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SUMMARY: Construction equipment production rates are considered an influential factor in construction 

projects’ success as 30–40% of construction cost overruns are attributed to insufficient equipment production 

rates. The tower crane is one of the heavy construction equipment, and its production rate has a huge impact on 

the construction project’s performance. Current estimations of the tower crane production rate on construction 

sites are not backed by a universally accepted and applicable methodology. However, vision-based technologies 

have been utilized recently for determining the production rates of construction equipment. Therefore, the purpose 

of this research is to develop a vision-based research framework (VRF) with a user-friendly interface for a 

practical and speedy measure of tower crane actual cycle time on construction sites. The software will be 

developed based on eight single object tracking detection free algorithms. Moreover, the VFR will be evaluated 

by measuring tower cranes’ cycle time in two case studies in Egypt. For each case study, five videos were recorded 

for the tower cranes. The cycle time in each video was measured by using manual inspection and by the VRF. The 

VRF achieved high accuracy in tracking the cycle time for the tower crane in the two case studies. 

KEYWORDS: Tower crane, video analysis, production rate analysis, Construction equipment, programming 

language, Vision-based technologies 

REFERENCE: El-Badr O. Elgendi, Khaled M. Shawki, Amr Ashraf Mohy (2023). Video analysis for tower crane 

production rate estimation. Journal of Information Technology in Construction (ITcon), Vol. 28, pg. 138-150, 

DOI: 10.36680/j.itcon.2023.007 

COPYRIGHT: © 2023 The author(s). This is an open access article distributed under the terms of the Creative 

Commons Attribution 4.0 International (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted 

use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://dx.doi.org/10.36680/j.itcon.2023.007
mailto:elbadrosman@aast.edu
mailto:kshawki.eng@gmail.com
mailto:a.el-deen5146@student.aast.edu
https://creativecommons.org/licenses/by/4.0/


 

 

 
ITcon Vol. 28 (2023), Elgendi et al., pg. 139 

1 INTRODUCTION 

The cost of construction equipment might range from 10 to 40 percent of the entire project cost; therefore, 

equipment production rates are considered an influential factor in projects’ success, especially with the huge 

reliance on heavy equipment in construction nowadays (Alaghbari et al., 2019). However, it is generally 

acknowledged that work in the construction industry is performed under exceedingly challenging site conditions 

due to the incorporation of heavy equipment into the processes of construction, such as tower cranes, with the 

continuous movement of workers, materials, and changing status (Kim and Caldas, 2013). Tracking construction 

projects and giving an accurate estimate of the construction equipment production rate provides a comprehensive 

picture of work performance and helps in making appropriate decisions. The tower crane production rate is difficult 

to evaluate precisely since it fluctuates depending on the placement conditions, types of loads, and equipment 

allocation strategy. Moreover, when the production rate of tower cranes declines, the activity time and cost 

increase. Furthermore, as the time of the cycle lengthens, more fuel is consumed and more pollutants are produced, 

harming the environment (Golparvar-Fard et al., 2015). 

In order to increase productivity, it is necessary to evaluate and monitor the tower crane’s productivity throughout 

the execution phase in order to identify the equipment’s inefficiencies and their underlying causes. This evaluation 

and monitoring are required to enhance productivity. To collect the data necessary for monitoring the performance 

of the equipment, however, requires a substantial investment of both time and resources (Chen et al., 2020) For 

instance, gathering data manually is not only fraught with the possibility of error but also impractical for large 

projects (J. Kim et al., 2019). This highlights the significance of automating the process of collecting data on 

equipment operation, analyzing its productivity, and monitoring its performance in large-scale building projects. 

Specifically, this emphasizes the need to automate the data collection process for equipment operation. Therefore, 

there is a research gap that needs to be covered in the scientific direction of measuring the actual tower crane 

production rate in construction sites. So, the purpose of this research is to develop a VRF with a user-friendly 

interface for a practical and speedy measure of tower crane actual cycle time on construction sites. The VRF will 

analyze the recorded videos captured by a video camera installed on the site to measure the tower crane’s actual 

cycle time, which will be used in production rate calculations. Two case studies will be utilized to test and validate 

the VFR based on the cycle time. 

