
  
www.itcon.org - Journal of Information Technology in Construction - ISSN 1874-4753 

 

 
ITcon Vol. 29 (2024), Cheng & Khasani, pg. 503 

LEAST SQUARE MOMENT BALANCED MACHINE:  A NEW 

APPROACH TO ESTIMATING COST TO COMPLETION FOR 

CONSTRUCTION PROJECTS 

 

SUBMITTED: November 2023 

REVISED: May 2024 

PUBLISHED: July 2024 

EDITOR: Bimal Kumar 

DOI: 10.36680/j.itcon.2024.023 

 

Min-Yuan Cheng, Ph.D. 

Department of Civil and Construction Engineering, National Taiwan University of Science and Technology, 

Taiwan 

ORCID: https://orcid.org/0000-0003-1312-4822 

myc@mail.ntust.edu.tw 

Riqi Radian Khasani, Ph.D(c) 

Department of Civil and Construction Engineering, National Taiwan University of Science and Technology, 

Taiwan 

ORCID: https://orcid.org/0000-0002-7248-8602 

riqi@live.undip.ac.id 

 

 

SUMMARY: In the construction industry, traditional methods of cost estimation are inefficient and cannot reflect 

real-time changes. Modern techniques are essential to create new tools that outperform current cost estimation. 

This study introduced the Least Square Moment Balanced Machine (LSMBM), AI-based inference engine, to 

improve construction cost prediction accuracy. LSMBM considers moments to determine the optimal hyperplane 

and uses the Backpropagation Neural Network (BPNN) to assign weights to each data point. The effectiveness of 

LSMBM was tested by predicting the construction costs of residential and reinforced concrete buildings. 

Correlation analysis, PCA, and LASSO were used for feature selection to identify the most relevant variables, with 

the combination of LSMBM-PCA giving the best performance. When compared to other machine learning models, 

the LSMBM model achieved the lowest error values, with an RMSE of 0.016, MAE of 0.010, and MAPE of 4.569%. 

The overall performance measurement reference index (RI) further confirmed the superiority of LSMBM. 

Furthermore, LSMBM performed better than the Earned Value Management (EVM) method. LSMBM model has 

proven to enhanced the precision in predicting cost estimates, facilitating project managers to anticipate potential 

cost overruns and optimize resource allocation, provide information for strategic and operational decision-making 

processes in construction projects. 
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1. INTRODUCTION 

In the construction industry, estimating construction costs accurately is fundamental to project success. Cost 

estimation significantly impacts projects across their life cycle from initial planning and budgeting to resource 

allocation and project execution (Orgut et al., 2020). However, traditional cost estimation methods require 

significant human input and time to execute, which increases the risk of mistakes and errors. Thus, the quality of 

estimates significantly depends on the expertise and experience of the individual performing the analytical 

calculations (Wahab and Wang, 2022). Earned Value Management (EVM) is a powerful tool for predicting 

construction costs. However, it is affected by several important limitations, including being unable to account for 

resource constraints and external factors (e.g., labor productivity, market fluctuations, and weather conditions) that 

affect construction costs (Bagherpour et al., 2020). These externalities can introduce uncertainty levels that the 

EVM cannot address, necessitating the use of alternative approaches that consider these important variables to 

provide a more comprehensive perspective on project performance (Aramali et al., 2022). Therefore, there is an 

urgent need for advanced methods of construction cost estimation such as machine learning that are more 

sophisticated, accurate, data-driven, and adaptable to reduce cost-related risks and increase project success rates 

(Chandanshive and Kambekar, 2019). The ability of machine learning algorithms to quickly analyze historical 

project data and identify patterns, trends, and correlations facilitates the generation of more-accurate cost 

estimations that, when used in decision-making, reduce the risks of budget overruns and project delays (Elfaki et 

al., 2014). Machine learning leverages historical and real-time data, and can comprehend nonlinear relationships 

and variability that may be overlooked by the EVM approach. The combined approach of EVM and machine 

learning algorithms offers significant potential for improving the accuracy and reliability of estimating the cost of 

construction projects (Cheng and Hoang, 2014). 

Construction cost estimation, a key element in managerial decision-making, has been investigated in various 

studies, several of which have focused on the potential of using machine learning algorithms. Chandanshive & 

Kambekar, and Bala et al. demonstrated the effectiveness of Backpropagation Neural Network (BPNN) in 

estimating construction costs in India and Nigeria (Chandanshive and Kambekar, 2019)(Bala et al., 2014). Arafa 

& Alqedra emphasized the importance of using larger datasets to improve the accuracy of BPNN (Arafa and 

Alqedra, 2010), and other studies such as Kim et al. and Guaydin & Dogan found BPNN to be superior to case 

base reasoning (CBR), linear regression (LR), and other algorithms (Kim et al., 2004)(Günaydin and Doǧan, 

2004). However, despite the strong potential of BPNN, its sensitivity to quantity and quality is a weakness that 

requires the careful selection of variables. Artificial Neural Networks (ANN), as utilized by Bala et al. in 

construction cost prediction, have demonstrated the ability to learn and adapt from historical data (Bala et al., 

2014). Son et al. and Peško et al. revealed the superiority of Support Vector Machines (SVM) over ANN, 

highlighting the advantages of SVM in handling complex data (Son et al., 2012) (Peško et al., 2017). Furthermore, 

Wang employed Fuzzy Logic to calculate the cost of construction projects through the calculation of similarity 

degree (Wang, 2017). Rafiei & Adeli explored the use of Deep Boltzmann Machines, offering a new approach for 

understanding and predicting cost variables (Rafiei and Adeli, 2018). Additionally, Juszczyk integrated ANN with 

SVM (ANN-SVM), demonstrating its effectiveness in predicting construction costs by leveraging the strengths of 

both models to handle nonlinear data (Juszczyk, 2020). Similarly, Jiang applied ANN with Radial Basis Function 

(ANN-RBF) networks, presenting another approach for approximating construction costs (Jiang, 2020). Although 

several related models have been developed, there remains significant room for developing even more advanced 

and accurate data-driven approaches that leverage machine learning techniques in this area. Least Square Support 

Vector Machine (LSSVM) has the advantage of being able to solve cost estimation problems both for data with 

original features and for data transformed into a high-dimensional space with kernel functions (Suykens and 

Vandewalle 1999). However, a significant drawback of LSSVM is their treatment of all datapoints as equally 

relevant without weighting, creating problems when some datapoints are more reliable than others in a given 

dataset and potentially reducing prediction accuracy and generating inaccurate predictions (Preetha et al., 2016). 

Given the complexity of the construction cost estimation, exploring the potential of generating accurate 

construction cost estimates using advanced techniques is critical. Moreover, previous studies have generally 

applied machine learning models without incorporating a feature selection mechanism to determine the precise 

factors influencing construction costs. Integrating feature selection methods could significantly improve the 

accuracy of cost predictions by ensuring that only the most influential variables are considered in the analysis of 

the model.  



 

 

 
ITcon Vol. 29 (2024), Cheng & Khasani, pg. 505 

The Least Square Moment Balanced Machine (LSMBM), an advanced AI-based inference engine, is introduced 

in this study as a method to significantly improve the accuracy of construction project cost estimation. LSMBM 

enhances the conventional LSSVM approach by adding the concept of moment as a data weighting mechanism to 

identify the optimal hyperplane. The weight assigned to each datapoint is determined using the backpropagation 

neural network (BPNN), allowing the model to focus on more-reliable data. LSMBM employs feature selection 

techniques to enhance model efficiency by ensuring only the most influential construction cost factors are 

considered. Moreover, to provide a comprehensive perspective, the factors that influence construction costs are 

combined with EVM metrics. The proposed LSMBM is applied to estimate construction costs using actual data 

from residential and reinforced concrete (RC) building projects to validate model performance. In light of the 

critical role of cost management in construction project success, this study contributes to the development of more 

accurate and reliable cost estimation methods, enhancing decision-making in the construction industry by 

developing an AI-based inference engine that leverages knowledge and experience in relevant fields. 

2. LITERATURE REVIEW 

2.1 Construction cost at completion and influencing factors 

The use of historical data in the cost-estimation process has received increasing attention in the construction 

management literature. Historical data from previously completed projects capture patterns and trends and provide 

valuable lessons for future projects (Al-Hazim et al., 2017). A systematic literature review was conducted to 

identify, evaluate, and synthesize all relevant research on factors influencing construction project costs (Dekkers 

et al., 2022). This approach ensured a comprehensive data collection from various sources, including peer-

reviewed journals and conference proceedings across several electronic databases such as Scopus, Web of Science, 

and Google Scholar. The search strategy employed specific keywords like ‘construction cost influencing factors’, 

‘construction cost prediction model’, and ‘machine learning in construction cost estimation’. The inclusion criteria 

were carefully defined to select studies that directly contribute to the understanding and advancement of cost 

estimation factors in construction projects. These criteria included publication in peer-reviewed journals, 

publication in English, a specific focus on construction cost estimation, and publications from 2001 to the present, 

emphasizing the selection of the most relevant research. Conversely, exclusion criteria were set to omit articles 

that did not focus on construction projects or lacked empirical validation. Data extraction involved summarizing 

key findings related to the identification of cost-influencing factors in construction projects. The 20 academic 

articles identified and reviewed produced an initial list of 24 factors of influence, as summarized in Table 1. After 

analyzing these factors for frequency of citation in the scientific literature, project duration was identified as the 

most-frequently cited factor, followed closely by building costs, construction price variations, contract changes, 

and productivity, with each cited in more than 10 of the reviewed studies. Factors including material costs, weather 

conditions, total floor area, superstructure floors, and basement floors were also highlighted as important factors, 

with citations in 8~10 of the reviewed studies. In this study, the 10 factors with over five citations were extracted 

and included in subsequent analysis. 

2.2 Earned Value Management and Machine Learning in Construction Cost Estimation 

EVM is an effective project management technique for predicting construction costs. By integrating project scope, 

time, and cost data, it provides a comprehensive overview of project performance (Batselier and Vanhoucke, 2015). 

EVM operates by first establishing the planned value (PV), budget at completion (BAC), and actual duration (AD). 

Earned value (EV) is calculated based on the actual project work completed to date and then compared to the 

actual cost (AC) of work completed to date. The resulting cost variance (CV) and schedule variance (SV) provide 

insight into actual project performance versus initial estimates. These metrics may be further analyzed to generate 

performance indices such as the cost performance index (CPI) and schedule performance index (SPI). Furthermore, 

estimate cost to complete (ECTC) calculates the projected cost to complete the remaining work. Using ECTC  

allows project managers to monitor project progress and make dynamic changes in resource allocation and 

scheduling to ensure a project remains within budget (Anbari, 2003). The most basic formula for calculating 

ECTC, shown in Eq. (1). To expand its analytical, some methods incorporated AC into the equation, resulting in 

Eq. (2). Subsequent improvements to this formula involved incorporating efficiency indicators such as CPI, as 

shown in Eq. (3), and SPI, as shown in Eq. (4). In addition, a more comprehensive ECTC considers both cost and 
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schedule efficiency simultaneously using weights, as shown in Eq. (5). This evolution of ECTC enables the 

formula to better adapt to the specific needs of individual projects. 

 

𝐸𝐶𝑇𝐶 =  𝐵𝐴𝐶 −  𝐸𝑉 (1) 

𝐸𝐶𝑇𝐶 =  𝐵𝐴𝐶 −  𝐴𝐶  (2) 

𝐸𝐶𝑇𝐶 =
(𝐵𝐴𝐶 − 𝐸𝑉)

𝐶𝑃𝐼
 

(3) 

𝐸𝐶𝑇𝐶 =
(𝐵𝐴𝐶 − 𝐸𝑉)

(𝐶𝑃𝐼 × 𝑆𝑃𝐼)
 

(4) 

𝐸𝐶𝑇𝐶 =
(𝐵𝐴𝐶 − 𝐸𝑉)

(𝑤1 × 𝐶𝑃𝐼 + 𝑤2 × 𝑆𝑃𝐼)
 

(5) 

 

Numerous studies have validated the effectiveness of EVM in the construction domain. For instance, Zahoor et al. 

demonstrated that EVM could accurately forecast cost at completion for building projects (Zahoor et al., 2022), 

while Sruthi & Aravindan confirmed its predictive capabilities in residential projects, noting its ability to 

effectively manage project costs (Sruthi and Aravindan, 2020). However, Ibrahim et al. identified limitations of 

EVM, particularly its inability to address the complexities inherent in construction projects (Ibrahim et al., 2019). 

To address these limitations, Aramali et al. suggested integrating machine learning to enhance cost prediction 

accuracy (Aramali et al., 2022). The integration of historical data with machine learning offers a path for 

developing more-accurate tools for estimating construction costs (Wang et al., 2012). This approach utilizes 

patterns and trends from completed projects along with sophisticated models such as Regression Analysis (RA),  

ANN, and SVM. Alshamrani and Swei et al. demonstrated the widespread use of RA in various construction sectors 

to enhance estimation accuracy (Alshamrani, 2017)(Swei et al., 2017). Additionally, ANN has proven effective in 

surpassing EVM methods for predicting costs in building and road construction projects (Dursun and Stoy, 

2016)(Tijanić et al., 2020)(Balali et al., 2020), and has shown superior performance in specialized applications 

such as water-related projects and hydroelectric power plant projects (Marzouk and Elkadi, 2016) (Gunduz and 

Sahin, 2015). El-Kholy et al. and ElMousalami et al. highlighted ANN's superiority over RA in various cost 

estimation tasks (El-Kholy et al., 2022)(ElMousalami et al., 2018). Moreover, studies comparing ANN and SVM 

have consistently shown SVM's robust performance in predicting construction costs, underscoring its reliability 

and enhanced accuracy, which is crucial for improving decision-making in construction cost management (Wang 

et al., 2012)(Petruseva et al., 2017)(Peško et al., 2017). This highlights SVM reliability and superior accuracy, 

improving decision-making in construction cost management. 

 

3. LEAST SQUARE MOMENT BALANCED MACHINE FOR PREDICTING 
CONSTRUCTION COST 

3.1 Model Structure 

The principle of moment balance, which refers to the balance of the forces in a system, is important for designing 

and analyzing structures, particularly in the context of achieving stability in structural components. A basic beam 

subjected to a certain load that requires symmetrical moments for stability is shown in Figure 1. These moments, 

calculated as the product of the acting force (F) and its distance from the axis of rotation (d) may be formulated 

using Eq. (6). Unbalanced moments can cause various types of structural damage. In severe cases, these 

unbalanced moments can cause the entire structure to collapse (Deng et al., 2016). Therefore, it is critical to equip 

structures with the resilience necessary to withstand unbalanced moments. 
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Table 1: Significant factors of influence on construction project cost, ranked by number of citations in the literature. 

