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SUMMARY: Recent advances in digital photography and unmanned aerial vehicle (UAV) platforms make visual 

data from construction project sites more accessible to project teams. To semi-automatically or automatically 

obtain the essential information, evaluate the ongoing activities or operations, and address project-level 

challenges, researchers have focused on applying various computer vision (CV)-based methods to process and 

interpret the acquired visual data. This research developed a framework to summarize the vision-based methods 

that have been applied to construction/asset management operations through a systematic literature review. The 

reviewed literature was composed of 103 journal papers from 2011 to 2020. All the reviewed journal papers were 

from the Ei Compendex database with specific search criteria. The developed framework consisted of two parts: 

use cases and CV domains. Use cases contained five aspects: safety monitoring, productivity improvement, 

progress monitoring, infrastructure inspection, and robotic application. CV domains contained six aspects: image 

processing, object classification, object detection, object tracking, pose estimation, and 3D reconstruction. All 

eleven aspects were integrated from the reviewed papers. For each reviewed paper, the general workflow of 

applied vision-based approaches was described and categorized into each use case. A trending timeline was 

developed to analyze the popularity of the identified use cases and CV domains within the reviewed time period. 

Both the quantity and variety of construction use cases and CV domains have increased. Challenges and 

limitations of applying CV-based methods in the construction industry were also identified. This paper provides 

readers with a summary of how CV-based methods have been used in the construction industry and serve as a 

reference for future research and development. 
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1. INTRODUCTION 

The construction market in the United States is one of the largest globally. In 2020, the value-added of the 

construction industry contributed about 4.3% of the gross domestic product (GDP) in the United States (Best 

2021). Despite its significant economic importance, the construction industry is one of the least automated and 

digitized industries worldwide (Merrill 2021). Other industries have leveraged computer vision (CV) approaches 

to support the automation of tasks throughout their industries.  There has been substantial growth in using digital 

cameras to acquire daily images or videos from construction sites in recent years. However, low usage and timely 

manual interpretation of the acquired visual data are still common in construction projects. Some researchers are 

exploring the use of CV to interpret visual data to solve these issues, retrieving necessary information for 

supporting decision-making on construction projects (Jiang and Messner 2020). The goal of applying CV-based 

methods in the construction and asset management phases is to automate the tasks that require manual observation 

and inspection and overcome the issues associated with safety hazards and low productivity. Yet, there is a need 

to develop a framework of the CV approaches that can be applied to construction use cases to inform future 

research and development activities. 

In this paper, the author conducted a comprehensive and systematic literature review of recent CV applications in 

the construction and asset management phases. In total, 103 journal papers from 2011 to 2020 were gathered and 

reviewed from leading journals within the construction field. Based on the existing taxonomy, a framework 

containing 1) use cases and 2) CV domains was developed. Use cases identified various fields within the 

construction and asset management phases where researchers have applied CV-based methods. CV domains 

categorized the sub-domains of CV for each vision-based method that reported studies used. Each reviewed paper 

was categorized into both use cases and CV domains. A trending timeline was developed to highlight the frequency 

of construction use cases and applied CV domains within the reviewed time frame. The total number of reviewed 

papers has been increasing over the years, as well as the variety of covered construction use cases and implemented 

CV domains. The most and least popular construction use cases and CV domains were also discussed. The 

reviewed papers identified the challenges and limitations of CV-based methods implementation. Challenges 

focused on the obstacle of technology implementation and social ethics, while limitations focused on technical 

limitations. 

2. UNDERSTANDING OF COMPUTER VISION 

CV is a subfield of Artificial Intelligence. The goal of CV is to understand the content of visual data (images and 

videos). Typically, this involves developing methods to imitate human vision (Huang 1996). Conventional CV 

techniques relied on extensive manual effort to design rules-based detectors and handcrafted feature descriptors to 

classify and detect certain objects from images. Some CV algorithms, such as edge detection, corner detection, 

and blob detection, use feature detectors to extract corresponding features. The extracted features can then be 

characterized by feature descriptors that capture the local distribution of specific properties, such as gradient 

directions. The Scale Invariant Feature Transform (SIFT) (Lowe 2004) is a typical feature descriptor to detect 

local features from images, and is known to be robust to object rotation and scale variations (Nanni et al. 2017). 

Another commonly used feature descriptor for object classification on construction sites is the Histogram of 

Oriented Gradients (HOG) (Dalal and Triggs 2005). This technique counts occurrences of gradient orientation in 

localized portions of an image as features to classify objects. The handcrafted feature descriptors are commonly 

paired with a classifier, such as the Support Vector Machine (SVM) (Cristianini and Shawe-Taylor, 2000). The 

way to perform classification or detection tasks is by using a fixed-size rectangle region that slides across an image. 

The feature descriptor and classifier will be applied for each of these regions to determine if the region contains 

the object of interest. This process is known as the sliding window method. However, conventional CV techniques 

are inflexible. Designing the feature descriptors requires engineering and expert experience, since it is necessary 

to determine which features are important in each given image (Mahony et al. 2020). It can be cumbersome and 

inefficient as the number of classes that need to be classified increases. 

Advances in machine learning have improved the machine's capability of understanding the input data and, as a 

result, have enhanced developments in the CV area. Deep learning, a subset of machine learning, has made CV 

algorithms much more accurate and cost-effective. Deep learning enables the creation of complex networks, 

known as Convolutional Neural Networks (CNNs). Deep layers in these complex networks act as a set of feature 

extractors that are independent of any specific classification task (Nanni et al. 2017). This means that deep learning 
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can automatically extract a set of features learned directly from input images (Bora et al. 2016). The generated 

networks can then be applied to other unseen images to produce an accurate classification. 

The general idea behind deep learning is called "end-to-end" learning, where the deep learning model is given a 

set of images with annotated classes on them. The network hierarchically extracts multiple levels of features 

representing the annotated class during the learning process. Low-level features usually contain edges and curves 

in the images. In contrast, higher-level features can represent the semantics of the images, which can provide 

greater robustness to intra-class variability (Chan et al. 2015). Even though feature extraction is the primary goal 

for both conventional CV methods and deep learning, the difference is that features are manually designed by 

experts beforehand based on class characteristics in the conventional CV methods, in contrast to features that will 

be learned and extracted automatically by CNNs using input data (Nanni et al. 2017). And in general, deep learning 

performs much better than traditional algorithms. 

Deep learning does not make conventional CV methods obsolete. In some cases, conventional CV methods and 

deep learning are mixed for better performance. For example, the sliding window and the SIFT algorithm are first 

used to identify the regions with the object of interest. Then deep learning models are applied to the identified 

regions for reduced processing time. The Principle Component Analysis (PCA) is used before applying deep 

learning models to reduce feature size and prevent model overfitting. CV-based methods have been adopted into 

various domains, including image processing, object classification, object detection, pose estimation, and 3D 

reconstruction. A brief introduction of each domain will be presented below, as they form the foundation for 

understanding the application of CV-based methods in the construction and asset management phases. 