2 LITERATURE REVIEW 

2.1 Production Rate Monitoring 

Typically, the project life cycle typically consists of five (5) distinct phases: initiation, planning, execution, 

monitoring, and closure. These phases work together to transform a project charter into a deliverable capable of 

carrying out its intended purpose (Radman et al., 2022). In terms of cost and time, the monitoring phase is 

responsible for coordinating various aspects. These factors consist of the phases of design, procurement, logistics, 

and installation (resources, materials, and equipment). The conventional method for monitoring productivity 

entails manually collecting data from the field, typically via meetings, and then converting that data into digital 

formats such as spreadsheets. Nevertheless, this activity is labor-intensive, has a low rate of productivity, and 

frequently results in delays and site job rework, which refers to the accuracy and speed with which data and 

information are delivered. As a result, project decision-makers are left in an uncertain state (Alizadehsalehi and 

Yitmen, 2021).  

The definition of productivity varies based on the context in which it is discussed. The Oxford dictionary defines 

productivity as “the effectiveness of productive effort, especially in industry, as measured by the output per unit 

of input.” Productivity indicates how much output can be generated for each unit of input. The unit rate is the 

number of actual work hours required to complete the specified quantity of construction work. This is the most 

prevalent method for calculating construction efficiency (Jang et al., 2011). Despite this, the units of measurement 

change based on the types of inputs and outputs involved in the construction process. Despite this, productivity’s 

importance in reducing costs and generating profit is of the utmost importance in all industries, including the 

construction industry. Various technologies, including sensors, audio signals, and computer vision, were utilized 

by researchers in order to collect data on productivity. 
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A. Sensors 

(Montaser and Moselhi, 2012) proposed a radio-frequency identification system for monitoring earth-moving 

operations (RFID). Their method was capable of automatically determining a truck’s loading, traveling, unloading, 

and returning states. Because this strategy employs fixed RFID readers for gate systems at loading and dumping 

areas, it is best suited for use in projects with permanently installed loading and dumping areas. In addition, this 

approach cannot be used to calculate the length of time that vehicles wait in zones designated for loading and 

unloading. Separately (Montaser and Moselhi, 2014) created an automated system that integrates a global 

positioning system (GPS) with a geographic information system (GIS). This technique uses GPS gadgets installed 

on vehicles to monitor their whereabouts and uses a GIS to define the geographical limits of regions utilized for 

loading and dumping. Similar to their earlier technique, (Montaser and Moselhi, 2014) found the same four states 

for trucks; however, their system was unable to identify waiting periods at loading/dumping zones. This was an 

issue with their technique. This was because the system was never designed to function in this manner. 

In order to address this limitation and improve the accuracy of measuring the volume of excavated soil, (Ibrahim 

and Moselhi, 2014) developed an automated method for evaluating the productivity of earth-moving operations 

by collecting data from five sensors mounted on the equipment. This was done to improve the accuracy with which 

the volume of excavated soil was measured. A number of parameters, including load queue, load type, travel, 

dump queue, and return, are maintained by the algorithm that was developed for recognizing the activities of 

equipment. The margin of error for the newly developed method for calculating productivity was only 2.2%. This 

method needs substantial installation of a large number of sensors on trucks and loaders, which is seldom feasible 

in construction projects owing to accessibility and availability constraints, as well as ownership models for heavy 

equipment 

An accelerometer installed within the cabin of a medium-sized excavator was used to capture data at a frequency 

of one hundred hertz (Ahn et al., 2012). Utilizing vibration signals, they were able to establish the relationship 

between operational efficiency and environmental performance. (Ahn et al., 2015) conducted an experiment in a 

laboratory to collect acceleration data from four distinct excavator models. Each excavator's cabin contained an 

accelerometer that was used to gather these signals. In order to gather the necessary data for the experiment, which 

involved the analysis of accelerometer data patterns, the excavator had to be operated in accordance with very 

specific instructions. Various supervised classifiers, such as naive Bayes, instance-based learning, K-nearest 

neighbor (KNN), and decision trees, were employed to classify various characteristics of excavator operation (Ahn 

et al., 2015), which achieved more than 93% categorization accuracy. Methods for detecting the loading and 

unloading of a dumper truck employing remote tracking with three-axis magnetic field sensing and three-axis tilt 

sensing for both the loader and the vehicle were examined in a controlled laboratory setting. These sensing 

techniques were used on both the loader and truck.  