No. Factor [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] Freq 

1 Project duration ●  ●  ●  ● ● ● ● ● ● ●  ●  ● ● ●  14 

2 Building cost ●  ● ●      ● ● ● ● ● ● ●   ● ● 12 

3 Construction price variation ●  ● ● ●     ● ● ● ● ● ●    ● ● 12 

4 Change in contract ●  ● ● ●     ● ● ● ● ●   ●  ● ● 12 

5 Productivity   ● ● ●     ● ● ● ● ●    ● ● ● 11 

6 Material price    ● ●      ● ● ● ● ● ●    ● ● 10 

7 Weather condition ●  ●  ●     ● ● ●  ●     ● ● 9 

8 Total floor area  ● ●   ● ● ● ● ●     ● ●     9 

9 Superstructure Floors  ● ●   ● ● ● ● ●     ●      8 

10 Basement Floor  ● ●   ● ● ● ● ●     ●      8 

11 Site condition   ● ● ●  ●     ●         5 

12 Designer pricing         ●  ● ●   ●      4 

13 Building structure   ●      ● ●      ●     4 

14 Type of foundation  ● ●   ●         ●      4 

15 Politics    ●       ● ●  ●       4 

16 Building function       ●     ●     ●    3 

17 Geological condition           ●   ●     ●  3 

18 Safety    ●         ●      ●  3 

19 Building height      ● ●              2 

20 Number of columns  ●    ●               2 

21 Type of client   ●                ●  2 

22 Laws    ●       ●          2 

23 Economy    ●       ●          2 

24 Culture     ●      ●          2 

1] Cheng & Hoang (2014); [2] Chandanshive & Kambekar (2019); [3] Toh et.al (2012); [4] Zhao et.al (2019); [5] Oberlender & Trost (2021); [6] Yun (2022); [7] 

Bala et.al (2014); [8] Kim et.al (2004); [9] Ji et.al (2019); [10] Hazim et.al (2017); [11] Aljohani (2017); [12] Kavuma et.al (2019); [13] Igwe et.al (2020); [14] Baloi 

& Price (2003); [15]  Hyung et.al (2020); [16] Chakraborty et.al (2020); [17] Wang et.al (2012); [18] Juszczyk & Leśniak (2019); [19] Cha & Shin (2011); [20] Shah 

(2016) 
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Figure 1: Moment balance on a simple beam. 

m = Σ (Force * Distance) = 0 

𝑚 = 𝐹1 𝑑1 + 𝐹2 𝑑2 + ⋯ + 𝐹𝑖  𝑑𝑖  = 0 

(6) 

In machine learning, LSMBM uses the principle of balanced moments. The weight (Fk) is considered analogous 

to the force applied by each datapoint on the model, and its error (dk), which represents the deviation of the 

predicted value from the true value, is analogous to the distance from the axis of rotation to the point where the 

force is applied. An example of a balanced moment hyperplane is shown in Figure 2. LSMBM incorporates the 

principles of LSSVM, which uses square errors to measure the degree to which model predictions deviate from 

the actual data. As the error value increases (dk), the squared value (dk
2) increases more rapidly. Squaring 

emphasizes larger errors over smaller ones, forcing the algorithm to increasingly focus on reducing these large 

errors to find the optimal solution.  

 

Figure 2: Balanced moment hyperplane. 

The LSMBM uses a weights (Fk) mechanism to determine the influence of each datapoint to identify the optimal 

moment hyperplane. BPNN is used to determine the weights for each datapoint. The weights balance the influence 

of each datapoint on the overall model, which may be considered as a form of balancing as it adjusts the influence 

of each datapoint on the model based on the assigned weights. More-reliable datapoints are assigned higher weights 

to increase model accuracy, while less-reliable datapoints are assigned lower weights. The moment is the product 

of the weight and squared error that each datapoint contributes to the model (Fk dk
2). The model architecture of 

LSMBM is illustrated in Figure 3. 

Given a regression dataset associated with weights as shown in Eq (7), the objective function of the LSMBM 

model attempts to minimize the moment to achieve a balanced condition in the model, as shown in Eq. (8). This 

is an optimization problem that attempts to find the condition of balance among the moments of all datapoints. 

𝐷 = {(𝑥1, 𝑦1,𝐹1), (𝑥2, 𝑦2,𝐹2), … , (𝑥𝑖 , 𝑦𝑖 , 𝐹𝑖)} ∈ ℝ𝑛 (7) 

 

Minimize 
𝐽(𝑤, 𝑑) =

1

2
||𝑤||2 + 𝛾

1

2
∑ 𝑚

𝑁

𝑘=1

 

            Where: 𝑚 = 𝐹𝑘𝑑𝑘
2
  

(8) 

Subject to               𝑦𝑘 = 𝑤. 𝜑(𝑥𝑘) + 𝑏 + 𝑑𝑘 
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Figure 3: LSMBM model architecture. 

 

Where 𝑥𝑘 is the input; 𝑦𝑘  is the output; (𝑤) is the weight vector; ( γ) is the regularization constant that controls 

the trade-off between model complexity and generalization; (𝑚) is the moments given by each datapoint; (𝑑𝑘) is 

the error; ( 𝑛 ) is the number of datapoints; and (𝐹𝑘) is the weight assigned to datapoint (𝑥𝑘) obtained using the 

BPNN algorithm for the initial prediction. Smaller Fk values reduce the effect of parameter (𝑑𝑘), which indicates 

a lower importance for the corresponding point (𝑥𝑘). The weight of each case (Fi) may be calculated using Eq. 

(9), where Yi and 𝑌̂i denote actual productivity and predicted productivity, respectively. To address the optimization 

challenges inherent in the LSMBM model, the mathematical formulation, including the derivation of a Lagrangian 

function, the selection of Lagrange multipliers (αk) and the application of a Radial Basis Function (RBF) kernel, 

is presented in Eq.(10)-(17) in Appendix A. 

 

 

Forecast error = 
‖Actual-Prediction‖

Actual
=

‖𝑌𝑖 − 𝑌𝑖̂‖

𝑌𝑖
 

Weight (𝐹𝑖)   =    
1

Forecast error
  = (

‖𝑌𝑖 − 𝑌𝑖̂‖

𝑌𝑖
)

−1

 

(9) 

 

 

3.2 Model Adaptation 

With regard to study methodology, in Stage 1, the construction costs dataset for RC buildings was established. In 

Stage 2, the input and output variables were identified using a review of the literature, and the former were refined 

for use in machine learning algorithms through normalization, using Eq. (18). In Stage 3, after data preprocessing, 

several feature selection methods were applied to identify significant features. In Stage 4, several different machine 

learning algorithms were applied to forecast construction costs. In the final stage, construction cost was estimated 

using the five performance metrics and a reference index. The general framework of this study is shown in Figure 

4. 

 

𝑋𝑛𝑜𝑟𝑚 =
(𝑋𝑖 − 𝑋𝑚𝑖𝑛)

(𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)
 

(18) 
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Figure 4: Framework used to develop the construction cost model. 

The dataset comprising data from residential and reinforced concrete building projects was initially collected. The 

LSMBM adaptation then begins with data preprocessing, including normalization to ensure all input variables are 

on a uniform scale. Feature selection is a critical subsequent step, which employs Correlation Analysis (CA), 

Principal Component Analysis (PCA), and Least Absolute Shrinkage and Selection Operator (LASSO). A 10-fold 

cross-validation method was used to validate the generalizability of the proposed model. The dataset was divided 

into ten uniform, randomly distributed subsets, with nine used to train the machine learning model and the 

remaining one used to evaluate model performance. This iterative procedure was performed ten times, with each 

iteration using a different combination of the ten subsets (Bugalia et al., 2022). The resulting performance measures 

were averaged to provide an overall assessment of model performance. The training dataset incorporated both 

input and output variables. This allowed the model to capture the correlations and patterns between inputs and 

outputs, enabling it to effectively generalize and generate precise predictions from separate test datasets. These 

test subsets, which were separated from the training phase, were used to validate the performance of the trained 

predictive model. The main purpose of using these different test sets was to evaluate the ability of the model to 

generalize new data, with the performance of these independent datasets evaluated to assess model generalizability 

and predictive accuracy. 

 

 

Figure 5: LSMBM model adaptation. 

After learning the relationships between selected features and target variables from historical data, the LSMBM 

algorithm was used to make predictions based on these patterns. BPNN was trained on the training dataset, and 

initial predictions were used to calculate the weights. Lower prediction errors resulted in higher weights, which 
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had a more significant influence on balancing the LSMBM model. The LSMBM hyperparameters, which include 

the regularization parameter (γ) and kernel parameter (σ), were then tuned using a grid search technique to 

determine the most effective combination of parameters. The models were run in a MATLAB library environment 

(Chang and Lin, 2011). In the fitness evaluation, the performance of the LSMBM model was evaluated using the 

error metric RMSE, with the model that achieved the lowest error selected as the best model. Subsequently, the 

model was used to predict the test data and validate its accuracy. The testing dataset is new to the model. The 

prediction result was the estimation value generated by the predictive model trained on the test dataset, which 

represented the predicted value of the output or target variable based on the input features provided. The five 

performance evaluation metrics were analyzed to assess model performance and a reference index was used to 

evaluate overall model performance. The sequence of operations used from initial data preprocessing to predictive 

performance evaluation to adapt the LSMBM is depicted in the flowchart in Figure 5. 

3.3 Feature Selection 

3.3.1 Correlation Analysis 

Feature selection (FS) enhances model efficiency by ensuring only the most informative factors are retained. In 

this study, correlation analysis was applied to identify the factors with a significantly impact on construction costs 

(Puth et al., 2015). The strength and significance of correlations between variables were assessed using three 

methods: Pearson, Kendall's tau-b, and Spearman's rho. A threshold p-value of 0.05 ensured that factors 

consistently showing significant correlation across all methods were included in the final list. This approach 

ensured that the selected features demonstrate consistent relationships across different correlation measures. 

3.3.2 Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) was used for feature selection to reduce the dimensionality of the data while 

maintaining variability. PCA provides valuable information regarding the most significant features (Shlens, 2014). 

A factor loading threshold of 0.3 was established, meaning that only variables with a factor loading of 0.3 or higher 

were considered relevant, while loadings below 0.3 were deemed insignificant (Jomthanachai et al., 2022). PCA 

results, supported by specific values and visualizations, offer a strong foundation for feature selection. Variance 

graphs, and 3D plots collectively provide a comprehensive understanding of the relationships between variables 

and the inherent data structure. The variables that contribute the most to each principal component may be 

determined by examining the direction and length of the vectors that represent the variables. 

3.3.3 Penalized Linear Regression 

Least Absolute Shrinkage and Selection Operator (LASSO) provide effective approaches to feature selection for 

high-dimensional data. These methods introduce a regularization penalty into the linear regression model, allowing 

for the identification of the most important features while controlling for overfitting (Muthukrishnan and Rohini, 

2017). A key feature is its ability to shrink some coefficients to zero, which indicates the presence of redundancies 

among model features. This feature selection capability helps identify the subset of predictors most relevant to the 

target variable. 

 

3.4 Performance Evaluation 

Systematic evaluations are conducted to measure the accuracy and effectiveness of forecasting algorithms. 

Comparative analysis was performed using the following metrics: RMSE, mean absolute percentage error 

(MAPE), mean absolute error (MAE), correlation coefficient (R), and coefficient of determination (R2). These 

evaluation criteria measure the difference between the actual and predicted values of a target variable. An 

additional metric, the Reference Index (RI), was used as a composite measure representing the average result for 

a variable across all five metrics, giving equal significance to each (Cheng and Gosno, 2021). The values for each 

metric were first normalized and the calculated RI value was plotted on a scale from 0 (worst result) to 1 (best 

result). RI was calculated by averaging the normalized scores of the five evaluation metrics. RI value of 1 indicates 

optimal performance across all metrics. If the normalized score of any metric is less than 1, the RI value 

correspondingly decreases, representing an average based on the relative performance of all metrics. The 

mathematical formulations corresponding to this performance indicator are presented in Table 2. 
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Table 2: Performance evaluation. 

Performance evaluation Formula 

RMSE 

√
1

𝑛
∑(𝑦𝑖 − 𝑓𝑖)

2

𝑛

𝑖

 

MAPE 100

𝑛
∑

|𝑦𝑖 − 𝑓𝑖|

𝑦𝑖

𝑛

𝑖

 

MAE 1

𝑛
∑|𝑦𝑖 − 𝑓𝑖|

𝑛

𝑖

 

R 𝑛 ∑ 𝑦𝑖𝑓𝑖
𝑛
𝑖 − (∑ 𝑦𝑖

𝑛
𝑖 )(∑ 𝑓𝑖

𝑛
𝑖 )

√𝑛(∑ 𝑦𝑖
2𝑛

𝑖 ) − (∑ 𝑦𝑖
𝑛
𝑖 )2√√𝑛(∑ 𝑓𝑖

2𝑛
𝑖 ) − (∑ 𝑓𝑖𝑛

𝑖 )2

 

R2 
1 −

∑ (𝑦𝑖 − 𝑓𝑖)
2𝑛

𝑖

∑ (𝑦𝑖 − 𝑦)2𝑛
𝑖

 

RI 𝑅𝑛𝑜𝑟𝑚 + 𝑅𝑛𝑜𝑟𝑚
2 + (1 − 𝑅𝑀𝑆𝐸𝑛𝑜𝑟𝑚) + (1 − 𝑀𝐴𝐸𝑛𝑜𝑟𝑚) + (1 − 𝑀𝐴𝑃𝐸𝑛𝑜𝑟𝑚)

5
 

4. MODEL APPLICATION 

4.1 Simulation 1: Residential Building Cost 

To validate the capability and performance of the proposed LSMBM model, it was first applied to the residential 

buildings dataset collected by Rafieli et al. (Rafiei, 2018). The dataset can be found in Appendix B. This dataset 

comprises 372 instances of residential condominium buildings that range from three to nine stories, constructed 

between 1993 and 2008 in Iran. It includes seven input factors, with the construction cost as the output, as shown 

in Table 3. Feature selection was not performed in this case. The performance of the LSMBM model was 

benchmarked against various machine learning models, including LSSVM, BPNN, Random Forests (RF), 

Decision Trees (DT), K-Nearest Neighbors (KNN), linear regression (LR) and SVM. A grid search method was 

used to explore the combination of the regularization parameter (γ) and kernel parameter (σ). In this case, 10-fold 

cross-validation was applied to the training and testing datasets and the predetermined ranges for γ and σ [10-4, 

10-3, 10-2, 10-1, 1, 101, 102, 103, 104], respectively, generated 81 parameter combinations. The selected ranges 

for γ and σ are consistent with values typically used in research applying SVM and related variants such as 

LSSVM, as supported by Balogun et al. (Balogun et al., 2021) and Dewi et al. (Dewi et al., 2023). The grid search 

explored 81 possible combinations and provided a systematic approach for determining the most optimal pair. The 

performance evaluation metrics, including RMSE, MAE, MAPE, R, R2, and RI, were employed to provide a 

comprehensive overview of the performance of each tested model. The summary of comparative results is 

presented in Table 4. 

In the initial case, the proposed LSMBM outperforms the other models, delivering the lowest RMSE (26.940), 

MAE (19.533) and MAPE (12.07%). Furthermore, it achieves the highest R of 0.986, R² of 0.971, and RI of 1.000. 

It is closely followed by the LSSVM and BPNN models, which rank second and third, respectively. The RF and 

LR models show intermediate results, while the SVM, KNN, and DT models yield suboptimal outcomes. Overall, 

the LSMBM model excelled in terms of its prediction accuracy and reliability. 

Table 3: Factors influencing construction costs in residential building. 

Factors Influence factor Description 

V1 Total floor area area within the building 

V2 Lot area total land area of the construction site 

V3 Total preliminary cost the initial overall estimate for the project 

V4 Preliminary cost early cost estimation per m² before detailed planning 

V5 Equivalent preliminary cost adjusted estimate per m² for inflation or currency rates 

V6 Duration of construction time needed to complete the construction. 

V7 Price of the unit cost per m² for an individual residential unit 

V8 Construction cost the total cost required to complete the construction project 
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Table 4: Comparative performance metrics. 