2.1 Image Processing 

Image processing uses a digital computer to process either images or video frames through an algorithm (Gonzalez 

and Woods, 2007). Although CV overlaps with image processing on basic techniques, and researchers were using 

these two terms interchangeably (Babatunde et al. 2015), CV is distinct from image processing in the basic 

workflow. In image processing, images are taken as inputs and processed with certain transformations; the outputs 

are still images. In CV, the output would be the quantitative or qualitative information extracted from the input 

visual data. However, image processing methods are usually implemented before the actual CV methods since the 

enhanced image quality will improve the performance of the information extraction process (Wiley and Lucas 

2018). The goal of image processing is to either enhance the visual data for future interpretation or extract certain 

information from visual data. Typical image processing tasks include enhancement, restoration, registration, and 

feature extraction. 

2.2 Object Classification 

Object classification is a fundamental task in CV. It is a process of predicting the probability of the presence of a 

specific object class in the input images. A well-known classification network is the AlexNet (Krizhevsky et al. 

2012). The AlexNet achieved a top-5 error rate (rate of not finding the true label of a given image among its top 5 

predictions) of 15.3%, which outperformed the next best result with 26.2%. The performance of the classification 

network has continued to improve over time by modifying network structure and parameters. The Visual Geometry 

Group (VGG-16) proposed by Simonyan and Zisserman (2015) was much deeper and had more parameters than 

AlexNet. There were multiple differences between the AlexNet and VGG-16, including used combinations of 

inception modules, which contained pooling and convolutions layers at different scales and concatenation 

operations. It also used 1x1 feature convolutions to reduce the parameter significantly. The VGG-16 also brought 

a standard that all kernel filters have a size of 3x3, and max poolings should be placed after every 2 or 3 layers of 

convolutions. The VGG-16 network achieved a 7.3% top-5 error rate. Another breakthrough was the development 

of GoogleNet by Szegedy et al. (2014). The GoogleNet was able to achieve a 6.67% top-5 error rate. 

2.3 Object Detection 

Object detection in the CV domain focuses on identifying the semantic features of an object and determining the 

location of the object in images. The object detection algorithms can be generally categorized into two-stage and 

one-stage algorithms. The Regional-based Convolutional Neural Networks (R-CNNs) are a family of two-stage 

algorithms for addressing object detection and localization tasks. The two-stage algorithms usually involve 

generating object region proposals with deep neural networks, followed by object detection based on features 

extracted from the proposed regions. The two-stage algorithms achieve better detection results than the one-stage 
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algorithms, but are also slower. The first R-CNN was proposed by Girshick et al. (2014), combined with the 

selective search to extract possible objects. While the proposed network achieved great results of 31.4% mean 

Average Precision (mAP), the training process was arduous, where proposals needed to be generated for each 

training dataset, and the CNN feature extraction needed to be applied to each one. The Fast R-CNN (Girshick 

2015) was developed to overcome this issue. Instead of using CNN to extract features independently, it applied 

the Region of Interest (RoI) Pooling Layer on the feature map to extract features specific to a given input candidate 

region. The proposed model was significantly faster in training and detecting objects, yet it still required a set of 

candidate regions to be generated along with each input image. Ren et al. (2016) proposed the Faster R-CNN 

network, which was considered state-of-the-art for its accuracy. Faster R-CNN leveraged the Region Proposal 

Network (RPN) to replace the Selective Search algorithm, significantly reducing the time of generating region 

proposals and object detection. 

On the other hand, one-stage algorithms are much faster and can be applied in real time. The popular family of 

one-stage algorithms is the You Only Look Once (YOLO) developed by Redmon et al. (2016). This approach 

leveraged a single neural network trained end to end, where it predicted the bounding boxes and class labels 

directly on each input image. The YOLO network achieved a much faster detection speed at the expense of 

accuracy. The YOLOv2 (Redmon and Farhadi, 2016) and YOLOv3 (Redmon and Farhadi, 2018) were 

subsequently introduced with improvements in the detection performance. Another notable method for object 

detection is the Single Shot Detector (SSD) proposed by Liu et al. (2016). This approach was designed to achieve 

real-time object detection without sacrificing detection accuracy. SSD improved process speed by eliminating the 

need for the RPN. To recover the loss of accuracy, SSD applied multi-scale feature maps and smaller default boxes. 

It achieved 74.3% mAP on 300 x 300 image size and 76.8% mAP on 512 x 512 image size, respectively. 

2.4 Pose Estimation 

Human pose estimation aims to determine the spatial location of human joints from images or video frames, or 

reconstruct the skeleton data using motion capturing hardware (Kitsikidis et al. 2014). It can be challenging since 

the occlusions, viewpoints, and illumination changes can cause noise.  

Li et al. (2019) proposed multi-stage methods to refine the pose estimation process. The multi-stage methods can 

be either a bottom-up or a top-down pipeline. The bottom-up pipeline first detects individual joints in the images, 

and then combines them into human poses. Cao et al. (2017) leveraged a set of 2D vector fields to detect the 

location and orientation of human limbs in images. The detected key points then went through a multi-stage 

network to associate them together. The top-down pipeline locates people first using human detectors (Li et al. 

2018), then performs the single-person pose estimator to predict key points. Wei et al. (2016) leveraged deep 

neural networks to detect human pose. This work proposed a sequential architecture composed of convolutional 

networks to implicitly model long-range dependencies between joints. 

One of the most popular bottom-up approaches and state-of-the-art for multi-person human pose estimation is 

called OpenPose (Cao et al. 2019). This approach features real-time and multi-person pose estimation. The benefits 

of OpenPose are that it is open-sourced, and supports multiple hardware architectures. It can also be embedded 

into different data acquisition sources, such as cameras, webcams, and CCTV systems. The state-of-the-art of top-

down approach is AlphaPose (Fang et al. 2018). The AlphaPose can detect both single and multi-person poses 

from images or videos. It followed a two-step framework: identifying the human body with bounding boxes, and 

then pose estimation. The AlphaPose approach was optimized to detect poses even if the bounding boxes were 

inaccurate.  