(Akhavian and Behzadan, 2012) utilize remote tracking in combination with three-axis magnetic field sensing and 

three-axis tilt sensing. The authors utilize a 100 Hz GPS sensor, a three-axis accelerometer, and a three-axis 

gyroscope, to recognize equipment actions and the durations of such activities has been devised. Moreover, 

(Akhavian and Behzadan, 2015) proposed an approach for front-end loader using simulation input modeling. By 

utilizing a broad array of supervised learning algorithms, such as logistic regression, KNN, decision trees, neural 

networks, and support vector machines, this methodology was able to attain an overall accuracy of 86%. In some 

of the studies, smartphones’ accelerometers and gyroscopes served as inertial measurement units (IMUs) to 

identify the various equipment types. The operation cycle time of an excavator was computed by (Kim et al., 2018) 

using IMU data collected at 128 Hz. By utilizing random forests, naive Bayes, decision trees, and sequential 

minimal optimization, they were able to predict the cycle time with a 91.83 percent degree of accuracy. In a 

separate study (Rashid and Louis, 2019), time series data augmentation was applied to data collected at 80 Hz 

from three-axis accelerometers and three-axis gyroscopes. The objective of this study was to generate training 

simulation data for four distinct models of excavators and front-end loaders. Utilizing a recurrent neural network 

(RNN), this technique was able to achieve an accuracy of better than 96% when applied to a fourfold augmentation. 

(Kassem et al., 2021) developed a deep neural network (DNN) model for estimating the amount of soil dug by a 

mixed fleet of excavators (e.g., various sizes, weights, and models) and compared the excavation task performance 

using telematic data from 21 days of operation. The accuracy of 69.64% was deemed satisfactory because 

archaeologists were employed alongside their equipment in the case study chosen to represent central London. 

(Bae et al., 2019) utilize joystick signals, to develop a dynamic time-warping algorithm for activity recognition 
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and automatic classification of excavator activities such as digging, leveling, lifting, trenching, traveling, and 

idling. This algorithm was used to identify excavation, leveling, lifting, and trenching. The recognition accuracy 

of their model ranged between 91% and 97% of the time. 

B. Audio Based Methods 

Audio provides an additional data source for identifying the activities performed by heavy machinery due to the 

characteristic acoustic patterns that are typically produced by such machinery while it is performing its routine 

tasks (Cheng et al., 2019). Construction equipment activities were divided into two categories by (Cheng et al., 

2017): productive activities, also known as major activities, and non-productive activities, also known as minor 

activities. This was utilized so that equipment states could be identified by listening to the sounds made by 

construction equipment. The research of (Sabillon et al., 2020), presents a model that uses audio data to estimate 

the cycle time of various types of machinery. 

In comparison to computer vision techniques and sensors, audio signals are easier to use because they are captured 

by technologies such as microphones, which can cover a large area. This allows microphones to detect and record 

audio signals. Additionally, audio file processing requires fewer available computational resources (Sabillon et al., 

2020). However, surrounding noise has the potential to impair the accuracy of the models, and the operation of 

certain machines does not produce identifiable sound patterns, making it impossible to detect the nature of the 

activity being performed by such machines (Cheng et al., 2017). This work contributes to this research area by 

designing and testing a novel technique for precisely forecasting the productivity of tower cranes. The application 

takes use of an inexpensive, simple-to-install system that is based on algorithms for tracking a single item. With 

the aid of a system based on algorithms for monitoring a single target, the device was designed and tested. 