Model RMSE MAE MAPE R R2 RI Rank 

LSMBM 26.940 19.533 12.07 0.986 0.971 1.000 1 

LSSVM 27.735 20.101 12.27 0.984 0.969 0.946 2 

RF 39.965 25.019 14.17 0.974 0.949 0.468 4 

BPNN 30.619 21.460 12.79 0.983 0.966 0.844 3 

DT 47.376 29.804 15.56 0.961 0.924 0.021 8 

KNN 47.950 28.410 15.41 0.961 0.924 0.050 7 

SVM 44.801 30.483 15.62 0.970 0.941 0.174 6 

LR 36.843 25.123 15.32 0.976 0.952 0.460 5 

 

4.2 Simulation 2: Reinforced Concrete Building Cost 

Data from 10 historical RC construction projects in Taiwan were employed as the second case study, collected by 

Cheng et al. (Cheng et al., 2019). These projects were selected based on the completeness of information available 

in terms of building information data, monthly construction reports, cash flow charts, and construction budgets. 

The number of superstructure floors ranged from seven to 14, while the number of basement floors varied from 

one to four. The contract values ranged from NTD 85 million to NTD 530 million. Total floor area varied from 

3,094 square meters to 31,797 square meters. Project duration varied from 15 months to 25 months. Using the 

obtained information, each case was divided into 14-26 periods, resulting in 225 periods that formed the dataset 

for the model. The basic information for the 10 construction projects is shown in Table 5. After building the 

construction cost database, the factors influencing construction costs were identified and used as input data. The 

dataset included 18 input variables and one output variable. The dataset can be found in Appendix C. Before being 

input into the machine learning algorithm, the dataset was normalized to a range of 0 to 1, to ensure all variables 

were evaluated on the same scale. 

 

Table 5: Overview of 10 construction projects. 

ID 
Basement 

Floors 

Super-

structure 

Floors 

Total 

area 

Contract price 

(NTD) 

Duration 

(days) 
Project start 

Project 

Finish 

Number of 

periods 

A 9 2 12622 289,992,000 630 12/01/2003 08/22/2005 28 

B 2 14 7707 153,500,000 695 11/24/2001 10/20/2003 21 

C 3 14 10087 216,000,000 749 06/18/2002 07/06/2004 26 

D 1 10 3479 85,714,286 486 06/02/2003 09/30/2004 17 

E 2 7 3094 102,500,000 515 10/01/2005 02/28/2007 16 

F 2 9 31797 530,000,000 635 07/04/2001 03/31/2003 19 

G 3 11 4919 149,300,000 698 12/23/2003 11/10/2005 23 

H 2 11 4774 145,337,589 730 02/21/2004 02/20/2006 26 

I 4 11 6352 202,241,810 715 03/05/2004 02/18/2006 30 

J 8 2 7289 190,844,707 457 06/15/2005 09/15/2006 19 

 

4.2.1 Determination of Input- Output Variables 

The study combined factors affecting construction costs with EVM metrics, which were used as input data, as 

shown in Table 6. The input data cover the four main categories of structural components, financial metrics, 

progress and duration, and performance and environment. First, structural components include the number of 

superstructure and basement floors, and the total floor area, which are fundamental for estimating costs due to their 

impact on materials, labor, and time requirements. Second, financial metrics cover indicators such as contract 

prices and payments, subcontractor billing indexes, and contract amount changes, alongside broader economic 
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variables like price indexes and variations that affect the budget and potential cost deviations. Third, progress and 

duration measures, such as actual project duration and percentage of work completed, are crucial for predicting 

cost escalation impacts and monitoring project progress against the plan. Deviations in these metrics can 

significantly affect project costs and financial predictions. Fourth, performance and environment category includes 

efficiency metrics such as the schedule performance index, cost performance index, critical ratio, and productivity 

index, which are essential for evaluating progress and expenditure. External factors that potentially impact overall 

construction costs, such as weather conditions, were also considered. Inclement weather can cause project delays 

and increased labor costs, thereby increasing the overall cost of the construction project. 

 

Table 6: Selected input variables. 

Factors Influence factor Description 

F1 Superstructure Number of superstructure floors in building 

F2 Basement Number of basement floors in building 

F3 Total floor area Total area contained within the building 

F4 Contract price Total amount of the budget 

F5 Actual duration Cumulative work duration/contract duration 

F6 Percent of actual work completed ΣEV/BAC 

F7 Percent of budget spent ΣAC/BAC 

F8 Percent of scheduled work completed ΣPV/BAC 

F9 Schedule Performance (SPI) EV/PV 

F10 Cost Performance (CPI) EV/AC 

F11 Critical Ratio SPI x CPI 

F12 Contract payment Owner billed amount/EV 

F13 Subcontractor billed index Subcontractor billed amount/AC 

F14 Construction price variation Monthly construction price index /initial index 

F15 Change in contract amount Final contract amount/initial contract amount 

F16 Weather impact (Project duration – number of rainy day)/ project duration 

F17 Productivity Index Construction productivity index 

F18 Project price index Construction material price index 

 

4.2.2 Correlation Analysis Results 

 

Figure 6: Pearson correlation. 
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Pearson’s correlation measures the linear relationship between variables, and the correlation matrix is a visual 

representation that explains the relationships among different variables. The correlation matrix for the 18 input 

variables in this study is shown in Figure 6. To be considered significant, variables were required to earn correlation 

values below the threshold p-value of 0.05. From the correlation analysis, features F5-F8, F14, and F16-F18 were 

found to share strong linear correlations (ρ < 0.05) with the target variable. Kendall's tau analysis supported these 

findings, highlighting strong relationships for features F5-F8 and F14-F18. Spearman's rank correlation analysis 

reinforced Kendall's tau results. After evaluating the correlations for the 18 initial input variables, only eight (F5-

F8, F14, F16-F18) met the significance threshold (ρ < 0.05) across all three correlation tests and were retained as 

input variables in the construction cost prediction model. 

 

 

4.2.3 Results of the PCA Method 

The variance graph shows the cumulative percentage of the variance explained by each principal component, and 

Figure 7(a) provides a visual representation of the proportion of total variance represented by each principal 

component. The principal (PC1), second (PC2), third (PC3), and fourth (PC4) components accounted, respectively, 

for 43.15%, 16.74%, 13.73%, and 9.06% of the total variance and together captured 82.67% of the total variance 

in the data, indicating these components capture most of the information presented in the original features. The 3D 

representation of PCA in Figure 7(b) provides a more comprehensive understanding of the data by facilitating the 

exploration of the relationships between variables in a three-dimensional space. Here, F5-F8 and F16 are shown 

to strongly influence PC1 and F3, F4, and F18 are shown to influence PC2. Furthermore, F1 and F2 are shown to 

contribute to PC3, while F2 and F14 are shown to contribute significantly to PC4. Based on the PCA results, 11 

variables were identified as significant contributors, including F1-F8, F14, F16, and F18. 

 

 

4.2.4 Results of the Penalized Linear Regression Method 

The regularization penalty introduced by LASSO into linear regression models facilitates the identification of the 

most important features by providing an effective approach to feature selection for high-dimensional data. After 

applying LASSO regression, only 10 of the 18 initial input variables were retained, namely F3-F5, F7, F8, F13-

F16, and F18. The results of the three feature analyses are summarized in Table 7. 

 

 

 

Figure 7: (a) the percentage of variance on PCA, (b) 3D PCA. 
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Table 7: Summary of the feature selection process. 

ID 
Correlation  

PCA 
 

LASSO 
Pearson Kendall’s tau-b Spearman’s rho   

F1     ◉   

F2     ◉   

F3     ◉  ◉ 

F4     ◉  ◉ 

F5 ◉ ◉ ◉  ◉  ◉ 

F6 ◉ ◉ ◉  ◉   

F7 ◉ ◉ ◉  ◉  ◉ 

F8 ◉ ◉ ◉  ◉  ◉ 

F9        

F10        

F11        

F12 ◉       

F13       ◉ 

F14 ◉ ◉ ◉  ◉  ◉ 

F15  ◉ ◉    ◉ 

F16 ◉ ◉ ◉  ◉  ◉ 

F17 ◉ ◉ ◉     

F18 ◉ ◉ ◉  ◉  ◉ 

 

4.2.1 Model Testing 

In this study, the performance of LSMBM in predicting construction costs was evaluated using three feature 

selection approaches: correlation analysis, PCA, and LASSO. A grid search method was used to explore the 

combination of the regularization parameter (γ) and kernel parameter (σ). In this case, 10-fold cross-validation 

was applied to the training and testing datasets and the predetermined ranges for γ [0.01, 0.1, 1, 10, 100] and σ 

[0.01, 0.1, 1, 10, 100] generated 25 parameter combinations. These ranges align with commonly used values in 

studies that employ SVM and its variants like LSSVM (Balogun et al., 2021)(Dewi et al., 2023). By exploring 25 

different combinations, the grid search provides a systematic approach for identifying the most optimal pair. The 

performance evaluation metrics were employed to provide a comprehensive overview of the performance of each 

tested model. A summary of these performance evaluations is provided in Table 8 and Table 9. 

When correlation analysis was used as its feature selection mechanism, LSMBM consistently surpassed the 

benchmark models on all performance indicators in both training and testing stages. In the testing phase, LSMBM 

earned the lowest RMSE, MAE, and MAPE values (0.041, 0.028, and 10.081%, respectively), surpassing the 

0.045, 0.031%, and 11.243% earned by the second-best model, LSSVM. The 0.991 and 0.982 earned by LSMBM 

for R and R2, respectively, indicate the proposed model is not only efficient at modeling training data but also 

highly generalizable to unseen data as well. Notably, the performances of RF and BPNN were inferior to LSMBM 

and LSSVM. A similar trend was also observed for the PCA, with LSMBM earning the lowest error values (RMSE 

= 0.016 and MAPE = 4.569%) and LSSVM earning the second-lowest (RMSE = 0.024 and MAPE = 7.984%). In 

addition, the R and R2 values of the LSMBM confirmed its reliability and stability under various conditions. 

Furthermore, when LASSO was applied to the feature selection, LSMBM achieved the lowest error values of all 

of the models. 

Overall, the combination of LSMBM with PCA performed better than all of the other feature selection methods. 

The comprehensive evaluation conducted in this research demonstrated that the proposed LSMBM consistently 

outperforms the other machine learning models across all three feature selection techniques. This superiority was 
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demonstrated through performance metrics in both training and testing phases. Moreover, LSMBM exhibited the 

highest RI among all of the feature selection methods, indicating its overall top-ranking performance. The parallel 

diagram shown in Figure 8 illustrates the performance of the combined LSMBM and PCA, with each horizontal 

line connecting average error measurements associated with a particular algorithm. For RMSE, MAPE, and MAE, 

lower values indicate better performance, while for R, R2, and RI, higher values indicate better performance. 

 

 

Figure 8: Performance evaluation of the combined LSMBM and PCA. 

 

Next, the performance of LSMBM was compared to EVM using Eq. (1) - Eq. (5). The results obtained by LSMBM 

and several EVM methods are given in Table 10, with LSMBM exhibiting the best performance for all metrics. 

LSMBM achieved the lowest error values with an RMSE of 0.016, MAE of 0.010, and MAPE of 4.569, 

demonstrating high resilience and accuracy. Moreover, earning the highest R and R2 values indicates that the 

proposed model generalizes well to unseen data. Furthermore, the overall performance measurement using RI 

emphasizes the superiority of LSMBM to traditional EVM techniques in terms of predicting ECTC. 

 

Table 9: Summary of LSMBM Performance Evaluations. 

FS RMSE MAPE MAE R R2 

Normalize 

RI Rank 
RMSE MAPE MAE R R2 

CA 0.041 0.028 10.081 0.991 0.982 1.000 1.000 0.878 0.000 0.000 0.024 3 

PCA 0.016 0.010 4.569 0.999 0.997 0.000 0.000 0.000 1.000 1.000 1.000 1 

LASSO 0.034 0.025 10.849 0.993 0.987 0.720 0.833 1.000 0.250 0.333 0.206 2 

 

Table 10: LSMBM and EVM results comparison. 

Method RMSE MAE MAPE R R2 RI Rank 

LSMBM 0.016 0.010 4.569 0.999 0.997 1.000 1 

ECTC1 0.100 0.076 60.306 0.956 0.913 0.646 2 

ECTC2 0.127 0.102 82.127 0.936 0.877 0.505 3 

ECTC3 0.211 0.132 63.868 0.846 0.729 0.300 5 

ECTC4 0.405 0.181 70.211 0.789 0.405 0.031 6 

ECTC5 0.198 0.124 63.403 0.859 0.198 0.343 4 
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Table 8: Summary of Model Performance Evaluations. 

FS Models RMSE MAE MAPE R R2 RI Rank 
C

o
rr

el
at

io
n
 a

n
al

y
si

s 

LSMBM 0.041 0.028 10.081 0.991 0.982 1.000 1 

LSSVM 0.045 0.031 11.243 0.989 0.977 0.951 2 

RF 0.070 0.055 26.368 0.972 0.944 0.559 4 

BPNN 0.058 0.045 20.746 0.981 0.963 0.748 3 

DT 0.083 0.067 26.421 0.960 0.922 0.381 7 

KNN 0.072 0.058 27.224 0.972 0.944 0.542 5 

SVM 0.076 0.063 37.351 0.967 0.935 0.418 6 

LR 0.101 0.086 47.803 0.943 0.889 0.000 8 

P
C

A
 

LSMBM 0.016 0.010 4.569 0.999 0.997 1.000 1 

LSSVM 0.024 0.015 7.894 0.997 0.994 0.918 2 

RF 0.061 0.046 23.117 0.980 0.960 0.407 5 

BPNN 0.040 0.031 16.444 0.990 0.981 0.688 3 

DT 0.080 0.064 26.057 0.964 0.930 0.086 7 

KNN 0.050 0.038 22.067 0.986 0.972 0.551 4 

SVM 0.066 0.053 33.368 0.977 0.955 0.283 6 

LR 0.081 0.064 42.020 0.965 0.930 0.003 8 

L
A

S
S

O
 

LSMBM 0.034 0.025 10.849 0.993 0.987 1.000 1 

LSSVM 0.038 0.027 12.011 0.992 0.985 0.949 2 

RF 0.058 0.044 21.534 0.981 0.963 0.536 4 

BPNN 0.066 0.051 21.308 0.976 0.952 0.382 5 

DT 0.080 0.064 26.064 0.966 0.933 0.076 7 

KNN 0.059 0.041 19.576 0.982 0.964 0.569 3 

SVM 0.069 0.056 32.124 0.975 0.951 0.243 6 

LR 0.079 0.065 32.969 0.965 0.932 0.005 8 

 

4.2.2 Model Application 

 

Figure 9: (a) Actual and predicted ECTC; (b) Correlation with ECTC. 

An RC project implemented by a construction company in Taiwan was used as the case study in this research, and 

the primary factors of influence on construction costs provided the framework for analyzing the case data. The 

project encompassed a total floor area of 4,774 square meters, including two basement floors and eleven 

superstructure floors. It was governed by a contract valued at 145,377,589 NTD, spanning a total duration of 730 
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days from February 21, 2004, to February 20, 2006. The project was divided into 26 periods throughout its 

execution. The dataset can be found in Appendix D. The top-performing LSMBM-PCA combination was used as 

the predictive model in this study. All of the data were normalized to a range of 0 to 1 to improve model efficiency 

and reduce the risk of error. The LSMBM model with PCA feature selection was used to predict the remaining 

costs to complete a project at different periods. Comparing actual and predicted values, the model attained a high 

level of accuracy with an RMSE of 0.029, MAE of 0.025, MAPE of 15.29%, and R value of 0.998. The comparison 

graph of the actual and predicted ECTC and their correlation is shown in Figure 9. The estimated cost at completion 

(ECAC) value was calculated using Eq. (19). 