2.5 3D Reconstruction 

3D reconstruction often refers to recovering the 3D structure of the scene from multi-view images. The CV 

techniques behind this process are Structure from Motion (SfM) (Ullman 1979) and multi-view stereo (MVS) 

(Goesele et al. 2007). The SfM algorithm was used to estimate image location, orientation, and camera parameters 

from unordered image collections, which were essential to generate 3D sparse point clouds of a scene. The 

approach requires images taken from different positions and angles with a certain amount of overlap. However, 

without further processing, SfM results can be insufficiently detailed and too noisy for high-quality surface 

reconstruction (Rosnell and Honkavaara 2012)). The MVS technique can filter out noisy data and increase the 

number of reconstructed points by two or three orders of magnitude (James and Robson 2012), generating dense 

3D point clouds or 3D mesh models. 
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3D reconstruction using deep learning models has attracted increasing attention and has demonstrated impressive 

results. Han et al. (2021) developed a survey and classified image-based 3D reconstruction methods using deep 

learning models into volumetric-based, surface-based, and point-based approaches. Although 3D reconstruction 

was generally used for generic objects, Han discussed three specific 3D reconstruction applications that can 

leverage prior knowledge to significantly improve the quality of reconstructed objects: 3D human body 

reconstruction, 3D face reconstruction, and 3D scene parsing. Huang et al. (2018) proposed a volumetric approach 

for 3D human body reconstruction, which took multiple RGB images and their corresponding camera parameters 

as inputs, and generated 3D dense fields. The probability of being inside or outside of the human body was 

calculated for each voxel. This approach was able to reconstruct detailed geometric shapes of human bodies, but 

it was limited to simple backgrounds. As for 3D face reconstruction, Feng et al. (2018) proposed a method that 

leveraged the CNN framework to first generate 3D facial curves from various plane images. These curves were 

then transformed into 3D point clouds, and facial surfaces were generated to fit the points. This proposed 3D face 

reconstruction approach was robust to different poses, expressions, and illumination conditions. 3D scene parsing 

first leverages image object detection and recognition to interpret 3D scenes, and then performs 3D reconstruction. 

Izadinia et al. (2017) proposed a method to recognize objects from indoor scenes using Faster R-CNN, infer room 

geometry, and interpret object poses and sizes in the room. This method can better handle the occlusion and clutter 

issue with limited input data. 

3. RESEARCH METHOD 

This section introduced the outline of the methods used to conduct the systematic literature review, exploring the 

recent and relevant research focusing on leveraging CV-based methods in construction and asset management 

phases. As shown in Fig. 1, the literature review was performed with the Ei Compendex database, a comprehensive 

source of science and engineering literature. The review focused on journal papers in leading journals within the 

construction field: Automation in Construction, ASCE Journal of Computing in Civil Engineering, Advanced 

Engineering Informatics, ASCE Journal of Construction Engineering and Management, Computer-Aided Civil 

and Infrastructure Engineering, and Journal of Information Technology in Construction. 

 

FIG. 1: The process of the systematic literature review. 
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To identify the studies that have covered both CV and construction fields, two versions of keywords were used for 

two separate searches: "computer vision and construction" and "vision-based and construction". Journal papers 

from 2011 to 2020 were considered in this literature review to present how CV methods applied in the construction 

and asset management phases have evolved over the years while also illustrating the state-of-the-art methods in 

each CV domain. With the defined search limitations, 186 and 111 journal papers were initially identified from 

the two separate searches, respectively. The two search streams were merged, and the duplicated papers were 

removed, resulting in a total of 198 journal papers. A systematic review was then conducted for each identified 

paper to record information, including use cases, applied CV method(s), and contributions of the reviewed paper. 

This process could ensure that the relevant studies have been selected. In total, 103 journal papers were chosen for 

this literature review since the remaining papers did not match the scope of this literature review. 

The foundation for categorizing six CV domains was based on the taxonomy of CV domains developed by 

Khanday and Sofi (2021), including image classification, object detection, object recognition, visual saliency 

detection, semantic and instance segmentation, human pose estimation, and image retrieval. This existing 

taxonomy was then modified based on the CV-based methods implemented in the 103 journal papers mentioned 

above. New domains were added, and similar domains were integrated. The revised CV domains included object 

classification, object detection, object tracking, pose estimation, 3D reconstruction, and image processing.  

The integration process of construction use cases followed the high-level-purpose method identified within the 

taxonomy by Jiang et al. (2017). All similar use cases were grouped into subclasses. This was fulfilled by looking 

through all the options and identifying the high-level purpose for which each option would be implemented. These 

subclasses were then classified into higher classes by repeating the previous grouping method. After the classifying 

process, five construction use cases were developed. These identified use cases were at the highest classification 

level and could not be grouped anymore. The categorized CV domains and construction use cases were not 

comprehensive. They were the categorical systems developed only based on the identified journal papers, which 

helps readers better understand state-of-the-art CV applications in various construction use cases. 

4. RESULTS 

The following sections discuss the identified construction use cases where the CV domains were leveraged. 

4.1 Safety Monitoring 

Safety must always be a priority throughout the construction process. Many researchers have focused on leveraging 

CV-based methods to ensure safety compliance on sites and prevent work-related injuries among construction 

workers. Applications of CV-based methods in safety monitoring can be summarized into five aspects: struck-by 

hazards monitoring, fall hazards prevention, personal protective equipment (PPE) monitoring, safety training, and 

biomechanical analysis. 

Studies have focused on detecting and locating construction entities (Kim et al. 2017, Kim and Chi 2017) and 

predicting their travel trajectories (Brilakis et al. 2011, Yuan et al. 2017, Lee and Park 2019) to prevent potential 

struck-by hazards on site. The CV domain that was commonly used to identify and locate construction equipment 

and workers is object detection. A typical workflow was to apply feature-based descriptors to extract features from 

visual data. The extracted features were then fed into a classifier to recognize a specific construction entity. The 

commonly used feature-based descriptor is the Histogram of Oriented Gradients (HOG), which provides better 

detection results in identifying construction workers and equipment than other descriptors (Rezazadeh Azar and 

McCabe 2012, Memarzadeh et al. 2013). Support Vector Machine (SVM) is commonly used as the classifier along 

with the HOG feature descriptor (Park and Brilakis 2016). Rezazadeh Azar and McCabe (2012b) used HOG to 

train classifiers to detect hydraulic excavators in different poses. Similarly, Kim et al. (2017) leveraged the HOG 

feature and the SVM classifier to identify construction workers. 

Recent studies have focused on applying deep learning models, especially R-CNN, to detect and locate 

construction entities from visual data. Kim et al. (2018) used a Region-based Fully Convolutional Network (R-

FCN) to detect various types of construction equipment. Fang et al. (2018) applied Faster R-CNN to detect 

construction workers and excavators in real time. The accuracy of the proposed method was 91% for detecting 

workers and 95% for detecting excavators, which outperformed the conventional handcrafted feature descriptors. 
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Object tracking methods were also used to analyze the movements of construction entities from video frames while 

generating trajectories for proactive struck-by hazards prevention. Commonly used tracking methods were the 

filtering tracking methods, including the Kalman filter-based method (Kalman 1960) and the Particle filter-based 

method (Gordon et al. 1993). The filtering tracking methods are a top-down process that addresses the dynamics 

of the tracked objects, awareness of scene priors, and analysis of different hypotheses (Gong and Caldas 2011). 