C. Vision-Based Methods 

(Torres Calderon et al., 2021) could improve vision-based activity analysis techniques by developing a new 

method for training computer vision algorithms with data synthesized from three-dimensional (3D) kinematically 

configurable models. In addition to their visual qualities and geographical context, visual data may give 

information on the physical movements of equipment, which is the fundamental benefit of using computer vision 

to boost the productivity of equipment. This data may be used to improve the overall performance of the device 

(Kim and Chi, 2020). This technology has a variety of disadvantages and challenges, including its susceptibility 

to environmental elements such as occlusions, lighting, and illumination conditions; camera shaking caused by 

wind; and picture blurring caused by precipitation, snow, and fog. In contrast, if a more theoretical approach to 

analyzing this strategy was taken, it will offer a lot of beneficial characteristics (Gong and Caldas, 2011).  

Researchers have devised a vision-based approach for assessing excavator productivity in a recent study (Chen et 

al., 2020). On the other hand, it was discovered that this method required a significant amount of computational 

power and had a number of drawbacks, including a dependence on lighting conditions, camera viewpoints, the 

number of objects in the scene, and the background’s motion. In addition, they achieved an accuracy of 83 percent 

when measuring productivity and 94 percent when measuring idle time. In the study conducted by (Bügler et al., 

2017), photogrammetry and video analysis were combined to determine the volume of soil removed during 

excavation and the efficiency of this process. By using computer vision and simulation, a model was created to 

analyze the productivity of earth-moving machinery by (H. Kim et al., 2019). The site access log was generated 

by identifying the license plates of dump trucks from surveillance camera footage captured at the entrance and exit 

of a construction site. Then, they utilized a simulation model to assess the productivity of trucks. 

Vision-based approach applications for automating and monitoring production rates in the construction industry 

have only recently become popular, and they are still considered the novel. Furthermore, the current vision-based 

approach application result confirmed the optimal success in measuring and evaluating cycle time and production 

rate for construction equipment, according to the past literature review. However, there is a gap in measuring and 

evaluating the cycle time of tower cranes as they have had different characteristics from other equipment. Single 

object tracking algorithms and detection free tracking methods will be used in the proposed framework. 

2.2 Single Object Tracking Algorithms 

Tracking refers to the technique of identifying an item frame by frame inside a video. Tracking is a broad notion 

in computer vision and machine learning, despite the apparent simplicity of its meaning. It includes many unique 

concepts that are theoretically comparable but technically distinct. To monitor tower cranes, the OpenCV library, 
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which is an open-source, cross-platform computer vision and machine-learning software library, may be used with 

the appropriate tracking algorithms. OpenCV is a software library for computer vision and machine learning. 

While Single Object Tracking (SOT) (Brdjanin et al., 2020) is the level of tracking algorithms in OpenCV, which 

seeks to monitor a single object of a single class rather than many items. Visual object tracking is an alternate term 

for this process (Roberts and Golparvar-Fard, 2019). In SOT, tracked objects need to be defined by the user in the 

first frame by using the target object’s bounding box as shown in Figure 1. Then the tracking algorithms will 

identify the tracked object in the remaining frames. SOT comes under the classification of detection free tracking 

since the first bounding box must be manually given to the tracker. This means that single item trackers must be 

able to monitor any object supplied to them, regardless of whether a categorization model has been established for 

that object (Bradski, 2000). The eight single object tracking algorithm that available in OpenCV are: 

 

Figure 1: An example of bounding box that detect the boom of a tower crane 

BOOSTING, often known as online boosting (Grabner et al., 2006), is the online edition of AdaBoost, from 

whence it derives its name. It operates based on the categorization of the monitored item and the backdrop and is 

trained in real-time. Consequently, it begins with a bounding box input of the item (positive class), either manually 

or through an object detector, and trains itself against patches created around the bounding box (negative 

background class). For each new frame, the classifier is executed in the region of the previous position, and the 

place with the highest classification score is chosen as the new object position, while the classifier is also updated 

with the freshly gathered data.  