Where AC is actual cost percentage, ECTC is estimate cost to completion percentage and BAC is budget at 

completion, as stated in the project contract information. Cost estimation is conducted at the midpoint of the project 

(i.e., the 12th period). When expenditures are deemed appropriate and acceptable, the project proceeds with its 

predetermined budget. However, when potential cost overruns are indicated, immediate action is taken to mitigate 

or avoid these overruns. Based on the results of the analysis model, the ECAC for the 12th period was determined 

as follows: 

𝐸𝐶𝐴𝐶 = (𝐴𝐶 + 𝐸𝐶𝑇𝐶)  𝐵𝐴𝐶 (19) 

 

ECACActual    = (0.4815 + 0.4354) x 145.377.589 = 133.296.711 (NTD) 

ECACPredicted =  (0.4815 + 0.3920) x 145.377.589 = 126.987.323 (NTD) 

 

The variation in contract price is determined by calculating the difference between the actual and predicted ECAC, 

as follows: 

Variation from actual ECAC : 145,377,589 - 133,296,711 = 12,080,878 (NTD) 

Variation from predicted ECAC : 145,377,589 - 126,987,323 = 18,390,266 (NTD) 

 

The positive cost variance indicates that this project was completed under budget, earning a cost savings of 8.31% 

(12,108,878 NTD). The prediction results indicate that the project would earn a cost saving of 12.65% (18,390,266 

NTD). To ensure that the project remains under budget, regular progress and budget consumption evaluations 

should be conducted to detect potential deviations as early as possible. Furthermore, periodic cost monitoring must 

be implemented to ensure that the project remains on track. This step is crucial to identifying and addressing 

potential cost overruns. The project team must ensure that each phase proceeds according to the budget plan to 

avoid deviations that may reduce the cost savings achieved. 

 

4.3 Comparison With Previous Works 

The performance of the proposed LSMBM-PCA model in this study was evaluated and compared with various 

methods proposed in previous research. Table 11 presents a comparison of the accuracy results for predicting 

construction cost estimates of building projects using various approaches. The methods used in the previous studies 

include ANN-SVM, ANN-RBF, Deep Boltzmann Machine, Fuzzy Logic, and ANN. Each method was tested by 

using different datasets and features. The accuracy indicates how closely the predictions of the model match the 

actual values, with higher percentages representing more accurate predictions. Prediction accuracy was defined as 

(100-MAPE)% (Bang et al., 2023). The range of accuracy achieved by the methods in previous studies varied 

between 89.9% - 95.08%. Meanwhile, the model proposed in this study, LSMBM-PCA, achieved the highest 

accuracy of 95.43%. The higher accuracy of the LSMBM-PCA model indicates the potential for improved 

predictive performance over existing methods. This enhancement represents a significant advancement in data-

driven decision-making within construction cost management. This accuracy is crucial for effective project 

planning and budget allocation, rendering the LSMBM-PCA model an invaluable tool for project managers. It 

enables informed decisions regarding resource allocation, project feasibility, and contingency planning. 
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Table 11: Accuracy results with previous works over various datasets. 

Authors Method Accuracy (%) 

Juszczyk (2020) ANN-SVM 95.08 

Jiang (2020) ANN-RBF 94.46 

Rafiei & Adeli (2018) Deep Boltzmann machine 89.9 

Wang (2017) Fuzzy Logic 95 

Bala et al. (2014) ANN 94.6 

Present Study  LSMBM-PCA 95.43 

4.4 Discussion and Limitations 

4.4.1 Discussion 

This study advances current construction cost prediction application capabilities by developing and validating the 

inference engine LSMBM as a significantly more accurate, AI-based tool for construction project cost estimation. 

The model has been successfully validated using two case studies. In the first case, the proposed LSMBM model 

surpasses other machine learning models in predicting construction costs of residential buildings. It consistently 

demonstrated superior performance across all evaluation metrics, making it the most reliable and accurate model 

among the tested models. In the second case, the integration into the LSMBM model of key factors that influence 

construction costs with EVM metrics offers significant potential to further improve the accuracy and reliability of 

construction project cost estimation for RC buildings. Three feature selection techniques, including Correlation 

Analysis, PCA, and LASSO, were used to identify the most relevant variables for accurate and reliable cost 

estimation.  

In the correlation analysis test, the performance of LSMBM was superior to all of the other models on nearly all 

metrics. LSMBM exhibited the fewest error metrics, affirming its ability to predict construction costs at a high 

level of accuracy. Also, LSMBM earned the highest values for R and R2 indicating robust predictive capabilities. 

An R² value closer to 1 indicates that the predictions are very close to the actual costs, providing project managers 

and stakeholders with a higher degree of confidence in making informed decisions and managing projects within 

budget constraints. This superiority was maintained when using PCA and LASSO for feature selection. The 

LSMBM consistently achieved top rankings in the RI metric across all feature selection methods. Particularly, the 

PCA and LSMBM combination yielded optimal results for cost prediction. The RI metric assigns equal weights to 

each performance indicator, evaluating and ranking overall performance to ensure that every metric contributes 

equally to the final index. A reinforced concrete project conducted by a Taiwanese construction company was used 

as the case study.  The LSMBM-PCA model resulted in a low error value metric. Cost estimation was performed 

at the midpoint of the project, with the evaluation results indicating that the final cost would be 12.65%  below the 

amount budgeted. The actual result for the project amounted to 8.31% below budget. To increase model accuracy, 

consistent progress and budget monitoring are necessary to detect and respond to deviations from the budget plan 

at each stage of the project. 

This study demonstrated the LSMBM model to be an accurate tool for predicting construction project costs. The 

consistent ranking of the proposed model at the top of various evaluation metrics and feature selection method 

rankings underscores its practicality as an advanced AI-based inference engine. The integration of key variables 

and EVM metrics into the LSMBM framework offers a comprehensive approach to cost prediction that enhances 

the accuracy and reliability of estimates. Furthermore, using feature selection methods, particularly PCA, in 

combination with LSMBM was shown to generate the most accurate cost estimates. The adaptability and improved 

accuracy of the LSMBM model support project management by providing earlier insights into potential cost 

overruns and facilitating strategic resource allocation. The LSMBM-PCA model represents a significant 

advancement in data-driven decision-making within construction cost management. By improving the accuracy of 

cost estimation, the LSMBM model enables project managers to make more informed decisions, thereby reducing 

the risk of budget overruns and enhancing project delivery. This study contributes to the field of construction 

management by applying advanced machine learning techniques to improve the accuracy of cost estimation. These 

findings may serve as a basis for future studies and practical implementations to optimize the planning and control 

of completion costs in construction projects. 
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4.4.2 Limitations 

LSMBM is a promising approach for enhancing the performance of machine learning tasks, particularly in the 

context of predicting construction costs. However, in terms of future use and development, this model has several 

limitations that must be considered. First, the focus of this study was limited to predicting construction costs on 

residential and reinforced concrete building projects. Future research can expand the scope to other types of 

construction projects, such as infrastructure projects. Second, LSMBM exhibits sensitivity to hyperparameter 

configurations, which may impact model performance under certain conditions. Therefore, more sophisticated 

methods of hyperparameter optimization should be explored in future research to improve the stability and 

effectiveness of the model. Additionally, enhancing model interpretability through methods such as SHAP analysis, 

ICE plots, and PDP plots could provide deeper insights into the factors that influence cost estimations. Finally, 

although the performance of LSMBM was compared with several existing machine learning algorithms, there 

remains room to expand the scope of comparison. Future research should incorporate more types of models to 

provide a more comprehensive overview of the strengths and weaknesses of each reviewed algorithm. 

5. CONCLUSION 

A transformative advancement in construction cost prediction using an advanced AI-based inference engine, the 

Least Square Moment Balanced Machine (LSMBM), was demonstrated in this study. LSMBM considers moments 

to determine the optimal moment hyperplane.  Backpropagation Neural Network (BPNN) is used as the initial 

prediction to measure the weight of each case, and the principle of Least Square Support Vector Machines 

(LSSVM) is adopted to obtain the moment hyperplane. LSMBM integrated these innovative methods to improve 

the accuracy of construction cost predictions, which provide significant advantages in data-driven planning and 

budget estimation for construction projects. Using an AI-based inference engine that integrates extensive domain 

knowledge and experience gives construction managers the insights necessary to make more sophisticated 

decisions and to more rapidly adapt to changing on-site conditions to ensure projects remain on track and within 

the budget. In addition, the proposed model enables project managers to distribute resources more efficiently, 

reduce project costs, and take corrective actions to minimize construction costs. 

The findings of this study verified the ability of LSMBM to predict construction costs for both residential and 

reinforced concrete building projects. Firstly, the proposed LSMBM outperforms the other models by achieving 

the lowest RMSE (26.940), MAE (19.533), and MAPE (12.07%) among all models for residential buildings. In 

addition, this model achieved the highest R (0.986) and R2 (0.971) values. Secondly, the study employed three 

feature selection techniques, including correlational analysis, PCA, and LASSO. These methods are essential for 

recognizing the most important variables involved in achieving better and more reliable cost estimates for 

reinforced concrete buildings. A 10-fold cross-validation method was used to validate the generalizability of the 

proposed model. The combination of LSMBM with PCA earned in the lowest error values of RMSE 0.016, MAE 

0.010, and MAPE 4.569%, indicating high robustness and accuracy. In addition, the high R and R2 values indicate 

a strong correlation between the actual and predicted values, demonstrating that the model explains a high 

proportion of the variance in the actual data. Furthermore, the overall performance measurement using reference 

index (RI) further confirmed the superiority of LSMBM over the other machine learning models considered. 

Finally, the construction cost prediction performance of LSMBM was then compared with the earned value 

management (EVM) method, with results showing that LSMBM performed better for all metrics. To test LSMBM 

in practice, a case study of an RC project of a construction company in Taiwan was used. The result estimated that 

the project would be completed 12.56% below the original budget, generating a cost savings of 18,390,266 NTD. 

To ensure that projects remain within budget, progress and budget expenditure evaluations should be conducted 

periodically to detect potential deviations as early as possible. 

In this study, LSMBM was shown to enhance the accuracy of construction project cost estimates. However, areas 

for further improvement and consideration remain. The success of the LSMBM in predicting construction costs 

may be replicated in applications targeted on other types of construction projects. Also, the performance of 

LSMBM may be affected by hyperparameter configurations, which may impact model performance under certain 

conditions. Subsequent studies may consider hyperparameter optimization. Lastly, future research should consider 

expanding the scope of performance comparison to additional machine learning algorithms to further investigate 

and validate the performance advantages of LSMBM. 
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APPENDIX A 

To solve the optimization problems, the Lagrangian function of the objective function and the corresponding 

constraints are formulated as shown in Eq.(10). Where αk is the Lagrange multiplier and φk is the higher-

dimensional feature mapping for each sample xk. Solving the minimization problem involves taking the partial 

derivative of L with respect to the primal variable (w, b, dk ), as shown in Eqs. (11)-(13). After eliminating w and 

d, the following linear system is obtained, as shown in Eq. (14). The kernel function is applied, as shown in Eq.(15). 
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(14) 

Where: 
𝑦 = [𝑦1; . . . ; 𝑦𝑁], 1 = [1; . . . ; 1]𝑇 , 𝛼 = [𝛼1; . . . ; 𝛼𝑁] 

𝑤𝑖𝑗 = 𝑦𝑖𝑦𝑗  𝜑(𝑥𝑖). 𝜑(𝑥𝑗) + (𝐹𝑖𝛾)−1𝐼 

  𝐾(𝑥𝑘 , 𝑥𝑙) = 𝜑(𝑥𝑘). 𝜑(𝑥𝑙) (15) 

The Lagrange multipliers αk and the bias term b may be obtained by solving the set of linear equations, resulting 

in the LSMBM moment hyperplane for function estimation as shown in Eq. (16). This hyperplane is influenced 

by the weight Fk through the stationarity condition 𝛼𝑘 = 𝛾𝐹𝑘𝑑𝑘, as shown in Eq. (13), which effectively modulates 

the impact of each datapoint on the model. A radial basis function (RBF) kernel utilizing the sigma (σ) parameter 

was used in this study both to capture the nonlinear relationships between input features and target outputs and to 

facilitate the modeling of complex patterns that may not exhibit linear separability in the original feature space. 

The Radial Basis Function (RBF) kernel formula  is expressed in Eq. (17). 

𝑦(𝑥) = ∑ 𝛼𝑘

𝑁

𝑘=1

𝐾(𝑥𝑘 , 𝑥𝑙) + 𝑏 

(16) 

𝐾(𝑥𝑖, 𝑥𝑗) = 𝑒𝑥𝑝( − 𝜎‖𝑥𝑖 − 𝑥𝑗‖
2

) (17) 
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APPENDIX B 
No Total 

floor 

area 

Lot 

area 

Total 

preliminary 

cost 

Preliminary 

cost 

Equivalent 

preliminary 

cost 

Duration of 

construction 

Price of 

the unit 

Construction 

cost 

1 3150 920 598.5 190 1010.84 16 1200 410 

2 7600 1140 3040 400 963.81 23 2900 1000 

3 4800 840 480 100 689.84 15 630 170 

4 685 202 13.7 20 459.54 4 140 30 

5 3000 800 1230 410 631.91 13 5000 700 

6 2500 640 1050 420 647.32 12 4800 700 

7 1810 492 1158.4 640 843.98 11 5700 900 

8 1150 380 575 500 590.68 6 5300 600 

9 2110 540 189.9 90 732.14 5 690 110 

10 3030 930 515.1 170 1007.38 3 1500 190 

11 750 200 90 120 846.15 6 1100 150 

12 4080 790 530.4 130 759.17 7 1800 190 

13 5030 1540 251.5 50 667.88 3 600 130 

14 4040 890 1212 300 752.65 6 3800 450 

15 4880 1070 1854.4 380 614 5 4100 520 

16 1860 480 539.4 290 836.28 4 3300 380 

17 1460 380 627.8 430 733.24 5 4700 590 

18 15670 3440 7208.2 460 1010.5 5 3000 630 

19 2620 670 1231.4 470 724.38 5 3900 650 

20 5020 1110 1706.8 340 853.01 5 3300 450 

21 1830 410 494.1 270 650.57 6 3700 300 

22 3560 690 925.6 260 885.89 7 2500 360 

23 1590 350 667.8 420 678.64 6 4900 620 

24 3700 820 962 260 749.77 6 2600 380 

25 1450 370 406 280 702.48 5 3800 370 

26 1480 380 222 150 731.79 5 1700 190 

27 6930 1780 485.1 70 718.57 5 590 90 

28 2750 610 357.5 130 916.66 6 1300 160 

29 3040 670 881.6 290 561.79 5 4900 440 

30 3420 880 547.2 160 890.64 4 2000 180 

31 2600 560 598 230 415.24 10 2100 400 

32 3600 980 612 170 2648.04 7 250 145 

33 900 300 351 390 755.51 6 2600 600 

34 820 250 303.4 370 928.27 7 2400 580 

35 680 260 20.4 30 639.5 3 170 40 

36 1160 300 429.2 370 474.91 5 2400 480 

37 1160 260 185.6 160 697.66 7 990 230 

38 2820 620 310.2 110 536.64 6 1300 170 
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No Total 