Therefore, the filtering tracking methods perform better on complex scenes and objects and can handle occlusion 

much better. Kim et al. (2016) presented a safety module to monitor the struck-by accidents by tracking moving 

entities based on Kalman filter-based method and fuzzy inference, while Zhu et al. (2016) leveraged the Particle 

filter-based method to track workers and moving equipment. Another tracking method was the Kernel-based 

method (Comaniciu et al. 2003), which has lower computational complexity. Park et al. (2012) and Chen et al. 

(2017) used the Kernel-based 2D tracking method to identify the 2D pixel coordination of a moving entity's 

centroid.  

Researchers have leveraged object detection methods to identify the presence of edge supporting structures to 

prevent fall hazards on sites. Fang et al. (2019) used Mask R-CNN (He et al. 2018) to detect and segment 

supporting structures and people from image backgrounds, then determine the relevant position and relationship 

between people and supporting structures to identify potential fall hazards. Kolar et al. (2018) applied a CNN-

based technique to detect safety guardrails on sites, achieving approximately 97% accuracy for detecting a single 

guardrail type and 86% accuracy for detecting multiple guardrail types. 

It is critical to monitor the wearing of PPE on construction sites. PPE detection requires the detection of 

construction workers first and then identifying the presence of PPE on the detected workers. Fang et al. (2018) 

applied the Single Shot Detector (SSD) (Liu et al. 2016) to detect construction workers and used a CNN model for 

PPE wearing classification. Mneymneh et al. (2019) leveraged feature-based descriptors and classifiers to 

accomplish worker detection and monitoring of hardhat wearing.  

CV-based methods were also applied in safety training to improve workers' safety awareness on sites. Jeelani et 

al. (2018) used eye-tracking techniques to obtain workers' eye-viewing patterns, and then integrated them with CV 

methods to localize their gaze position, which helps assess the ability to identify different hazards. Ding et al. 

(2018) applied a hybrid model of CNN and long short-term memory (LSTM) to identify construction activities 

that may cause potential hazards from videos. The identified activities can then be used as visual feedback to 

educate workers on how to perform activities safely. 

Recent research has focused on analyzing the biomechanics of construction workers to proactively prevent 

musculoskeletal disorders (MSDs), which are work-related injuries among construction workers. Pose estimation 

in the CV domain has been commonly used for biomechanical analysis. A typical workflow of biomechanical 

analysis is that CV-based methods first extract 3D skeleton models of workers from visual data. The extracted 

skeleton model's 3D joint positions and joint angle features are then fed to pre-trained classifiers to detect 

ergonomic hazards. Han and Lee (2013) leveraged the HOG feature descriptor to extract 2D skeletons from video 

frames. Then, the 3D skeletons of workers were created from multiple 2D skeletons through triangulation. Kong 

et al. (2018) presented a framework to investigate the physical intensity of workers using a 3D biomechanical 

model. The model first estimated the 2D coordinates of each joint of construction workers using a deep neural 

network. Then another deep learning algorithm was applied to infer the 3D joint coordinates based on 2D joint 

coordinates. Lastly, the estimated 3D joint coordinates were combined with other collected data, such as foot 

pressure and plantar accelerations, to analyze the maximum mechanical energy expenditure for the whole body 

pose. Additional studies of CV-based methods applied in safety monitoring can be found in Table 1. 

4.2 Productivity Improvement 

Pose estimation and object detection domains were used to improve construction productivity. Pose estimation can 

help to improve construction productivity in two ways: first, position data from pose estimation of articulated 

construction equipment, such as excavators, can be used as designed profiles either to guide operators to complete 

tasks more efficiently or to guide equipment to finish tasks autonomously. Second, pose estimation can provide 

more comprehensive information for activity recognition, which can monitor construction activities in real time. 

Thus, it can provide visual feedback to managers and workers to understand the working status, and analyze the 

interactions between different construction entities. 
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TABLE. 1: Additional studies of CV-based methods applied to safety monitoring 

CV 

Domains 

Scenarios Authors (Year) Descriptions 

Object 

Detection 

Struck-by 

hazards 

monitoring 

Zhang et al. (2020) Leveraged Faster R-CNN to identify spatial relationships 

among construction entities. 

 Yan et al. (2020) Estimated the spatial proximity of construction entities based 

on the 3D bounding box reconstruction, and depth estimation 

from 2D monocular vision data. 

 Luo et al. (2020) Applied the YOLO-V2 (Redmon and Farhadi 2016) to monitor 

the proximity between workers and excavators. 

 Guo et al. (2020) Analyzed the rotation and orientation of construction vehicles 

from UAV images using a novel network. 

Object 

Tracking 

Struck-by 

hazards 

monitoring 

Konstantinou and 

Brilakis (2018) 

Matched the same construction workers in several camera 

views and used triangulation to generate 3D trajectories of 

workers. 

  Hu et al. (2020) Obtained the spatial information of construction machines and 

workers using background subtraction. A real-time safety value 

was computed based on the established safety rules to identify 

the safety status of the monitored objects. 

  Cai and Cai (2020) Applied Faster R-CNN to detect construction workers to obtain 

their trajectory in terms of 2D coordinates on an image plane. 

  Tang et al. (2020) Utilized a long short-term memory (LSTM) encoder-decoder 

followed by a mixture density network to forecast the motion 

trajectory of the construction equipment and workers for 

proactive safety analysis. 

Object 

Detection 

Fall Hazards 

Prevention 

Fang et al. (2018) Detected workers using a Faster R-CNN; applied a deep CNN 

model to the detected workers to identify the presence of a 

harness attached to workers. 

 PPE Monitoring Tang et al. (2020) Proposed a human-object interaction (HOI) model to directly 

identify the work-tool interactions on construction sites for 

safety compliance checking. 

Pose 

Estimation 

Biomechanical 

Analysis 

Zhang et al. (2018) Leveraged a multi-stage CNN architecture to estimate the 3D 

location of different joints from video frames and created 3D 

skeletons of workers; the 3D joint position and joint angle 

features were extracted for ergonomic posture classification 

using machine learning techniques. 

  Chu et al. (2020) Assessed the ergonomic behavior of construction workers with 

the following steps: human body tracking from visual data; 

identifying and refining 2D joints from the tracking results; 3D 

reconstruction of the 2D joints; and the calculation of joint 

angles. 

Researchers have been using different CV methods to extract the skeletons of articulated construction equipment. 

Marker-based pose estimation approaches were applied (Feng et al. 2018, Azar et al. 2015) to establish 

correspondences between 2D geometry features of excavators and camera pose in a certain coordination system. 