The Multiple-Instance-Learning (MIL) tracker was formerly referred to as MILBoost. As the name suggests, it 

employs a similar methodology to the previous tracker idea; however, instead of assessing a part of the processed 

frame as a whole, it divides it into sub-sections that are then separately categorized and summarized as a collection 

of samples in so-called bags (Babenko et al., 2009). These bags are then categorized as positive (containing an 

item) or negative (not containing an object) depending on the findings of their collected samples, without needing 

all of their samples to be categorized as positive (in fact one positive sample in a bag can be enough). By using 

this method, the tracker has a more precise understanding of what a positive class may be like when occlusion or 

centering issues of the whole object occur. While it might enhance accuracy, it is anticipated to operate more 

slowly.  

In response, a quicker on-line change (Henriques et al., 2015) was suggested, which is an abbreviation for 

Kernelized Correlation Filters (KCF) (Shin et al., 2020), builds on BOOSTING and MIL, but mathematically uses 

the natural overlapping of samples in the MIL method and the extra data that comes with it to provide a 

substantially quicker and more accurate tracking system. As its name suggests, it uses the Fourier Transform to 

execute a computationally efficient correlation calculation that is responsible for the significant acceleration. In 

addition to speed and accuracy benefits, it is much better to detect a tracking failure rather than continuing to track 

a different object after a tracking loss. 

MedianFlow operates by following individual points of a monitored object both forwards and backwards in 

successive frames and comparing their trajectories, which should overlap if the tracking is ideal (Kalal et al., 2010). 

Any observed disparities between the trajectories are then utilized to assign tracking faults to locations inside the 

bounding box of the tracked item and to classify these points as in- and outliers. The filtering of outliers and the 

prediction of the bounding box's motion based on the inliers make the tracker particularly effective for predicting 

movements. In addition, this method enables the tracker to quickly identify a failed tracking operation so that it 
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does not follow the incorrect objects. On the downside, MedianFlow is more sensitive to occlusion and large or 

unstable target object movements. 

Tracking-Learning-Detection (TLD) was  promoted by the author (Kalal et al., 2012) as a tracking framework 

rather than a simple tracking algorithm. The framework is to divide the detection, tracking, and learning functions 

into distinct components to improve the overall tracking performance over time. One of the primary goals of the 

idea is to prevent on-line learning in cases when the item to be monitored is no longer in the tracking frame (e.g., 

due to conclusion), since this leads to negative learning. In contrast, the detector component must more precisely 

locate observed target appearances in order to correct the tracker in the event of divergence, whilst the learning 

component must analyze and estimate the mistakes produced by the detector and update it to minimize them. As 

a result, the tracking framework must be able to re-detect even lost target objects when they reappear on the input 

frame, but the method may also result in unintended hops between the target item and other and/or similar objects 

in its vicinity.  

The Generic Object Tracking Using Regression Networks (GOTURN) tracker It is the only tracking algorithm 

throughout the tracker class that uses a convolutional neural network (CNN). This technique discovers a general 

association between object motion and appearance and may be used to monitor items not included in the training 

set. Online trained tracker algorithms are sluggish and do not function effectively in real time since they cannot 

utilize a huge number of videos to increase performance. In contrast, offline tracker algorithms may be trained to 

handle rotations, perspective shifts, illumination variations, and other difficult issues. However, GOTURN use a 

regression-based method to track objects with a single feed-forward run across the network, they essentially regress 

straight to find target objects. Two inputs are received by the network: a search area from the current frame and a 

target from the previous frame. The network then compares these photos to the current image to locate the target 

item (Held et al., 2016). 

The Minimum Output Sum of Squared Error (MOSSE) tracker also works with correlations in the fourier domain, 

but it does so considerably more quickly than similar trackers while still producing excellent tracking outcomes. 