floor 

area 

Lot 

area 

Total 

preliminary 

cost 

Preliminary 

cost 

Equivalent 

preliminary 

cost 

Duration of 

construction 

Price of 

the unit 

Construction 

cost 

39 760 200 106.4 140 616.47 6 940 190 

40 2250 690 765 340 853.01 3 2200 430 

41 5540 850 1551.2 280 957.42 9 1200 440 

42 1540 400 154 100 771.33 5 700 110 

43 4230 820 169.2 40 780.14 7 200 160 

44 1540 590 215.6 140 698.95 2 820 160 

45 4330 1110 86.6 20 421.26 4 170 30 

46 2710 600 867.2 320 637.72 6 2300 490 

47 1350 350 270 200 576.74 5 1700 270 

48 1260 330 189 150 875.96 5 790 210 

49 1710 440 171 100 798.68 5 630 120 

50 730 190 226.3 310 893.95 6 1800 450 

51 450 120 58.5 130 913.31 7 690 160 

52 610 160 183 300 597.86 6 2700 460 

53 3160 700 537.2 170 694.97 6 1100 300 

54 370 120 40.7 110 585.22 5 1200 140 

55 690 160 89.7 130 770.35 8 990 190 

56 2140 400 813.2 380 614 5 3200 530 

57 7500 1260 2775 370 820.91 11 1800 700 

58 2100 500 126 60 1158.47 11 300 180 

59 4600 1000 2668 580 3436.93 11 1300 900 

60 5200 800 208 40 958.39 13 120 130 

61 1820 400 655.2 360 474.74 5 3400 450 

62 1500 350 810 540 637.93 6 4300 650 

63 3100 640 1798 580 647.79 7 4600 700 

64 2260 440 158.2 70 569.44 7 620 80 

65 1090 280 152.6 140 777.06 5 1500 180 

66 2530 560 759 300 722.86 6 1800 330 

67 4070 1040 895.4 220 634.42 4 1800 290 

68 6000 1320 1800 300 752.65 5 2800 400 

69 820 260 49.2 60 644.47 4 630 90 

70 1150 300 80.5 70 718.57 5 620 90 

71 4000 880 400 100 750.7 5 540 110 

72 3240 630 680.4 210 715.52 7 2300 290 

73 1380 360 110.4 80 735.87 5 630 100 

74 2170 480 542.5 250 854.84 6 1500 340 

75 1820 400 200.2 110 753.66 6 920 140 

76 580 150 17.4 30 631.89 6 240 70 

77 2120 470 572.4 270 650.57 6 2900 300 
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No Total 

floor 

area 

Lot 

area 

Total 

preliminary 

cost 

Preliminary 

cost 

Equivalent 

preliminary 

cost 

Duration of 

construction 

Price of 

the unit 

Construction 

cost 

78 5110 980 1430.8 280 505.51 7 2800 410 

79 3110 690 777.5 250 720.93 5 2600 340 

80 2030 450 365.4 180 565.58 6 1800 260 

81 4840 930 1452 300 541.61 7 3300 430 

82 4090 900 1104.3 270 655.93 5 2200 370 

83 3280 720 459.2 140 805.03 6 1200 150 

84 1610 410 177.1 110 585.22 5 1700 140 

85 1710 440 119.7 70 525.49 5 880 80 

86 2100 380 819 390 601.08 4 2800 510 

87 1800 500 954 530 626.12 7 1900 650 

88 1900 550 437 230 1362.92 7 550 320 

89 1895 550 379 200 1446.67 6 450 250 

90 2100 450 546 260 816.95 5 600 330 

91 2050 700 492 240 527.22 10 2100 450 

92 1052 250 168.32 160 948.12 6 770 200 

93 1650 432 264 160 851.23 5 550 200 

94 3350 800 804 240 369.9 7 1300 370 

95 1450 336 507.5 350 442.61 2 1800 400 

96 1130 260 339 300 511.56 3 1400 390 

97 1200 1100 300 250 451.35 7 980 370 

98 1450 336 536.5 370 371.34 4 2300 390 

99 1560 400 171.6 110 878.55 5 420 130 

100 2740 610 767.2 280 542.42 6 1500 440 

101 2120 470 508.8 240 817.74 6 1100 350 

102 1650 510 181.5 110 651.83 3 820 120 

103 1430 440 57.2 40 772.31 4 280 120 

104 720 190 72 100 798.68 6 490 120 

105 2070 400 269.1 130 723.64 7 730 170 

106 1900 420 190 100 575.02 6 720 110 

107 390 100 62.4 160 547.1 8 1000 220 

108 1540 340 446.6 290 727.56 6 1500 430 

109 2410 530 216.9 90 525.58 6 640 130 

110 440 120 13.2 30 779.57 8 160 60 

111 1430 320 42.9 30 477.9 6 170 30 

112 1190 310 130.9 110 642.37 5 870 150 

113 930 240 93 100 770.16 5 460 110 

114 1660 430 282.2 170 728.63 5 1200 240 

115 1800 560 36 20 459.54 4 110 30 

116 1500 330 540 360 867.43 7 1300 440 



 

 

 
ITcon Vol. 29 (2024), Cheng & Khasani, appx. 5 

No Total 

floor 

area 

Lot 

area 

Total 

preliminary 

cost 

Preliminary 

cost 

Equivalent 

preliminary 

cost 

Duration of 

construction 

Price of 

the unit 

Construction 

cost 

117 2300 510 207 90 536.26 6 580 110 

118 1600 360 272 170 728.63 7 1200 310 

119 2140 470 235.4 110 663.38 6 660 140 

120 2010 520 381.9 190 814.35 4 1200 240 

121 2670 690 213.6 80 600.56 5 340 90 

122 2290 710 91.6 40 637.2 3 190 70 

123 2370 610 189.6 80 617.07 4 380 90 

124 1700 380 493 290 494.51 7 1700 450 

125 6740 1300 674 100 603.07 6 780 130 

126 3180 700 1049.4 330 732.16 5 1600 430 

127 2630 580 315.6 120 599.1 6 850 160 

128 870 230 69.6 80 650.79 6 320 100 

129 1810 400 488.7 270 538.07 6 2000 420 

130 2190 490 503.7 230 786.46 6 1200 320 

131 2500 640 300 120 599.1 4 810 140 

132 3650 940 1168 320 802.83 5 1500 420 

133 990 260 297 300 581.16 6 1700 470 

134 2330 600 256.3 110 792.82 4 390 120 

135 1190 310 107.1 90 632.29 5 500 110 

136 2370 730 71.1 30 400.73 3 210 90 

137 1040 270 41.6 40 534.3 5 210 60 

138 5280 1160 1584 300 659.02 5 1500 420 

139 760 200 174.8 230 786.46 11 810 400 

140 920 210 119.6 130 649.02 8 1300 200 

141 1020 270 142.8 140 829.6 6 840 180 

142 1310 340 52.4 40 534.3 5 470 70 

143 1040 270 93.6 90 718.81 5 810 110 

144 200 60 6 30 718.79 11 230 140 

145 2880 740 662.4 230 579.07 5 2300 300 

146 1820 400 546 300 541.61 7 2600 430 

147 3050 670 1006.5 330 508.61 5 4300 460 

148 850 220 68 80 548.12 5 870 100 

149 1070 210 42.8 40 772.31 9 430 110 

150 540 140 70.2 130 759.17 7 1400 180 

151 1800 400 378 210 659.84 6 2000 300 

152 3260 720 489 150 642.91 5 1500 220 

153 1450 320 377 260 443.35 7 3100 410 

154 840 220 100.8 120 690.02 6 770 130 

155 1330 300 172.9 130 649.02 7 1100 190 
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construction 

Price of 
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156 360 100 86.4 240 409.25 8 3300 390 

157 1910 420 152.8 80 425.62 6 1000 110 

158 350 143 122.5 350 442.61 3 1800 420 

159 900 150 63 70 751.88 6 210 100 

160 2190 420 459.9 210 652.57 7 1000 300 

161 770 170 231 300 728.81 7 1400 440 

162 1060 240 190.8 180 784.87 7 1100 250 

163 3270 510 327 100 579.84 9 230 90 

164 920 290 46 50 513.26 4 190 60 

165 360 100 86.4 240 409.25 8 1600 400 

166 680 180 40.8 60 644.47 6 300 90 

167 940 250 94 100 723.33 6 550 120 

168 7010 1200 1472.1 210 718.07 7 1200 300 

169 1310 290 104.8 80 578.67 7 480 100 

170 2110 470 189.9 90 620.86 5 490 110 

171 1380 310 193.2 140 744.83 7 700 200 

172 1540 400 154 100 555.04 5 870 140 

173 1450 320 203 140 600.05 7 840 250 

174 1980 440 495 250 549.19 6 1700 360 

175 2390 610 71.7 30 585.11 4 170 50 

176 1990 440 258.7 130 721.55 6 840 180 

177 360 80 21.6 60 644.47 11 330 100 

178 2240 430 134.4 60 434 8 390 90 

179 1580 363 331.8 210 526.86 8 1200 350 

180 1580 363 284.4 180 615.49 8 770 250 

181 270 90 24.3 90 693.15 7 480 100 

182 620 160 62 100 436.04 6 1100 150 

183 1510 390 241.6 160 654.09 5 1100 210 

184 470 120 14.1 30 579.23 7 330 90 

185 1020 320 102 100 575.02 4 550 110 

186 450 120 103.5 230 505.25 7 1700 390 

187 530 140 148.4 280 542.42 7 1800 470 

188 1050 270 115.5 110 612.31 6 840 140 

189 640 250 96 150 654.06 2 1100 170 

190 400 110 40 100 499.25 7 880 160 

191 1300 290 247 190 735.11 7 1100 300 

192 670 180 154.1 230 577.03 6 1700 350 

193 510 160 15.3 30 654.64 5 150 50 

194 780 200 241.8 310 753.11 6 1400 400 
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Duration of 
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195 1060 280 349.8 330 795.15 5 1600 360 

196 1580 410 47.4 30 585.11 5 210 70 

197 1540 340 154 100 592.57 7 710 140 

198 770 200 146.3 190 590.42 6 1300 240 

199 550 140 44 80 578.67 7 530 100 

200 970 250 97 100 583.97 6 360 140 

201 500 130 145 290 523.56 7 920 420 

202 1680 370 285.6 170 490.23 6 800 260 

203 520 120 62.4 120 667.98 9 360 170 

204 300 80 33 110 536.64 9 670 180 

205 280 90 44.8 160 388.7 6 710 210 

206 660 170 112.2 170 490.23 6 680 260 

207 450 120 54 120 490.57 8 500 210 

208 950 250 114 120 514.33 5 500 170 

209 430 100 8.6 20 436.43 10 90 90 

210 490 160 14.7 30 467.3 5 100 50 

211 870 230 174 200 481.91 6 1300 220 

212 220 70 30.8 140 478.71 7 770 210 

213 600 160 12 20 392.14 6 110 60 

214 2650 590 238.5 90 449.32 5 810 110 

215 1370 300 109.6 80 476.68 7 640 100 

216 700 180 42 60 488.09 6 250 80 

217 1810 470 488.7 270 523.05 5 860 410 

218 960 250 67.2 70 417.09 5 350 80 

219 990 310 99 100 499.25 4 550 120 

220 980 250 107.8 110 471.47 5 780 160 

221 380 100 60.8 160 547.1 8 650 230 

222 540 140 75.6 140 478.71 6 900 200 

223 280 80 22.4 80 444.03 9 650 140 

224 1000 260 20 20 436.43 5 80 30 

225 2390 530 239 100 499.25 6 400 140 

226 810 210 194.4 240 532.48 6 900 330 

227 230 60 18.4 80 460.02 10 350 110 

228 982.5 202.5 353.7 360 554.84 5 1900 500 

229 740 190 37 50 361.67 6 340 70 

230 700 220 63 90 521.86 4 220 70 

231 960 220 67.2 70 405.89 7 140 60 

232 620 160 31 50 342.57 6 320 70 

233 730 230 14.6 20 397.43 5 150 30 
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234 1780 390 231.4 130 442.94 7 510 190 

235 520 140 78 150 466.12 7 1200 220 

236 930 240 46.5 50 513.26 6 220 80 

237 670 180 46.9 70 539.11 6 290 80 

238 550 140 77 140 439.9 7 1000 210 

239 430 110 81.7 190 476.68 8 820 310 

240 1230 270 98.4 80 474.06 6 680 100 

241 840 215 218.4 260 1495.05 10 440 350 

242 730 190 65.7 90 542.77 6 490 110 

243 470 120 32.9 70 493.59 7 380 90 

244 800 210 56 70 372.41 6 440 100 

245 760 240 15.2 20 459.54 4 80 30 

246 850 220 59.5 70 422.15 5 520 80 

247 310 80 31 100 487.86 9 770 170 

248 670 180 174.2 260 469.4 7 1100 380 

249 1070 280 74.9 70 539.11 6 260 80 

250 920 290 36.8 40 325.39 4 370 50 

251 940 250 56.4 60 462.8 5 190 70 

252 2490 550 199.2 80 467.18 6 700 120 

253 1110 250 88.8 80 390.29 7 900 120 

254 580 150 75.4 130 442.94 7 1100 190 

255 330 90 23.1 70 414.8 9 320 100 

256 720 190 165.6 230 354.48 6 1200 350 

257 1080 240 205.2 190 343.02 6 1000 270 

258 370 120 3.7 10 196.07 5 180 20 

259 370 100 74 200 481.91 8 650 280 

260 580 150 75.4 130 531.45 6 870 230 

261 520 140 109.2 210 323.66 6 1000 320 

262 350 110 35 100 499.25 6 550 130 

263 620 160 136.4 220 375.15 6 1100 330 

264 1120 290 358.4 320 421.99 6 1600 430 

265 360 100 28.8 80 463.87 8 210 70 

266 460 120 96.6 210 461.32 7 1300 360 

267 400 110 40 100 428.61 8 740 160 

268 430 110 73.1 170 409.62 7 650 210 

269 1230 320 86.1 70 479.6 5 240 90 

270 950 250 171 180 358.72 5 580 240 

271 750 200 45 60 423.07 6 360 80 

272 200 100 46 230 445.56 3 820 300 
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273 6700 2500 603 90 279.67 9 580 150 

274 810 210 48.6 60 432.44 6 260 80 

275 450 120 4.5 10 193.08 7 180 50 

276 780 200 117 150 432.56 6 1000 230 

277 940 250 244.4 260 400.72 5 1400 370 

278 370 120 81.4 220 339.07 5 1600 310 

279 8800 2960 264 30 231.4 8 700 50 

280 1750 300 52.5 30 400.73 10 130 60 

281 1520 470 60.8 40 289.33 4 250 60 

282 2170 480 195.3 90 439.07 6 340 130 

283 1020 230 71.4 70 408.78 7 290 100 

284 1410 310 239.7 170 338.79 6 960 270 

285 1360 350 149.6 110 374.8 5 400 150 

286 970 250 9.7 10 196.07 5 100 20 

287 420 110 79.8 190 307 8 750 310 

288 530 140 31.8 60 350.38 7 450 90 

289 1920 490 115.2 60 411.09 4 300 70 

290 690 180 89.7 130 444.52 6 540 190 

291 500 110 25 50 459.92 9 160 70 

292 520 140 36.4 70 305.23 6 330 110 

293 1510 330 166.1 110 341.82 6 640 140 

294 540 140 113.4 210 406.81 7 610 350 

295 470 130 126.9 270 416.13 7 750 430 

296 630 170 163.8 260 342.87 6 1100 350 

297 370 80 51.8 140 337.33 14 470 270 

298 1670 370 83.5 50 291.99 7 410 80 

299 630 160 107.1 170 412.99 6 810 220 

300 680 160 142.8 210 379.13 8 900 330 

301 1380 360 289.8 210 339.32 5 690 300 

302 550 150 22 40 308.06 7 200 50 

303 1510 330 392.6 260 400.72 6 960 390 

304 990 260 158.4 160 402.83 5 830 210 

305 1700 290 323 190 417.38 9 820 340 

306 1120 250 246.4 220 339.07 7 1200 350 

307 600 160 72 120 291.53 6 630 160 

308 1160 260 92.8 80 352.27 7 400 120 

309 450 120 81 180 324.97 7 920 270 

310 610 160 73.2 120 302.12 7 440 160 

311 800 250 8 10 229.77 4 40 20 
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312 480 130 62.4 130 403.97 7 420 190 