After obtaining the 2D skeletons of excavators, Soltani et al. (2018) leveraged stereo vision to construct 3D 

coordinates of excavators' poses through triangulation. Xu and Yoon (2019) proposed a method to estimate the 

pose of the excavator manipulator for the feedback control system. Three neural networks were developed to 

estimate the displacements of the boom, arm, and bucket, respectively. The estimated displacements were then 

used as inputs to the Proportional Integral controller, which controls the manipulator model during the simulation 

process. Luo et al. (2020) leveraged three different deep neural networks to predict the key points of construction 

equipment from surveillance images. The proposed framework showed the potential to automatically capture 

construction equipment's pose and movement from surveillance videos. A hybrid model built with CNN and LSTM 
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(Kim and Chi 2020) was developed to recognize activities for earthmoving equipment, followed by an interaction 

analysis to analyze the productivity of the analyzed construction equipment. 

Similar to the biomechanical analysis, researchers extracted the pose of construction workers and then classified 

the estimated pose data into different construction activities for automatic assessment of worker activities. Gong 

et al. (2011) and Khosrowpour et al. (2014) applied feature-based descriptors to extract and represent the skeletons 

of construction workers and then used classifiers to recognize specific activities. Luo et al. (2018) applied the 

improved three streams CNN and Temporal Segment Networks (TSNs) to recognize various construction activities. 

Roberts et al. (2020) leveraged YOLO-V3 (Redmon and Farhadi 2018) to detect construction workers from video 

frames and then used a pose estimator to estimate the body joints of each detected worker. The actual activity was 

determined by processing the detected pose with a proposed pose feature extraction module and reasoning the 

representation of pose-level spatiotemporal change within a short time window. 

Object detection methods have also been used to identify and localize construction equipment and workers. Given 

the applied context reasoning and the identified working status of equipment and workers, the productivity rates 

of corresponding construction activities can be further analyzed. Spatial-temporal features combined with the SVM 

classifier were previously used for detecting earth-moving equipment (Golparvar-Fard et al. 2013). Markers were 

attached to earthmoving equipment to distinguish individual equipment (Rezazadeh Azar 2016). Recently, efforts 

have been made to leverage different R-CNNs to detect construction entities. Luo et al. (2018) proposed a method 

to identify diverse and concurrent activities executed by multiple objects in still site images. The Faster R-CNN 

was applied for object detection. Then rule-based semantic relevance and spatial relevance were introduced, 

together with 20 pre-defined activity patterns to recognize construction activities. Kim et al. (2018) applied the 

region-based fully convolutional networks (R-FCNs) to detect earthmoving entities and their locations from video 

frames. The detected results were then converted to the state and event information as inputs for productivity 

analysis. Fang et al. (2020) leveraged Mask R-CNN to segment different construction entities from images taken 

from a monocular camera and assign semantic information to the segmented instances. Then, a priori knowledge 

model was applied to estimate the location of detected entities, using the calculated vertical projections of entities 

in an aerial environment.  

4.3 Progress Monitoring 

Object detection and 3D reconstruction from CV domains were leveraged to facilitate the monitoring of 

construction progress. Object detection was focused on inspecting a specific construction task, while 3D 

reconstruction techniques aimed to create a larger field of view of construction sites to support the decision-making 

of project managers. 

Hui et al. (2015) leveraged object detection methods to automatically count the number of bricks on a façade to 

monitor the progress of a bricklaying task. Czerniawski et al. (2016) proposed a pipe spool recognition method 

from point clouds to track pipe installation progress. The curvature-based shapes were first filtered using a shape 

descriptor from a 3D point cloud scene. Then the actual pipe objects were extracted using feature matching. For 

indoor construction, object detection methods were used to interpret the actual state of construction activities. 

Hamledari et al. (2017) presented four object detection modules, which automatically detected studs, insulation, 

electrical outlets, and drywalls. The current state of the interior partition installation can be inferred based on the 

presence of the above-mentioned detected objects. Kropp et al. (2018) registered indoor images with 4D Building 

Information Modeling (BIM) at the same timestamp on the construction schedule and then detected the presence 

of specific indoor objects to monitor the progress of construction activities. Deng et al. (2020) leveraged the 

handcrafted descriptor methods to detect tiles and compared them with the as-designed model (BIM). Edge 

detection methods were also used to identify the boundaries of the tiles for the area quantification. The 

transformation relationship between a real-world coordinate system and an image coordinate system can be 

established by a camera calibration algorithm. Braun et al. (2020) proposed an image-based object detection 

method using the Mask R-CNN to detect formwork elements from construction images. The detection results will 

then be compared with as-planned BIM to identify the status of certain construction progress. Similarly, Pour 

Rahimian et al. (2020) leveraged the semantic segmentation algorithm called FuseNet (Hazirbas et al. 2017) to 

recognize construction elements from RGB-D images and superimposed the detected elements with BIM in a 

gamelike immersive virtual environment. 



 

 

 
ITcon Vol. 28 (2023), Jiang & Messner, pg. 185 

3D point clouds of a construction site have been created using images captured on sites to represent the as-built 

conditions of projects. Kim et al. (2018) leveraged CV-based methods to detect common features between images 

and automatically merge point clouds with overlapped areas to improve the point clouds creation process. The 

generated point clouds can then be integrated with BIM in the same coordination system to identify deviations 

between the as-designed and the as-built conditions (Golparvar-Fard Mani et al. 2015). The identified deviations 

can be used as supporting information for decision-making in terms of a real-time schedule update. Han et al. 

(2018) integrated both object detection and 3D reconstruction. The BIM was first used as a geometry constraint to 

filter out the non-relevant parts of point clouds. The material type of specific building elements can be identified 

through object detection methods for operation-level activities progress monitoring.  

4.4 Infrastructure Inspection 

Researchers have been exploring the benefits of using CV-based methods during the asset management phase, 

especially for inspecting the structural health of infrastructures. Aging, degradation, and deterioration will cause 

the potential failure of structural systems. Thus, constant structural health monitoring is critical to maintaining the 

durability and integrity of structural systems. Commonly applied methods include image processing, 3D 

reconstruction, and object detection. 

Image processing techniques were commonly applied to reduce background noise in visual data, which improves 

the performance of extracting features of certain defects. Li et al. (2016) applied image processing methods to 

detect the location and shape of potholes from 2D images. The image smoothing technique was first applied to 

reduce the variance of the pixel density of the pavement surface without significantly affecting the defect 

information. Uniform background illumination can also affect the detection of potholes in images. The image 

normalization technique (Oliveira and Correia 2014) was used to normalize the pixel intensities of non-defect 

areas while maintaining the pixel intensities of the defect areas. The images were then further processed by 

implementing an intensity saturation procedure. The enhanced images were fused with 3D radar data to analyze 

the positions and dimensions of potholes. Image processing methods were also used to enhance the features of 

interest. Davoudi et al. (2018) applied Canny's edge detection method (Canny 1986) to segment concrete crack 

patterns from the image background. The morphological transformation was then used to make all cracks have a 

consistent single-pixel width. The processed images were then fed into a supervised machine learning model to 

quantitatively analyze the damage levels for future load prediction. 