The method of minimizing a Sum of Squared Error (SSE) is not novel, but that previous applications typically 

assumed the object of interest was located in the center of a frame, which was not always the case during tracking 

operations (Bolme et al., 2010). Initialization is followed by tracking as the two primary components of the 

MOSSE tracking algorithm. Initialization may be accomplished in one of two ways: with a collection of 

initialization frames to establish a tracking filter, or with a single start frame on which the filter is constructed. 

Using just one initialization frame is the more difficult form, and it is the one used by OpenCV's MOSSE 

implementation. This sophisticated version also continually updates the tracking filter, unlike the simpler version 

with many startup frames. Consequently, MOSSE becomes less sensitive to differences in size, position, 

deformation, and illumination. It relies on the tracker's learning rate, or how quickly it can adjust to changing 

tracking circumstances. 

The Discriminative Correlation Filter with Channel and Spatial Reliability (CSRT)’s inclusion of both spatial and 

channel dependability makes the Discriminative Correlation Filter (DCF) algorithm more successful (Lukezic et 

al., 2017). The CSRT tracker is better to the normal DCF algorithm due to its capacity to adapt non-rectangular 

targets in line with the spatial reliability map. In practice, the spatial reliability map is used to fine-tune filter 

support for the specific tracking zone that has been selected. Each channel’s dependability is evaluated, and the 

findings are merged to create the final response map. In this manner, the significance of each channel filter is 

determined. Using simply the HOG and color histograms, the CSRT tracker is able to achieve high object tracking 

precision in a very short period of time. 

According to (Brdjanin et al., 2020; Haggui et al., 2021), the BOOSTING tracker is solely used for legacy purposes 

and as a comparison tool for other algorithms, despite being slower and less effective than other trackers. The MIL 

tracker offers much better degrees of precision than the BOOSTING tracker. However, the most deficiency of the 

MIL tracker is that it contains reporting mistakes. The KCF tracker is substantially more efficient than BOOSTING 

and MIL. The TLD tracker is plagued by a considerable number of false positives, which has led to a variety of 

implementation difficulties. The Median Flow performs an excellent job of reporting failures; however, this model 

will fail if it encounters an abrupt change in appearance, a huge leap in motion, or quick motion. 

Compared to CSRT and KCF, MOSSE’s accuracy is worse at the price of its outstanding speed. This tracker is a 

good alternative if concentrate entirely on speed is needed. Despite being significantly slower, the CSRT tracker 
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is comparable to the KCF tracker in terms of accuracy. Consequently, KCF trackers are versatile enough to be 

used in nearly any scenario within the construction industry. However, due to the dynamic nature of the 

construction industry and the unpredictability of the circumstances and events that may occur during the execution 

phase, the other seven algorithms will be integrated in the proposed framework to overcome any potential 

eventualities.  

The bottom line is that each of the previously mentioned eight trackers has some unique features and capabilities 

which are considered optimal for the construction site nature and circumstances. Therefore, to benefit from all 

these features and capabilities, this research will utilize the eighth trackers to develop a VRF with a user-friendly 

interface. Furthermore, the VRF performance and accuracy will be enhanced and confirmed as it will be suitable 

for all construction site circumstances. This VRF will be used for a practical and speedy measure of tower crane 

actual cycle time on construction sites. The VRF will analyze the recorded videos captured by a video camera 

installed on each site while enabling the user to easily choose the suitable tracker for each site. However, the VRF 

working method will be explained in detail in the following sections. 

3 METHODOLOGY 

This research proposes a VRF for measuring and calculating tower cranes’ actual cycle times on construction sites. 

The VRF will analyze the recorded videos captured by a video camera on the site by a sophisticated computer 

program to measure the tower crane’s actual cycle time that will be used in tower crane production rate 

calculations. The video camera is utilized to capture the tower crane in full motion during material loading, 

movement while laden, material unloading, and movement when empty to return to its loading position. Although 

the tower crane operates mainly in appropriate weather conditions according to safety precautions. However, the 

number of videos (more than four videos) must be captured in anticipation of any bad weather conditions (fog or 

rain) that may occur and affect the quality of the recorded videos. The VRF will efficiently track and analysis the 

cycle time of tower crane from videos. 