313 1210 270 193.6 160 318.86 7 680 260 

314 1910 420 305.6 160 388.7 6 810 210 

315 1230 270 123 100 341.94 6 630 140 

316 1540 340 338.8 220 339.07 6 660 330 

317 1380 360 82.8 60 245.28 5 430 90 

318 950 250 133 140 337.33 6 610 160 

319 1980 510 336.6 170 329.32 5 790 260 

320 280 90 11.2 40 325.39 6 180 50 

321 1000 260 160 160 309.95 5 860 250 

322 1530 390 15.3 10 193.08 5 120 40 

323 640 170 102.4 160 351.48 6 700 230 

324 400 130 36 90 307.74 5 330 110 

325 410 110 20.5 50 301.54 8 400 70 

326 520 140 57.2 110 341.82 7 420 160 

327 2020 450 282.8 140 310.61 6 500 200 

328 830 260 24.9 30 216.22 4 190 40 

329 810 210 251.1 310 408.8 6 810 420 

330 2620 580 786 300 395.62 6 1000 400 

331 510 130 20.4 40 300.28 7 150 50 

332 1150 260 161 140 307.54 7 990 240 

333 1160 260 313.2 270 436.27 7 1200 420 

334 940 240 141 150 377.65 6 430 220 

335 540 140 37.8 70 372.41 7 420 100 

336 1650 430 297 180 433.72 5 490 200 

337 1820 470 382.2 210 379.13 5 720 300 

338 2690 590 591.8 220 339.07 6 1000 330 

339 1600 410 368 230 295.21 5 1500 300 

340 14500 4870 3480 240 303.5 11 750 350 

341 5500 1760 1100 200 341.04 6 670 300 

342 14500 5000 580 40 237.03 7 220 60 

343 1560 520 624 400 422.6 6 2300 450 

344 810 250 32.4 40 274.06 5 570 50 

345 840 190 67.2 80 273.55 8 650 120 

346 1070 280 160.5 150 290.58 6 1500 240 

347 1060 330 21.2 20 205.31 4 210 30 

348 1390 360 41.7 30 206.95 4 350 40 

349 560 220 22.4 40 319.47 3 350 50 

350 580 150 104.4 180 348.7 7 1400 300 
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351 2350 610 423 180 324.97 4 860 220 

352 910 240 163.8 180 277.42 6 960 270 

353 830 260 41.5 50 287.51 4 600 60 

354 1590 410 333.9 210 323.66 5 1100 290 

355 1170 300 163.8 140 337.33 6 510 160 

356 3080 680 215.6 70 238.51 5 850 100 

357 1120 290 190.4 170 306.91 5 1600 240 

358 810 250 32.4 40 275.94 4 390 50 

359 870 230 208.8 240 308.05 5 1300 320 

360 2310 600 531.3 230 303.3 4 1400 280 

361 1370 360 191.8 140 271.21 5 1200 220 

362 3400 750 714 210 323.66 6 2200 310 

363 2100 600 210 100 288.37 10 640 190 

364 1840 420 220.8 120 263.61 5 1500 170 

365 1520 350 212.8 140 310.61 13 1200 300 

366 2500 510 325 130 251.84 6 1100 200 

367 900 250 45 50 278.32 7 350 70 

368 1350 350 108 80 251.37 9 830 150 

369 600 150 36 60 299.55 6 570 80 

370 1900 430 285 150 364.41 7 640 220 

371 510 160 30.6 60 245.28 9 790 110 

372 890 230 35.6 40 237.03 6 350 50 
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APPENDIX C 
No F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 Y 

1 9 2 12622 289992000 3.82 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 107 65 1.09 

2 9 2 12622 289992000 7.89 0.04 0.02 0.05 0.69 2.01 1.39 1.00 1.00 1.03 1.00 0.99 109 68 1.07 

3 9 2 12622 289992000 11.71 0.08 0.03 0.09 0.89 2.24 1.99 0.75 1.67 1.09 1.00 0.98 109 73 1.05 

4 9 2 12622 289992000 15.79 0.10 0.05 0.10 0.99 2.05 2.03 0.65 1.33 1.12 1.00 0.97 109 76 1.04 

5 9 2 12622 289992000 19.87 0.11 0.09 0.11 0.99 1.27 1.26 0.57 0.73 1.11 1.00 0.96 109 75 1.00 

6 9 2 12622 289992000 23.82 0.12 0.12 0.12 1.00 1.02 1.02 1.05 1.07 1.10 1.00 0.95 109 74 0.97 

7 9 2 12622 289992000 27.89 0.14 0.14 0.14 0.99 1.00 0.99 1.06 1.06 1.10 1.00 0.95 109 73 0.95 

8 9 2 12622 289992000 31.84 0.15 0.15 0.15 1.00 1.04 1.04 1.09 1.14 1.12 1.00 0.94 109 75 0.94 

9 9 2 12622 289992000 35.92 0.17 0.18 0.16 1.02 0.92 0.94 0.99 0.91 1.13 1.00 0.92 109 76 0.90 

10 9 2 12622 289992000 40.00 0.17 0.23 0.16 1.02 0.73 0.74 0.93 0.68 1.13 1.00 0.91 109 76 0.86 

11 9 2 12622 289992000 43.95 0.23 0.27 0.25 0.93 0.86 0.80 0.75 0.64 1.14 1.00 0.90 109 77 0.82 

12 9 2 12622 289992000 48.03 0.30 0.32 0.30 1.02 0.95 0.97 0.75 0.71 1.13 1.00 0.90 109 76 0.77 

13 9 2 12622 289992000 51.97 0.33 0.37 0.35 0.94 0.88 0.83 0.78 0.69 1.12 1.00 0.90 109 75 0.71 

14 9 2 12622 289992000 56.05 0.39 0.40 0.41 0.95 0.97 0.92 0.77 0.74 1.12 1.00 0.89 102 75 0.68 

15 9 2 12622 289992000 59.87 0.43 0.42 0.45 0.95 1.02 0.97 0.79 0.81 1.12 1.00 0.88 102 75 0.67 

16 9 2 12622 289992000 67.89 0.57 0.47 0.61 0.94 1.20 1.13 0.70 0.84 1.13 1.00 0.87 102 75 0.61 

17 9 2 12622 289992000 71.84 0.67 0.53 0.70 0.95 1.26 1.20 0.68 0.86 1.12 1.00 0.86 102 76 0.56 

18 9 2 12622 289992000 75.92 0.76 0.63 0.79 0.96 1.21 1.16 0.72 0.87 1.11 1.00 0.84 102 75 0.46 

19 9 2 12622 289992000 79.87 0.86 0.71 0.88 0.97 1.20 1.16 0.73 0.88 1.11 1.00 0.83 102 74 0.37 

20 9 2 12622 289992000 83.95 0.97 0.84 0.98 0.99 1.16 1.15 0.83 0.97 1.11 1.00 0.82 102 73 0.25 

21 9 2 12622 289992000 88.03 0.98 0.92 0.99 0.99 1.07 1.06 0.82 0.88 1.12 1.00 0.81 102 73 0.17 

22 9 2 12622 289992000 91.97 0.99 0.94 0.99 0.99 1.05 1.04 0.91 0.95 1.12 1.00 0.80 102 74 0.15 

23 9 2 12622 289992000 96.05 1.00 0.97 1.01 0.99 1.03 1.02 0.89 0.92 1.12 1.01 0.80 102 74 0.12 

24 9 2 12622 289992000 100.00 1.00 0.99 1.01 0.99 1.01 1.00 0.89 0.91 1.12 1.01 0.79 102 74 0.10 
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No F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 Y 

25 9 2 12622 289992000 104.08 1.01 1.00 1.01 1.00 1.01 1.01 1.00 1.01 1.12 1.01 0.79 102 74 0.08 

26 9 2 12622 289992000 107.89 1.01 1.00 1.01 1.00 1.01 1.01 1.00 1.01 1.13 1.01 0.79 100 74 0.08 

27 9 2 12622 289992000 111.84 1.01 1.01 1.01 1.00 1.01 1.01 1.00 1.01 1.14 1.01 0.78 100 74 0.08 

28 9 2 12622 289992000 115.92 1.01 1.04 1.01 1.00 0.97 0.97 1.00 0.97 1.16 1.01 0.76 100 75 0.05 

29 11 3 4919 149300000 2.44 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 107 65 0.91 

30 11 3 4919 149300000 6.88 0.00 0.03 0.00 1.00 1.00 1.00 1.00 1.16 1.03 1.00 0.99 109 68 0.89 

31 11 3 4919 149300000 11.03 0.11 0.06 0.11 1.00 1.76 1.76 1.00 1.77 1.09 1.00 0.98 109 73 0.85 

32 11 3 4919 149300000 15.47 0.13 0.10 0.13 1.00 1.31 1.31 1.00 1.31 1.12 1.00 0.97 109 76 0.82 

33 11 3 4919 149300000 19.91 0.15 0.13 0.15 1.00 1.18 1.18 0.86 1.01 1.11 1.00 0.96 109 75 0.79 

34 11 3 4919 149300000 24.21 0.16 0.14 0.16 1.00 1.14 1.14 0.77 0.88 1.10 1.00 0.95 109 74 0.77 

35 11 3 4919 149300000 28.65 0.16 0.17 0.16 1.00 0.99 0.99 1.36 1.35 1.10 1.00 0.94 109 73 0.75 

36 11 3 4919 149300000 32.95 0.19 0.19 0.19 1.00 0.97 0.97 1.19 1.15 1.12 1.00 0.93 109 75 0.72 

37 11 3 4919 149300000 37.39 0.26 0.22 0.26 1.00 1.19 1.19 1.15 1.36 1.13 1.00 0.92 109 76 0.69 

38 11 3 4919 149300000 41.83 0.30 0.25 0.30 1.00 1.20 1.20 1.13 1.36 1.13 1.00 0.90 109 76 0.66 

39 11 3 4919 149300000 46.13 0.30 0.29 0.30 1.00 1.02 1.02 1.29 1.31 1.14 1.00 0.89 109 77 0.62 

40 11 3 4919 149300000 50.57 0.33 0.33 0.34 0.98 1.02 1.00 1.16 1.18 1.13 1.00 0.89 109 76 0.59 

41 11 3 4919 149300000 54.87 0.37 0.36 0.37 1.00 1.02 1.02 1.23 1.25 1.12 1.00 0.89 109 75 0.55 

42 11 3 4919 149300000 59.31 0.41 0.41 0.41 1.01 1.02 1.03 1.09 1.12 1.12 1.01 0.88 102 75 0.51 

43 11 3 4919 149300000 63.47 0.45 0.44 0.45 1.00 1.02 1.02 1.01 1.04 1.12 1.01 0.87 102 75 0.47 

44 11 3 4919 149300000 72.21 0.56 0.55 0.56 0.99 1.02 1.01 1.09 1.11 1.13 1.01 0.86 102 76 0.37 

45 11 3 4919 149300000 76.50 0.63 0.62 0.64 0.99 1.02 1.01 1.04 1.06 1.12 1.01 0.84 102 75 0.30 

46 11 3 4919 149300000 80.95 0.68 0.66 0.73 0.92 1.02 0.94 1.00 1.02 1.11 1.01 0.83 102 74 0.25 

47 11 3 4919 149300000 85.24 0.82 0.72 0.82 1.00 1.14 1.14 0.95 1.08 1.11 1.01 0.82 102 73 0.19 

48 11 3 4919 149300000 89.68 0.92 0.79 0.92 1.00 1.17 1.17 0.96 1.13 1.11 1.01 0.80 102 73 0.13 

49 11 3 4919 149300000 94.13 0.94 0.80 0.94 1.00 1.19 1.19 1.03 1.23 1.12 1.01 0.79 102 74 0.12 

50 11 3 4919 149300000 98.42 0.99 0.82 0.99 1.00 1.21 1.21 0.99 1.20 1.12 1.00 0.79 102 74 0.10 
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No F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 Y 

51 11 3 4919 149300000 102.87 1.00 0.84 1.00 1.00 1.19 1.19 1.00 1.18 1.12 1.00 0.78 102 74 0.07 

52 9 2 31797 530000000 8.98 0.06 0.05 0.06 0.94 1.17 1.10 0.85 0.99 1.00 1.00 0.99 99 55 0.94 

53 9 2 31797 530000000 13.86 0.08 0.06 0.09 0.90 1.43 1.29 0.96 1.38 1.00 1.00 0.96 99 55 0.94 

54 9 2 31797 530000000 18.58 0.10 0.08 0.12 0.81 1.15 0.93 0.80 0.92 1.00 1.00 0.96 99 55 0.91 

55 9 2 31797 530000000 23.46 0.13 0.13 0.15 0.90 1.04 0.93 1.30 1.35 1.00 1.00 0.96 99 55 0.87 

56 9 2 31797 530000000 28.19 0.20 0.17 0.17 1.15 1.18 1.36 0.85 1.00 1.00 1.00 0.96 99 55 0.82 

57 9 2 31797 530000000 33.07 0.25 0.17 0.20 1.26 1.48 1.86 0.75 1.11 1.00 1.00 0.95 99 55 0.82 

58 9 2 31797 530000000 37.64 0.24 0.26 0.22 1.09 0.93 1.01 0.79 0.73 1.00 1.00 0.95 108 56 0.74 

59 9 2 31797 530000000 42.36 0.31 0.28 0.26 1.21 1.10 1.33 0.93 1.02 1.00 1.00 0.94 108 56 0.71 

60 9 2 31797 530000000 47.24 0.35 0.31 0.29 1.20 1.12 1.35 0.94 1.05 1.01 1.00 0.93 108 56 0.68 

61 9 2 31797 530000000 56.85 0.41 0.39 0.33 1.24 1.05 1.31 0.97 1.02 1.03 1.00 0.92 108 57 0.60 

62 9 2 31797 530000000 61.57 0.45 0.44 0.37 1.22 1.03 1.25 0.95 0.97 1.03 1.00 0.91 108 57 0.55 

63 9 2 31797 530000000 76.06 0.83 0.66 0.81 1.03 1.26 1.30 0.86 1.08 1.02 1.04 0.91 108 59 0.33 

64 9 2 31797 530000000 80.94 0.83 0.76 0.95 0.88 1.10 0.97 1.00 1.10 1.02 1.04 0.90 108 59 0.23 

65 9 2 31797 530000000 85.67 1.02 0.81 1.03 0.99 1.26 1.25 0.90 1.14 1.02 1.07 0.89 108 59 0.18 

66 9 2 31797 530000000 90.55 1.05 0.84 1.07 0.98 1.25 1.22 0.95 1.19 1.03 1.07 0.89 108 58 0.15 

67 9 2 31797 530000000 95.12 1.07 0.86 1.07 1.00 1.24 1.24 0.97 1.20 1.05 1.07 0.89 108 58 0.13 

68 9 2 31797 530000000 99.84 1.07 0.91 1.07 1.00 1.17 1.17 0.99 1.16 1.06 1.07 0.88 108 58 0.08 

69 9 2 31797 530000000 104.72 1.07 0.93 1.07 1.00 1.15 1.15 0.99 1.14 1.06 1.07 0.87 108 58 0.06 

70 9 2 31797 530000000 109.45 1.07 0.95 1.07 1.00 1.13 1.13 0.99 1.12 1.05 1.07 0.86 107 59 0.05 

71 14 2 7707 153500000 5.18 0.01 0.03 0.03 0.40 0.34 0.14 1.47 0.49 1.00 1.00 1.00 99 55 0.92 

72 14 2 7707 153500000 9.64 0.07 0.06 0.06 1.09 1.22 1.33 1.14 1.38 1.00 1.00 0.99 108 56 0.89 