3D reconstruction techniques allow a larger field of view via reconstructing collected visual data, which is critical 

for the structural inspection of large-scale infrastructure projects. Studies (Siebert and Teizer 2014, Rodriguez-

Gonzalvez et al. 2014) showed that image-based 3D reconstruction from UAV images of large-scale and complex 

infrastructure scenarios could capture the as-built condition in a more quick and affordable way, and eliminate the 

limitation of laser scanners and other classical topographical survey methods, including accessibility and safety 

issues. Golparvar-Fard Mani et al. (2015) leveraged an image-based 3D reconstruction pipeline consisting of 

Structure from Motion (SfM) and multi-view stereo (MVS) (Golparvar-Fard Mani et al. 2015) to create 3D point 

clouds of highway assets from video frames. The developed 3D point clouds can overcome the issues of unstable 

illumination and resolution conditions, and static and dynamic occlusions from 2D visual data. The created 3D 

point clouds can also serve as a platform to geo-register the 2D image for asset segmentation and object detection. 

Besides 3D reconstruction, Bang et al. (2017) proposed an image stitching method to create a panorama view of a 

large-scale construction site from UAV images. The generated panorama view can also help project managers 

better understand the as-built conditions of a large-scale and complex construction site. 

Object detection has been used for detecting the type, location, and measuring the size of structural defects from 

visual data. Different features distinguished different types of defects. Features can be extracted by manually 

created feature descriptors. Halfawy and Hengmeechai (2014) applied the HOG descriptor to identify the features 

of sewer defects. The identified vectors were then fed into the SVM classifier to determine the presence of defects. 

More researchers have been using various deep neural networks in the infrastructure inspection areas for the past 

three years. Cheng and Wang (2018) leveraged the Faster R-CNN to detect the location of sewage pipe defects 

from surveillance video frames. After extracting feature maps from images using CNN, Faster R-CNN leverages 

Regional Proposal Network (RPN) to generate regions of interest (RoIs) based on the extracted feature maps. The 

RoIs were then used as input for the detector to create bounding boxes around the detected defects. Pan et al. (2020) 

used a novel deep neural network to automatically detect concrete cracks at a pixel level. The backbone of the 

novel network was based on VGG19. This novel network achieved better performance than the Fully 
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Convolutional Neural Network (FCN) applied by Dung and Anh (2019) because it used the self-attention 

mechanism. Specifically, the self-attention mechanism reduced computational cost by focusing on RoIs and 

encoding rich contextual information into extracted local features. The proposed model increased Mean 

Intersection over Union (IoU) to 85.31%. More studies of CV-based methods applied in infrastructure inspection 

can be found in Table 2. 

TABLE. 2: Additional studies of CV-based methods applied to infrastructure inspection 

CV Domains Scenarios 
Authors 

(Year) 
Descriptions 

Image 

Processing 

Sewage 

Inspection 

Halfawy and 

Hengmeechai 

(2014b) 

Leveraged the optical flow technique to estimate the camera motion 

parameter from sewer inspection videos; the change of camera motion 

will indicate the presence of defects in a sewer pipe. 

 
Potholes 

Identification 

Ouma and 

Hahn (2017) 

Applied background noise reduction and image smoothing techniques, 

followed by fuzzy c-means clustering and morphological 

reconstruction to extract potholes. 

 
Spalling 

Detection 

Dawood et al. 

(2017) 

Applied image smoothing method to reduce the background noise; 

used a Gaussian Blur filter to enhance the image resolution; used 

several color filters and image scaling to reveal the difference in the 

intensity level of the defect areas. 

 

Structural 

Displacements 

Tracking 

Havaran and 

Mahmoudi 

(2020) 

Applied grayscale and edge detection techniques to images from video 

frames; used the Randomized Hough transform technique (Basca et al. 

2005) to detect the ellipse markers' movement in order to determine 

the structural displacement. 

3D 

Reconstruction 

Bridge 

Inspection 

Morgenthal et 

al. (2019) 

Used the generated 3D point clouds to perform structural analysis and 

geometrical change detection since they can provide information 

about the current deformation state and enable a mechanical 

interpretation of the acquired data. 

  
Xie et al. 

(2018) 

Leveraged the image stitching technique to create a panorama of a 

concrete bridge bottom surface using inspection images. 

Object 

Detection 

Bridge 

Inspection 

Asadi et al. 

(2020) 

Used a handcrafted HOG feature descriptor to detect the coordination 

of rebars from the concrete bridge deck Ground Penetrating Radar 

(GPR) images; the GPR images were used for concrete bridge deck 

analysis, including deterioration levels analysis, repair cost prediction, 

underground utility tracing. 

  
Deng et al. 

(2020) 

Developed a novel deep neural network to detect structural damage of 

bridges from image data. The network achieved the mean IoU at 

61.95%. 

 
Crack 

Detection 

Kong and Li 

(2019) 

Proposed a feature descriptor to extract image features that were used 

to align images taken from different camera poses in the same 

coordinate system to detect fatigue cracks. 

 
Ceiling Panels 

Inspection 

Wang et al. 

(2020) 

Leveraged a 15 layers CNN model to detect and localize the damaged 

ceiling panels in large-span structures 

 
Pipe Crack 

Detection 

Zuo et al. 

(2020) 

Used the structured edge detection method (Dollár and Zitnick 2015) 

to detect the cracks of pipes from inspection videos. 

Object 

Classification 

Bridge 

Inspection 

Shen et al. 

(2018) 

Leveraged a three-layer artificial neural network model to classify the 

intensity and severity of rust of steel bridges from images. 

 
Sewage 

Inspection 

Kumar et al. 

(2018) 

Leveraged the CNN model to classify different sewage defects from 

root intrusions, deposits, and cracks. 

