientNet B3 achieved an F1 score of 96% and accuracy, precision, recall and recall of 96%. 

4.3 Contributions to theory and practice 

The theoretical contributions of the study lie in its innovative use of convolutional neural networks (CNNs) and 

transfer learning to address the critical task of asphalt pavement crack classification. This research addresses gaps 

in current methodologies by systematically evaluating five pre-trained CNN models: EfficientNet-B0, 

EfficientNet-B3, DenseNet-121, MobileNet, and MobileNetV2, all fine-tuned for crack detection tasks using the 

Crack500 dataset. The study's results highlight EfficientNet-B3 as the most effective model, achieving a 96% F1 

score and 96% accuracy after applying advanced transfer learning techniques. 

Key Theoretical Contributions: 

1. Transfer Learning Optimization: By leveraging ImageNet pre-trained weights and fine-tuning the CNN 

layers, the study demonstrates the effectiveness of transfer learning for domain-specific tasks. This 

approach minimizes the need for extensive domain-specific data, a common challenge in pavement 

inspection. 

2. Evaluation of Multiple Models: The comparison of five CNN architectures provides a deeper 

understanding of their strengths and weaknesses in multiclass classification. The study highlights 

EfficientNet-B3’s architecture as optimal due to its ability to balance performance and computational 

efficiency. 

3. Scalability and Generalization: The study establishes a foundation for future research by demonstrating 

that transfer learning techniques can generalize well to different types of cracks (e.g., longitudinal, 

diagonal). It sets a roadmap for expanding datasets and testing additional pre-trained models to enhance 

robustness further. 

4. Integration into Practical Applications: Beyond theoretical advancements, the study offers insights into 

integrating AI-driven crack detection into real-world workflows, such as automated road inspections, 

reducing manual effort and improving accuracy. 

By combining theoretical rigor with practical implications, this research provides a scalable framework that can 

be built upon for broader pavement distress classifications and applied in various infrastructure management 

scenarios. 

5. CONCLUSION 

Convolutional neural networks (CNNs) have quickly emerged as a prominent and effective method for crack 

detection. While numerous studies have explored crack detection using CNNs, limited research has focused on 

leveraging pre-trained models for this purpose. This study applied transfer learning to classify types of asphalt 

pavement cracks. The main contributions of this research are: 1) the evaluation of five pre-trained CNN models, 

originally trained on the ImageNet dataset, on the collected asphalt pavement crack dataset; 2) the assessment of 
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the impact of transfer learning on multiclass crack classification using metrics such as Precision, Recall, Accuracy, 

F1 Score, and Confusion Matrices; and 3) the selection of the most reliable model for further fine-tuning by 

incorporating additional layers to improve its performance.  

The results show that the most reliable model is the EfficientNet B3, achieved scores of 94% F1_ Score and 94% 

accuracy. Thus, this model was selected and trained on the same dataset by applying transfer learning with pre-

trained weights from ImageNet and fine-tuning the CNN. The modified model showed better classification 

performance with 96% F1_Score and 96% accuracy. The pre-trained models performed very effectively on the 

diagonal, longitudinal, and alligator crack images. However, misclassifications appeared on the horizontal crack 

for EfficientNetB0. Moreover, the confusion matrices show that the alligator crack has less accuracy on two models 

namely, DenseNet121 and MobileNetV2. The reason for this could be the that the alligator data set is smaller than 

other datasets. EfficientNet B3 had the highest accuracy for both TL and transfer learning with fine tuning.  

In future studies, additional crack classes, for example, fatigue cracks, can be examined to further assess the 

effectiveness of TL and pre-trained models for the classification of asphalt pavement cracks. A larger dataset can 

be collected, encompassing more crack classes and distresses, to test and assess various pre-trained models. 

Furthermore, the optimised EfficientNetB0 will undergo additional training to identify a wider range of highway 

pavement distress, including joint reflection cracking, slippage cracking, corrugation, shoving, block cracking etc. 

The model's performance metrics will be compared across these distress types.  

Additionally, a user-friendly interface will be developed to enable novice users without a programming background 

to effectively utilise the model. The integration of automated crack detection and classification systems can 

potentially replace human intervention due to their superior accuracy, cost-effectiveness, and automatic reporting 

functionality. Future studies may explore the use of AI to develop a tool for suggesting corrective actions for 

detected and classified cracks. 
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