73 14 2 7707 153500000 13.81 0.10 0.09 0.11 0.96 1.09 1.05 1.57 1.71 1.00 1.00 0.99 108 56 0.85 

74 14 2 7707 153500000 18.13 0.12 0.11 0.15 0.80 1.04 0.83 1.38 1.44 1.01 1.00 0.98 108 56 0.83 

75 14 2 7707 153500000 22.59 0.12 0.14 0.18 0.66 0.85 0.56 1.38 1.18 1.01 1.00 0.98 108 57 0.81 

76 14 2 7707 153500000 31.37 0.22 0.21 0.22 1.01 1.05 1.06 0.95 0.99 1.03 1.00 0.97 108 57 0.73 



 

 

 
ITcon Vol. 29 (2024), Cheng & Khasani, appx. 15 

No F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 Y 

77 14 2 7707 153500000 35.68 0.26 0.24 0.26 0.98 1.08 1.06 1.14 1.23 1.03 1.00 0.96 108 59 0.71 

78 14 2 7707 153500000 48.92 0.37 0.35 0.29 1.26 1.06 1.34 1.11 1.17 1.02 1.00 0.95 108 59 0.59 

79 14 2 7707 153500000 53.38 0.37 0.40 0.34 1.10 0.93 1.02 1.11 1.03 1.02 1.00 0.95 108 59 0.55 

80 14 2 7707 153500000 57.70 0.45 0.44 0.38 1.18 1.03 1.22 1.18 1.22 1.02 1.00 0.94 108 58 0.51 

81 14 2 7707 153500000 62.16 0.49 0.48 0.43 1.15 1.03 1.18 1.08 1.11 1.03 1.00 0.94 108 58 0.47 

82 14 2 7707 153500000 66.33 0.53 0.51 0.46 1.15 1.05 1.21 1.05 1.11 1.05 1.00 0.94 108 58 0.44 

83 14 2 7707 153500000 70.65 0.58 0.53 0.51 1.13 1.10 1.24 1.08 1.19 1.06 1.01 0.93 108 58 0.42 

84 14 2 7707 153500000 75.11 0.63 0.58 0.54 1.16 1.09 1.26 1.06 1.15 1.06 1.00 0.92 107 59 0.37 

85 14 2 7707 153500000 79.42 0.70 0.63 0.61 1.15 1.12 1.29 1.01 1.13 1.05 1.01 0.91 107 61 0.32 

86 14 2 7707 153500000 83.88 0.76 0.71 0.66 1.15 1.08 1.24 0.93 1.00 1.05 1.01 0.90 107 62 0.24 

87 14 2 7707 153500000 88.20 0.84 0.76 0.72 1.16 1.10 1.28 0.90 1.00 1.05 1.01 0.89 107 62 0.19 

88 14 2 7707 153500000 92.66 0.87 0.80 0.79 1.09 1.08 1.18 0.87 0.94 1.06 1.01 0.88 107 61 0.14 

89 14 2 7707 153500000 97.12 0.92 0.84 0.87 1.06 1.09 1.16 0.97 1.06 1.06 1.01 0.87 107 61 0.10 

90 14 2 7707 153500000 101.44 0.99 0.87 0.91 1.08 1.14 1.23 0.95 1.09 1.06 1.02 0.86 107 61 0.08 

91 14 2 7707 153500000 105.90 1.01 0.94 1.01 1.00 1.07 1.07 0.95 1.01 1.07 1.02 0.86 107 62 0.01 

92 14 3 10087 216000000 17.89 0.10 0.10 0.10 1.00 1.01 1.01 0.88 0.89 0.99 1.00 1.00 108 58 0.63 

93 14 3 10087 216000000 22.03 0.10 0.12 0.10 1.00 0.88 0.88 0.88 0.78 0.99 1.00 0.99 108 58 0.61 

94 14 3 10087 216000000 26.03 0.21 0.14 0.21 1.00 1.53 1.53 0.97 1.48 0.99 1.00 0.99 108 58 0.60 

95 14 3 10087 216000000 30.17 0.24 0.17 0.24 1.00 1.41 1.41 0.95 1.34 1.00 1.00 0.98 107 59 0.56 

96 14 3 10087 216000000 34.05 0.28 0.20 0.28 1.00 1.37 1.37 0.82 1.13 1.02 1.00 0.98 107 61 0.53 

97 14 3 10087 216000000 38.05 0.32 0.23 0.32 1.00 1.40 1.40 0.90 1.25 1.03 1.00 0.97 107 62 0.50 

98 14 3 10087 216000000 42.19 0.36 0.26 0.36 1.00 1.36 1.36 0.92 1.26 1.03 1.00 0.96 107 62 0.47 

99 14 3 10087 216000000 46.19 0.38 0.30 0.38 1.00 1.26 1.26 0.97 1.22 1.02 1.00 0.96 107 61 0.43 

100 14 3 10087 216000000 50.33 0.46 0.35 0.46 1.00 1.34 1.34 0.90 1.20 1.02 1.00 0.94 107 61 0.39 

101 14 3 10087 216000000 54.34 0.50 0.38 0.50 1.00 1.34 1.34 0.88 1.18 1.02 1.00 0.94 107 61 0.36 

102 14 3 10087 216000000 58.48 0.58 0.40 0.56 1.03 1.46 1.50 0.82 1.20 1.03 1.00 0.93 107 62 0.33 



 

 

 
ITcon Vol. 29 (2024), Cheng & Khasani, appx. 16 

No F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 Y 

103 14 3 10087 216000000 62.62 0.60 0.43 0.61 0.98 1.40 1.37 0.87 1.22 1.03 1.00 0.92 107 62 0.30 

104 14 3 10087 216000000 66.62 0.65 0.47 0.67 0.97 1.38 1.34 0.87 1.20 1.03 1.00 0.91 107 62 0.26 

105 14 3 10087 216000000 70.76 0.73 0.50 0.71 1.03 1.44 1.48 0.84 1.22 1.04 1.00 0.91 107 63 0.23 

106 14 3 10087 216000000 74.77 0.78 0.55 0.79 0.98 1.40 1.37 0.84 1.18 1.06 1.00 0.91 107 65 0.18 

107 14 3 10087 216000000 78.91 0.83 0.58 0.85 0.98 1.45 1.42 0.84 1.22 1.09 1.00 0.91 109 68 0.16 

108 14 3 10087 216000000 82.78 0.87 0.61 0.89 0.98 1.44 1.41 0.84 1.21 1.15 1.00 0.90 109 73 0.13 

109 14 3 10087 216000000 86.92 0.93 0.61 0.91 1.02 1.51 1.54 0.83 1.25 1.19 1.00 0.89 109 76 0.12 

110 14 3 10087 216000000 91.05 0.93 0.63 0.93 1.00 1.48 1.48 0.82 1.22 1.18 1.00 0.88 109 75 0.10 

111 14 3 10087 216000000 95.06 0.93 0.64 0.94 0.99 1.44 1.43 0.86 1.24 1.17 1.00 0.86 109 74 0.09 

112 14 3 10087 216000000 99.20 0.97 0.66 0.98 0.99 1.48 1.47 0.82 1.22 1.16 1.00 0.86 109 73 0.08 

113 14 3 10087 216000000 103.20 0.99 0.67 1.00 0.99 1.48 1.47 0.82 1.22 1.18 1.00 0.85 109 75 0.06 

114 14 3 10087 216000000 107.34 1.00 0.68 1.00 1.00 1.47 1.47 0.81 1.19 1.20 1.00 0.84 109 76 0.05 

115 14 3 10087 216000000 111.48 1.00 0.69 1.00 1.00 1.45 1.45 0.82 1.18 1.20 1.00 0.82 109 76 0.04 

116 14 3 10087 216000000 115.49 0.87 0.69 0.87 1.00 1.25 1.25 0.94 1.18 1.20 0.87 0.81 109 77 0.04 

117 14 3 10087 216000000 119.63 0.82 0.69 0.86 0.95 1.18 1.12 1.06 1.25 1.20 0.87 0.81 109 76 0.04 

118 10 1 3479 85714286 10.70 0.05 0.00 0.05 1.00 1.00 1.00 0.00 1.00 1.01 1.00 0.99 107 61 0.88 

119 10 1 3479 85714286 16.42 0.12 0.05 0.12 1.01 2.33 2.35 0.00 1.00 1.01 1.00 0.98 107 61 0.83 

120 10 1 3479 85714286 22.14 0.20 0.09 0.20 1.00 2.18 2.18 0.61 1.32 1.01 1.00 0.96 107 62 0.79 

121 10 1 3479 85714286 27.68 0.26 0.16 0.26 1.00 1.60 1.60 0.77 1.23 1.01 1.00 0.96 107 62 0.72 

122 10 1 3479 85714286 33.39 0.29 0.21 0.30 0.98 1.36 1.33 0.69 0.94 1.02 1.00 0.96 107 62 0.67 

123 10 1 3479 85714286 38.93 0.33 0.25 0.34 0.98 1.32 1.29 0.60 0.79 1.04 1.00 0.96 107 63 0.63 

124 10 1 3479 85714286 44.65 0.36 0.28 0.38 0.95 1.32 1.25 0.80 1.05 1.08 1.00 0.95 107 65 0.60 

125 10 1 3479 85714286 50.00 0.44 0.28 0.46 0.95 1.54 1.46 0.73 1.13 1.13 1.00 0.93 109 68 0.59 

126 10 1 3479 85714286 55.72 0.50 0.32 0.56 0.89 1.55 1.38 0.64 0.99 1.17 1.00 0.92 109 73 0.55 

127 10 1 3479 85714286 61.44 0.58 0.37 0.66 0.88 1.57 1.38 0.55 0.86 1.16 1.00 0.91 109 76 0.50 

128 10 1 3479 85714286 66.97 0.68 0.45 0.80 0.85 1.51 1.28 0.77 1.17 1.15 1.00 0.89 109 75 0.42 



 

 

 
ITcon Vol. 29 (2024), Cheng & Khasani, appx. 17 

No F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 Y 

129 10 1 3479 85714286 72.69 0.74 0.51 0.84 0.88 1.46 1.28 0.71 1.04 1.14 1.00 0.88 109 74 0.37 

130 10 1 3479 85714286 78.23 0.84 0.55 0.88 0.95 1.51 1.43 0.74 1.12 1.16 1.00 0.87 109 73 0.32 

131 10 1 3479 85714286 83.95 0.89 0.61 0.91 0.98 1.45 1.42 0.70 1.01 1.18 1.00 0.85 109 75 0.26 

132 10 1 3479 85714286 89.67 0.94 0.64 0.95 0.98 1.45 1.42 0.80 1.16 1.18 1.00 0.83 109 76 0.23 

133 10 1 3479 85714286 95.20 0.96 0.71 0.97 0.99 1.37 1.36 0.78 1.06 1.19 1.00 0.82 109 76 0.17 

134 10 1 3479 85714286 100.92 0.99 0.75 1.00 0.99 1.32 1.31 0.82 1.08 1.18 1.00 0.82 109 77 0.12 

135 11 4 6352 202241810 3.37 0.02 0.00 0.02 1.00 1.00 1.00 0.00 0.00 1.00 1.00 0.97 109 76 1.00 

136 11 4 6352 202241810 7.55 0.03 0.03 0.03 1.00 0.76 0.76 0.00 0.00 0.99 1.00 0.96 109 75 0.97 

137 11 4 6352 202241810 11.59 0.06 0.06 0.08 0.69 1.00 0.69 0.00 0.00 0.99 1.00 0.95 109 74 0.95 

138 11 4 6352 202241810 15.77 0.11 0.09 0.14 0.81 1.19 0.96 0.49 0.58 0.98 1.00 0.95 109 73 0.91 

139 11 4 6352 202241810 19.81 0.17 0.13 0.18 0.92 1.25 1.15 0.67 0.83 1.00 1.00 0.94 109 75 0.85 

140 11 4 6352 202241810 23.99 0.19 0.17 0.20 0.96 1.16 1.11 0.57 0.66 1.01 1.00 0.92 109 76 0.82 

141 11 4 6352 202241810 28.17 0.21 0.20 0.22 0.98 1.06 1.04 0.87 0.93 1.01 1.00 0.91 109 76 0.79 

142 11 4 6352 202241810 32.21 0.24 0.23 0.24 1.00 1.04 1.04 0.76 0.80 1.01 1.00 0.90 109 77 0.75 

143 11 4 6352 202241810 36.39 0.26 0.26 0.27 0.96 1.03 0.99 0.86 0.88 1.01 1.03 0.90 109 76 0.73 

144 11 4 6352 202241810 40.43 0.31 0.31 0.31 1.00 1.00 1.00 0.88 0.87 1.00 1.03 0.90 109 75 0.68 

145 11 4 6352 202241810 44.61 0.33 0.35 0.33 1.00 0.95 0.95 0.92 0.87 1.00 1.03 0.89 102 75 0.63 

146 11 4 6352 202241810 48.52 0.36 0.36 0.36 1.00 0.99 0.99 0.93 0.92 1.00 1.03 0.88 102 75 0.62 

147 11 4 6352 202241810 56.74 0.42 0.41 0.42 1.00 1.02 1.02 0.89 0.91 1.01 1.03 0.87 102 76 0.58 

148 11 4 6352 202241810 60.78 0.45 0.44 0.45 1.01 1.03 1.04 0.91 0.94 1.00 1.03 0.86 102 75 0.55 

149 11 4 6352 202241810 64.96 0.50 0.47 0.48 1.04 1.06 1.10 0.90 0.96 0.99 1.03 0.84 102 74 0.51 

150 11 4 6352 202241810 69.00 0.55 0.49 0.52 1.05 1.11 1.17 0.89 0.99 0.99 1.03 0.83 102 73 0.49 

151 11 4 6352 202241810 73.18 0.57 0.53 0.56 1.02 1.07 1.09 0.87 0.93 0.99 1.03 0.82 102 73 0.45 

152 11 4 6352 202241810 77.36 0.62 0.59 0.62 1.00 1.04 1.04 0.93 0.96 1.00 1.03 0.81 102 74 0.39 

153 11 4 6352 202241810 81.40 0.72 0.64 0.72 1.00 1.13 1.13 0.85 0.96 1.00 1.07 0.80 102 74 0.35 

154 11 4 6352 202241810 85.58 0.80 0.71 0.81 0.99 1.13 1.12 0.85 0.96 1.00 1.07 0.80 102 74 0.28 



 

 

 
ITcon Vol. 29 (2024), Cheng & Khasani, appx. 18 

No F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 Y 

155 11 4 6352 202241810 89.62 0.88 0.77 0.89 0.99 1.15 1.14 0.83 0.96 1.00 1.07 0.79 102 74 0.22 

156 11 4 6352 202241810 93.80 0.94 0.80 0.93 1.01 1.18 1.19 0.84 0.99 1.00 1.07 0.79 102 74 0.19 

157 11 4 6352 202241810 97.71 0.97 0.82 0.97 1.00 1.19 1.19 0.87 1.04 1.00 1.07 0.78 102 74 0.17 

158 11 4 6352 202241810 101.75 1.02 0.85 1.02 1.00 1.19 1.19 0.88 1.06 1.02 1.07 0.77 102 75 0.13 

159 11 4 6352 202241810 105.93 1.05 0.85 1.05 1.00 1.24 1.24 0.89 1.10 1.04 1.07 0.76 102 76 0.13 

160 11 4 6352 202241810 109.97 1.07 0.92 1.07 1.00 1.17 1.17 0.89 1.03 1.07 1.07 0.75 103 78 0.07 

161 11 4 6352 202241810 114.15 1.07 0.93 1.07 1.00 1.15 1.15 0.89 1.03 1.08 1.07 0.73 103 81 0.06 