4.5 Robotic Application 

Over the past few years, there has been a dramatic increase in robotic research in construction fields to reduce the 

costs and safety risks and automate part of the construction process. CV plays an important role in the construction 

robotics field. In general, CV applications in construction robotics can be divided into two fields: path planning 

and onboard inspection (Lattanzi and Miller 2017). 
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Path planning is critical for construction robots to minimize traveling time while achieving maximum coverage 

and avoiding obstacles. Asadi et al. (2018) presented a vision system implemented on an unmanned ground vehicle 

(UGV). The proposed system contained the monocular Simultaneous Localization and Mapping (SLAM) module 

and contextual scene understanding algorithms. The SLAM module constantly mapped the surrounding 

environment, and contextual scene understanding algorithms performed pixel-wise segmentation for proper 

context-aware motion planning. The integrated robotic system achieved real-time running performance and 

demonstrated the feasibility of deploying an autonomous robotic system in the future. Path planning methods were 

also applied to unmanned aerial vehicles (UAVs). Bolourian and Hammad (2020) presented a path planning 

method for LiDAR-equipped UAVs to perform bridge inspections. The method achieved obstacle avoidance and 

coverage calculation, resulting in minimum travel and processing time. The method was based on a pre-developed 

3D bridge model. The bridge surface was divided into cells for detailed visibility analysis. The Importance Values 

(IVs) were assigned to each cell based on the level of criticality of the bridge surface. The level of criticality was 

determined by the depth and angle of surface cracks, which were analyzed using LiDAR ray tracing. A set of View 

Points of Interest (VPIs) were developed based on the assigned IVs, and the optimum path was generated based 

on VPIs using the Genetic Algorithm. 

Asadi et al. (2020) proposed a novel cooperative platform to integrate UGV and UAV for construction inspection 

or monitoring. The main function of this cooperative platform was to navigate UGV and UAV in the construction 

site, collect visual data and map the space. The UGV will scan the space of interest assigned by construction teams 

by navigating itself around the construction site while the UAV follows. If a space is not accessible to the UGV, 

the UGV will send a UAV to scan that space. The UAV will then return and follow the UGV to the next space of 

interest. SLAM and image segmentation techniques were adopted in the proposed platform. The SLAM can help 

unmanned vehicles determine their positions while building up a map of the scanned space. The image 

segmentation can help unmanned vehicles understand the scene better by pixel-wise labeling images. 

Many inspection tasks of construction projects require data gathering from unreachable spaces or tightly enclosed 

areas. With the versatility of robotic systems, robots for inspection tasks can ease the burden on field inspectors 

by having access to the challenging areas and navigating themselves (semi-) autonomously while capturing data 

from the sites. Menendez et al. (2018) presented a robotic system used for tunnel structural inspection. The vision 

system of robotic system was composed of two pairs of cameras and an onboard lighting system. The first pair of 

cameras were used to detect various concrete defects in tunnels, such as spalling, efflorescence, and cracks. The 

detection method was a pre-trained CNN model. The second pair of cameras were used to extract 3D information 

on defects, such as positions and orientations, which were used to guide robotic cranes and arms to the 

corresponding place. Similarly, McLaughlin et al. (2020) presented a robotic platform to detect defects in concrete 

bridges. The vision system of the robotic platform contained a camera and a LiDAR scanner. By fusing the LiDAR 

data with the CNN-labeled image data, semantically labeled 3D point clouds were generated, which can be used 

to quantify the defect sizes. The presented process provided a much safer and more efficient way than normal 

bridge inspection routines. More studies of CV-based methods in robotic applications can be found in Table 3. 

TABLE. 3: Additional studies of CV-based methods applied to robotic application 

CV Domains Scenarios Authors 

(Year) 

Descriptions 

Object Detection Path 

Planning 

Yoder and 

Scherer 

(2016) 

The planning algorithm leveraged two fisheye cameras as visual inputs. 

For each given view, different cells of the visible surface were weighted 

by their utility based on vehicle location, partial map, and exploration 

views. The navigation path was generated based on either if the view 

was reachable or the level of view utility. 

Pose Estimation/ 

3D Reconstruction 

Path 

Planning 

Feng et al. 

(2015) 

Used planar markers to help a UGV to localize itself; a single camera 

was used to detect the visual marker to establish local reference frames. 

3D point clouds were generated by a mounted laser scanner, and were 

then registered into the same reference frame established by the marker-

based method. 

Object Detection/ 

Object Tracking 

Path 

Planning 

Kim et al. 

(2020) 

Adopted the YOLO-V3 network to monitor targets’ locations and 

trajectories, and the Social-GAN (Gupta et al. 2018) network to predict 

targets' future trajectories and proximity. 
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CV Domains Scenarios Authors 

(Year) 

Descriptions 

Object Detection Data 

Gathering 

Atkinson 

et al. 

(2020) 

Used a UGV to identify different regions of the underfloor scene, such 

as floorboards, joists, air vents, and pipework using the Mask R-CNN 

algorithm. 

  Wang et 

al. (2019) 

Developed a robot that recycles wasted nails and screws while inspecting 

the construction site. The robot leveraged Faster R-CNN to detect and 

localize objects on the ground. 

5. DISCUSSIONS 

A trending timeline was developed for each reviewed paper to identify the changing popularity of construction use 

cases and CV domains within the analyzed period (see Fig. 2). In general, the total number of papers that focus on 

CV applications in the construction industry each year has increased. The variety of use cases and CV domains 

has also increased over time. In the early 2010s, studies covered only two or three construction use cases per year, 

and there was no paper reviewed focusing on robotic applications in construction. In the last five years, studies 

have covered almost all categorized use cases and CV domains. It is worth noticing that there were overlaps 

between CV domains and construction use cases. Each reviewed paper did not necessarily focus on just one 

construction use case, or implement one single CV domain. Multiple CV-based methods could be applied in one 

construction use case, and a single CV-based method could also be implemented to fulfill tasks in various 

construction use cases. In this case, each CV domain and each use case was counted within the year, which resulted 

in the total number of construction use cases and CV domains exceeding the number of reviewed papers in some 

years. 

 

FIG. 2: A trending timeline for each reviewed paper within the analyzed time frame 
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Safety monitoring was the use case that gained the most attention from researchers (43 papers), followed by 

infrastructure inspection (26 papers) and productivity improvement (23 papers). One interesting observation was 

that robotic applications in the construction area have started to gain popularity among researchers in recent years. 

Within CV, the most frequently applied methods were included in the object detection domain (58 papers). Object 

tracking (20 papers) and image processing (19 papers) were also very popular domains that studies tended to use. 

The reason for the gaining popularity of both construction use cases and CV domains is the introduction of deep 

learning models to the construction industry, and the advancement of computing powers and visual data acquisition 

platforms. Most deep learning models focus on object detection, which can be applied to various construction use 

cases. 

The CV domain that was applied the least was object classification. Construction scenes were rather complex, with 

a lot of moving entities. Only producing a list of object categories presented in the visual data without providing 

the position and scale information was the most significant limitation of implementing object classification in 

construction and asset management processes. The least popular construction use case was progress monitoring. 

This can be one of the directions for future research regarding CV-based methods application in the construction 

industry. 

While CV-based approaches bring many benefits to construction and asset management processes, some remaining 

challenges and limitations need to be considered by companies willing to adopt CV in their construction tasks. 

The identified implementation challenges and technical limitations were summarized from the reviewed papers. 