162 11 4 6352 202241810 118.19 1.07 0.95 1.07 1.00 1.13 1.13 0.91 1.03 1.08 1.07 0.72 111 82 0.04 

163 11 4 6352 202241810 122.37 1.03 0.96 1.03 1.00 1.08 1.08 0.95 1.03 1.08 1.03 0.71 111 82 0.03 

164 11 4 6352 202241810 126.55 1.03 0.96 1.03 1.00 1.07 1.07 0.97 1.05 1.08 1.03 0.70 111 82 0.02 

165 11 2 4774 145377589 12.09 0.06 0.03 0.06 1.00 1.82 1.82 0.00 0.00 1.02 1.00 0.99 102 76 0.89 

166 11 2 4774 145377589 15.87 0.13 0.07 0.13 1.00 1.90 1.90 0.96 1.82 1.01 1.00 0.98 109 73 0.85 

167 11 2 4774 145377589 19.54 0.15 0.13 0.15 1.00 1.21 1.21 1.06 1.29 1.03 1.00 0.98 109 76 0.79 

168 11 2 4774 145377589 23.32 0.18 0.15 0.18 1.00 1.18 1.18 1.12 1.32 1.04 1.00 0.96 109 75 0.76 

169 11 2 4774 145377589 27.11 0.18 0.18 0.18 1.00 1.03 1.03 1.56 1.61 1.04 1.01 0.95 109 74 0.74 

170 11 2 4774 145377589 30.77 0.28 0.22 0.27 1.01 1.28 1.29 1.03 1.32 1.04 1.01 0.94 109 73 0.70 

171 11 2 4774 145377589 34.55 0.32 0.26 0.32 0.99 1.23 1.22 1.03 1.26 1.04 1.01 0.94 109 75 0.66 

172 11 2 4774 145377589 38.22 0.36 0.30 0.36 1.00 1.21 1.21 1.02 1.25 1.03 1.01 0.94 109 76 0.62 

173 11 2 4774 145377589 42.00 0.41 0.35 0.41 1.01 1.18 1.19 0.89 1.06 1.03 1.01 0.93 109 76 0.57 

174 11 2 4774 145377589 45.54 0.41 0.38 0.41 1.01 1.09 1.10 0.89 0.97 1.03 1.01 0.92 109 77 0.54 

175 11 2 4774 145377589 52.99 0.51 0.46 0.52 0.99 1.11 1.10 0.90 0.99 1.04 1.01 0.91 109 76 0.45 

176 11 2 4774 145377589 56.65 0.54 0.48 0.57 0.95 1.13 1.07 0.85 0.96 1.03 1.01 0.90 109 75 0.44 

177 11 2 4774 145377589 60.44 0.59 0.53 0.61 0.96 1.10 1.06 0.89 0.98 1.02 1.01 0.89 102 75 0.38 

178 11 2 4774 145377589 64.10 0.64 0.57 0.66 0.98 1.12 1.10 0.81 0.91 1.02 1.01 0.88 102 75 0.34 

179 11 2 4774 145377589 67.89 0.69 0.62 0.71 0.98 1.11 1.09 0.90 1.00 1.02 1.01 0.87 102 76 0.30 

180 11 2 4774 145377589 71.67 0.74 0.65 0.75 0.98 1.12 1.10 0.85 0.95 1.03 1.01 0.86 102 75 0.26 



 

 

 
ITcon Vol. 29 (2024), Cheng & Khasani, appx. 19 

No F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 Y 

181 11 2 4774 145377589 75.34 0.73 0.69 0.75 0.98 1.07 1.05 0.85 0.91 1.03 0.96 0.85 102 74 0.23 

182 11 2 4774 145377589 79.12 0.80 0.74 0.78 1.02 1.08 1.10 0.91 0.98 1.03 0.96 0.85 102 73 0.18 

183 11 2 4774 145377589 82.78 0.83 0.76 0.85 0.98 1.09 1.07 0.99 1.08 1.03 0.96 0.84 102 73 0.16 

184 11 2 4774 145377589 86.57 0.87 0.80 0.88 0.99 1.09 1.08 0.99 1.08 1.03 0.96 0.84 102 74 0.12 

185 11 2 4774 145377589 90.11 0.89 0.81 0.89 1.00 1.10 1.10 1.01 1.11 1.04 0.96 0.84 102 74 0.10 

186 11 2 4774 145377589 93.77 0.91 0.85 0.91 1.00 1.08 1.08 1.03 1.11 1.05 0.96 0.83 102 74 0.07 

187 11 2 4774 145377589 97.56 0.93 0.83 0.93 1.00 1.13 1.13 1.01 1.14 1.07 0.96 0.81 102 74 0.09 

188 11 2 4774 145377589 101.22 0.95 0.88 0.95 1.00 1.08 1.08 0.99 1.07 1.10 0.96 0.80 102 74 0.04 

189 11 2 4774 145377589 105.01 0.96 0.89 0.96 1.00 1.09 1.09 0.98 1.06 1.11 0.96 0.79 102 74 0.03 

190 11 2 4774 145377589 108.67 0.96 0.89 0.96 1.00 1.08 1.08 0.98 1.06 1.11 0.96 0.78 102 75 0.03 

191 8 2 7289 190844707 8.43 0.02 0.00 0.03 0.67 1.00 0.67 0.00 0.00 1.00 1.00 0.97 102 73 0.84 

192 8 2 7289 190844707 14.23 0.10 0.01 0.10 0.96 1.00 0.96 0.00 0.00 1.00 1.00 0.95 102 74 0.83 

193 8 2 7289 190844707 20.04 0.14 0.03 0.15 0.93 1.00 0.93 0.62 1.00 1.01 1.00 0.93 102 74 0.81 

194 8 2 7289 190844707 25.66 0.25 0.13 0.26 0.96 1.98 1.90 0.80 1.58 1.01 1.00 0.92 102 74 0.72 

195 8 2 7289 190844707 31.46 0.28 0.18 0.28 0.99 1.60 1.58 0.85 1.35 1.01 1.00 0.92 102 74 0.67 

196 8 2 7289 190844707 37.08 0.34 0.24 0.34 0.98 1.39 1.36 0.83 1.16 1.01 1.00 0.91 102 74 0.60 

197 8 2 7289 190844707 42.88 0.39 0.29 0.40 0.99 1.35 1.34 0.88 1.19 1.01 1.00 0.91 102 74 0.55 

198 8 2 7289 190844707 48.31 0.44 0.37 0.44 0.99 1.19 1.18 0.92 1.09 1.02 1.00 0.90 102 75 0.47 

199 8 2 7289 190844707 53.93 0.49 0.43 0.49 0.99 1.14 1.13 0.96 1.09 1.03 1.00 0.88 102 76 0.42 

200 8 2 7289 190844707 59.74 0.55 0.47 0.57 0.98 1.19 1.17 0.92 1.10 1.05 1.00 0.87 103 78 0.38 

201 8 2 7289 190844707 65.36 0.61 0.52 0.64 0.96 1.19 1.14 0.90 1.06 1.08 1.03 0.85 103 81 0.32 

202 8 2 7289 190844707 71.16 0.66 0.57 0.69 0.96 1.17 1.12 0.90 1.05 1.09 1.03 0.83 103 82 0.28 

203 8 2 7289 190844707 76.78 0.70 0.62 0.74 0.95 1.13 1.07 0.85 0.96 1.09 1.03 0.81 111 82 0.22 

204 8 2 7289 190844707 82.58 0.73 0.66 0.78 0.94 1.11 1.04 0.91 1.01 1.09 1.03 0.80 111 82 0.18 

205 8 2 7289 190844707 88.39 0.75 0.72 0.80 0.94 1.05 0.99 0.94 0.99 1.10 1.03 0.78 111 83 0.12 

206 8 2 7289 190844707 94.01 0.81 0.75 0.85 0.96 1.08 1.04 0.93 1.00 1.11 0.91 0.78 85 84 0.09 
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No F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 Y 

207 8 2 7289 190844707 99.81 0.85 0.78 0.89 0.96 1.09 1.05 0.89 0.96 1.11 0.91 0.77 85 84 0.06 

208 8 2 7289 190844707 105.43 0.89 0.81 0.92 0.97 1.10 1.07 0.85 0.93 1.12 0.92 0.75 85 84 0.03 

209 8 2 7289 190844707 111.24 0.91 0.84 0.92 0.99 1.08 1.07 0.90 0.97 1.12 0.92 0.75 102 85 0.01 

210 7 2 3094 102500000 17.48 0.19 0.09 0.12 1.62 2.11 3.42 0.69 1.46 1.00 1.00 0.97 102 74 0.84 

211 7 2 3094 102500000 23.50 0.27 0.18 0.19 1.39 1.50 2.09 0.79 1.19 1.00 1.00 0.96 102 74 0.75 

212 7 2 3094 102500000 29.13 0.30 0.22 0.22 1.35 1.34 1.81 0.96 1.29 1.01 1.00 0.95 102 74 0.70 

213 7 2 3094 102500000 34.95 0.35 0.26 0.26 1.33 1.32 1.76 1.01 1.33 1.02 1.00 0.94 102 74 0.66 

214 7 2 3094 102500000 40.97 0.39 0.23 0.30 1.33 1.74 2.31 0.99 1.73 1.04 1.00 0.92 102 75 0.70 

215 7 2 3094 102500000 46.80 0.44 0.36 0.35 1.26 1.22 1.54 0.97 1.18 1.07 1.00 0.90 102 76 0.56 

216 7 2 3094 102500000 52.82 0.49 0.40 0.40 1.23 1.23 1.51 0.87 1.07 1.08 1.00 0.88 103 78 0.52 

217 7 2 3094 102500000 58.64 0.55 0.45 0.47 1.19 1.24 1.48 0.85 1.05 1.08 1.00 0.86 103 81 0.48 

218 7 2 3094 102500000 64.66 0.59 0.49 0.55 1.08 1.21 1.31 0.85 1.03 1.08 1.00 0.85 103 82 0.43 

219 7 2 3094 102500000 70.68 0.65 0.52 0.63 1.03 1.26 1.30 0.84 1.06 1.09 1.00 0.83 111 82 0.41 

220 7 2 3094 102500000 76.50 0.74 0.63 0.71 1.05 1.18 1.24 0.94 1.11 1.10 1.00 0.83 111 82 0.30 

221 7 2 3094 102500000 82.52 0.82 0.71 0.83 0.99 1.16 1.15 0.85 0.98 1.10 1.00 0.81 111 83 0.22 

222 7 2 3094 102500000 88.35 0.87 0.73 0.91 0.95 1.18 1.12 0.86 1.02 1.10 1.00 0.80 85 84 0.19 

223 7 2 3094 102500000 94.37 0.95 0.77 0.95 1.00 1.24 1.24 0.90 1.11 1.10 1.00 0.79 85 84 0.16 

224 7 2 3094 102500000 100.00 0.98 0.78 0.98 1.00 1.26 1.26 0.87 1.10 1.11 1.00 0.78 102 86 0.15 

225 7 2 3094 102500000 105.83 1.00 0.84 1.00 1.00 1.18 1.18 0.92 1.08 1.13 1.00 0.76 102 88 0.08 
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APPENDIX D 

No F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 Y 

1 11 2 4774 145377589 12.09 0.06 0.03 0.06 1.00 1.82 1.82 0.00 0.00 1.02 1.00 0.99 102 76 0.89 

2 11 2 4774 145377589 15.87 0.13 0.07 0.13 1.00 1.90 1.90 0.96 1.82 1.01 1.00 0.98 109 73 0.85 

3 11 2 4774 145377589 19.54 0.15 0.13 0.15 1.00 1.21 1.21 1.06 1.29 1.03 1.00 0.98 109 76 0.79 

4 11 2 4774 145377589 23.32 0.18 0.15 0.18 1.00 1.18 1.18 1.12 1.32 1.04 1.00 0.96 109 75 0.76 

5 11 2 4774 145377589 27.11 0.18 0.18 0.18 1.00 1.03 1.03 1.56 1.61 1.04 1.01 0.95 109 74 0.74 

6 11 2 4774 145377589 30.77 0.28 0.22 0.27 1.01 1.28 1.29 1.03 1.32 1.04 1.01 0.94 109 73 0.70 

7 11 2 4774 145377589 34.55 0.32 0.26 0.32 0.99 1.23 1.22 1.03 1.26 1.04 1.01 0.94 109 75 0.66 

8 11 2 4774 145377589 38.22 0.36 0.30 0.36 1.00 1.21 1.21 1.02 1.25 1.03 1.01 0.94 109 76 0.62 

9 11 2 4774 145377589 42.00 0.41 0.35 0.41 1.01 1.18 1.19 0.89 1.06 1.03 1.01 0.93 109 76 0.57 

10 11 2 4774 145377589 45.54 0.41 0.38 0.41 1.01 1.09 1.10 0.89 0.97 1.03 1.01 0.92 109 77 0.54 

11 11 2 4774 145377589 52.99 0.51 0.46 0.52 0.99 1.11 1.10 0.90 0.99 1.04 1.01 0.91 109 76 0.45 

12 11 2 4774 145377589 56.65 0.54 0.48 0.57 0.95 1.13 1.07 0.85 0.96 1.03 1.01 0.90 109 75 0.44 

13 11 2 4774 145377589 60.44 0.59 0.53 0.61 0.96 1.10 1.06 0.89 0.98 1.02 1.01 0.89 102 75 0.38 

14 11 2 4774 145377589 64.10 0.64 0.57 0.66 0.98 1.12 1.10 0.81 0.91 1.02 1.01 0.88 102 75 0.34 

15 11 2 4774 145377589 67.89 0.69 0.62 0.71 0.98 1.11 1.09 0.90 1.00 1.02 1.01 0.87 102 76 0.30 

16 11 2 4774 145377589 71.67 0.74 0.65 0.75 0.98 1.12 1.10 0.85 0.95 1.03 1.01 0.86 102 75 0.26 

17 11 2 4774 145377589 75.34 0.73 0.69 0.75 0.98 1.07 1.05 0.85 0.91 1.03 0.96 0.85 102 74 0.23 

18 11 2 4774 145377589 79.12 0.80 0.74 0.78 1.02 1.08 1.10 0.91 0.98 1.03 0.96 0.85 102 73 0.18 

19 11 2 4774 145377589 82.78 0.83 0.76 0.85 0.98 1.09 1.07 0.99 1.08 1.03 0.96 0.84 102 73 0.16 

20 11 2 4774 145377589 86.57 0.87 0.80 0.88 0.99 1.09 1.08 0.99 1.08 1.03 0.96 0.84 102 74 0.12 

21 11 2 4774 145377589 90.11 0.89 0.81 0.89 1.00 1.10 1.10 1.01 1.11 1.04 0.96 0.84 102 74 0.10 

22 11 2 4774 145377589 93.77 0.91 0.85 0.91 1.00 1.08 1.08 1.03 1.11 1.05 0.96 0.83 102 74 0.07 

23 11 2 4774 145377589 97.56 0.93 0.83 0.93 1.00 1.13 1.13 1.01 1.14 1.07 0.96 0.81 102 74 0.09 

24 11 2 4774 145377589 101.22 0.95 0.88 0.95 1.00 1.08 1.08 0.99 1.07 1.10 0.96 0.80 102 74 0.04 

25 11 2 4774 145377589 105.01 0.96 0.89 0.96 1.00 1.09 1.09 0.98 1.06 1.11 0.96 0.79 102 74 0.03 

26 11 2 4774 145377589 108.67 0.96 0.89 0.96 1.00 1.08 1.08 0.98 1.06 1.11 0.96 0.78 102 75 0.03 
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