5.1 Implementation Challenges 

Despite the successful implementation of CV techniques in the construction industry, some challenges persist in 

applying CV-based methods in construction and asset management processes. Some of the challenges were 

observed from the reviewed literature, including (1) lack of interdisciplinary knowledge, (2) data privacy 

protection, and (3) cost. 

5.1.1 Lack of Interdisciplinary Knowledge 

Finding construction engineers with sufficient CV knowledge to apply CV-based methods to different construction 

tasks can be challenging. Most engineers with construction backgrounds are not familiar with CV/deep learning. 

Similarly, experts from CV fields generally do not have an understanding of basic construction processes. 

Although knowledge from both fields is acquirable, CV knowledge usually has a steep learning curve, while 

construction expertise requires onsite experience. People with interdisciplinary knowledge and who can bring CV-

based solutions to different construction use cases are scarce (Fang et al. 2020). 

5.1.2 Data Privacy Protection 

CV-based approaches need a large amount of data to support their successful implementation. Images and videos 

used for safety and productivity improvement purposes may contain the faces and activities of construction 

workers. Pose estimation also needs pose data from workers. It is critical to have regulations and standards that 

identify how to use personal data properly, and protect personal data privacy. Companies doing business in the 

European Union (EU) must comply with the EU’s General Data Protection Regulation (GDPR), which requires 

companies to provide meaningful information about personal data usage and provides individuals the right to 

remove their personal data. Deep learning researchers are also making efforts to introduce guides as to what level 

of explanation is needed for an algorithm to prevent ethical complications (Akinosho et al. 2020). In the future, 

construction companies still need to face this challenge, and be cautious about collecting personal data on sites for 

deep learning usage. 

5.1.3 Cost 

The implementation of state-of-the-art CV-based methods will add extra cost to construction projects. Although 

CV-based methods aim to lower the overall cost by improving productivity and reducing safety hazards, the front-

end cost of technology implementation is inevitable. Leveraging deep learning models requires machines with 

powerful computational capabilities. Companies willing to adopt deep learning techniques need to either purchase 

machines, or pay for cloud computing subscriptions. Technology implementation usually also comes with 

consulting service, which is another cost besides the hardware part. Construction companies should find cost-

efficient approaches to adopt deep learning techniques in the industry (Akinosho et al. 2020). 
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5.2 Technical Limitations 

Besides the implementation challenges mentioned above, deep learning, or CV in general, remains some technical 

limitations while being implemented in the construction industry. Some of the limitations were identified from the 

reviewed literature, including (1) lack of training data; (2) Non-transparency; and (3) compatibility with other data 

sources. 

5.2.1 Lack of Training Data 

Successful identification and detection of deep learning models require a large number of datasets for training. 

Adequate training data can ensure the inter and intra-class variability of the trained model, while limited training 

data can yield low performance or overfitting. Compared with some benchmark image datasets (e.g., ImageNet, 

Open Images, and COCO), which contain numerous labeled training images, the collected construction images 

need to be manually labeled and tagged by researchers. This can be a tedious and time-consuming process. 

Solutions to address the limited data issue are transfer learning techniques and data augmentation. The basic idea 

of transfer learning is to select a deep neural network pre-trained with large image datasets as a starting point. 

Then the selected network is tuned with additional images containing objects for tasks of interest. Kim et al. (2018) 

used the pre-trained ResNet-50 model using the ImageNet dataset and fine-tuned it with construction vehicle 

datasets for transfer learning. Similarly, Kim et al. (2019) used the pre-trained YOLO-V3 model from ImageNet, 

and fine-tuned it with image data involving a wide range of construction entities, enhancing the object detection 

capability. Data augmentation is to generate synthetic images by projecting either CAD models or reconstructed 

3D models (Kim and Kim 2018) from different points of view. This approach can significantly increase the 

quantity of training data. Various views of a construction excavator CAD model (Soltani et al. 2017) and a railing 

CAD model (Kolar et al. 2018) were created for training the corresponding object detectors. Kim and Kim (2018) 

used a reconstructed 3D dump truck model to generate synthetic images. Other data augmentation approaches 

include rotation, shifts, and flips of the existing image dataset to enhance the overall amount of the training dataset. 

5.2.2 Non-transparency of Deep Learning Models 

Deep learning models usually have a non-linear multilayer structure, and their predictions are not traceable by 

humans (Buhrmester et al. 2019), and thus are criticized for being non-transparent. Although some strides have 

been made in visualizing the contributions of individual nodes in complex networks, the transparency issue has 

not yet been solved (Marcus 2018). Researchers are not able to determine the exact features extracted from nodes 

and are not able to identify the weights or parameters that need to adjust for each layer to achieve better 

performance. The opacity of deep learning models leads to a potential liability of applying deep learing models, 

especially in construction safety scenarios. 

5.2.3 The Integration with Other Data Sources 

While CV-based methods can interpret visual data for ongoing operations, it is critical to realize that the analyzed 

visual information needs to be integrated with other devices or data sources to complete a broader range of 

construction tasks. For the safety monitoring use case, safety rules are constantly changing based on different 

scenarios or processes. Therefore, CV-based methods need to be adjusted accordingly to accommodate the 

corresponding safety rules better (Fang et al. 2020). CV-based methods can also be aided by other devices (e.g., 

sensors, RFID), which are capable of acquiring other types of data. The acquired data can be integrated with the 

information analyzed from CV-based methods to generate a more comprehensive framework to facilitate more 

complex use cases. For example, accelerometer sensors combined with CV techniques can keep track of 

construction entities under occlusion. 

6. CONCLUSION AND FUTURE WORK 

A systematic literature review was conducted in this paper to summarize the CV-based methods applied to various 

construction and asset management processes. A framework was developed to categorize different construction 

use cases and CV domains from the reviewed journal papers. In total, five use cases and six domains were 

generated. A trending timeline was developed over the reviewed time frame. The trending timeline showed the 

changing amount of journal papers published in the identified research area and the trending popularity in both 

construction use cases and CV domains. The most popular construction use cases were safety monitoring, followed 

by infrastructure inspection and productivity improvement. Robotic applications have been gaining more attention 
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in recent years. The most implemented CV domain was object detection, followed by object tracking and image 

processing. Even though CV-based approaches are beneficial to the construction industry, there are still many 

implementation challenges and technical limitations that companies and researchers should be aware of.  

An emerging area of research is using computer vision to support construction robotics on jobsites. Specifically 

related to computer vision, there is a need to pursue the following items: generating large and comprehensive 

image datasets specifically for the construction industry; understanding the decision-making process of deep 

learning models, so that people can tune models based on their needs; and applying different CV domains (pose 

estimation, 3D reconstruction) to support construction robotic applications. In addition, one particular topic of 

interest for using visual data from construction sites is to develop standards and practices for collecting and 

protecting the personal data of construction workers. 
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