The VRF was developed by using the OpenCV library in the Python programming language due to analyzes of 

the captured videos. This code will enable the VRF to monitor and detect the boom of the tower crane movement 

from captured videos. The algorithm of the VRF is shown in Algorithm 1. The videos will be divided into frames, 

and the VRF will keep track of the boom throughout each frame of captured videos to record a history of where 

that boom was over time to collect more precise data. By the end of the analysis process, it will be possible to 

estimate and measure the tower crane cycle time and the number of cycles completed during the video time. 

Consequently, it will be possible to calculate the tower crane production rate through PR calculation equations. 

Additionally, the captured videos can serve as a clear and transparent evidence basis for monitoring and 

management of the tower crane activities if some of them take a longer time than typically estimated or measured. 

Algorithm 1 

Input: Video address and tracking algorithm choice (BOOSTING, MIL, 

KCF, TLD, MEDIANFLOW, GOTURN, MOSSE, or CSRT) 

Output: cycle time, fps, status, and count of movements 

Initialization: 

Select the tower crane by the user 

Select the region to monitor by the user 

Fps = none, frame skip = 0 

For all frames of the video do 

If tower crane detected then 

Draw the bounding box of the tower crane and the 

wanted region to be monitored 

Count the cycle time, fps, status, and movements 

Else 

Frame skip 

return updated fps, the cycle time, the count of movements 
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The VRF interface is shown in Figure 2 part (a). Part (b) shows the tracker number, which will be an input in the 

“Tracker Number” cell. Therefore, to run the VRF, first the user selects both the video and the tracking algorithm 

through the software application interface. Second, the user chooses the suitable tracking algorithm for his needs 

as shown in part (c). After that, the user runs the video as shown in part (d). A new interface will be available as 

shown in Figure 3. In which the user will define the region of interest for the boom of the tower crane as shown in 

part (a), and then locate the region where the boom must bypass to continue its movement as shown in part (b). 

After that, the algorithm tracks the boom of the tower crane through one of the selected trackers and displays a 

bounding box around it during its movement. The tracking process continues till the end of the video, after which 

the program will run and count cycles and time as shown in part (c). Also, to close the video, the user can press 

the “Q button” on the keyboard. 

Measuring the cycle time of a tower crane depends on four main objectives (loading time, moving time, unloading 

time, and return time). For all these, the program will calculate it and the output time will be the cycle time that it 

took the tower crane to transport the package. Also, evaluating the production rate of tower cranes, which involves 

numerous variables, can be a difficult operation, and it can be described as a measurement of the machine’s output 

(i.e., kg/hr). (Šopić et al., 2021) provide a comparable formula (Eq. 1) for the production rate, where the production 

rate measure (PR) is the ratio of production quantity (PQ) and time spent on production (TP). The mentioned 

formula (Eq. 1) and unit measure (kg/hr) are proposed to be used after calculating the cycle time by the (VRF). 

 𝑃𝑅 =  
𝑃𝑄

𝑇𝑃
 Eq. 1 

 
Figure 2: The VRF interface 

 

Figure 3: The steps of assigning the tower crane and the region to monitor 
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4 CASE STUDIES 

4.1 Description of the Case Studies 

The first case study was a construction site located in Kafr Al-Sheikh, Egypt, where tower crane operations were 

performed at the time of recording. Five short videos of tower cranes were recorded during work. At the observed 

construction site, twenty-nine tower cranes were used for the construction work. One crane was then selected to 

be focused on. This crane was in good shape and well maintained. The crane was 51 meters in height and could 

lift up to a maximum load of 8 tons, and the trolley had a range of 65 meters. Moreover, the second case study was 

on a construction site located in the administrative capital of Egypt. The project is a construction consisting of two 

bedrooms, ground floor, and eight floors, which is a small project. This construction was served by one tower 

crane of the type “Young Mao stt139.” This tower crane can lift a load of up to six tons at a height of twenty 

meters. The tower crane was built 48 meters high, the trolley was 60 meters long, and the distance the trolley could 

move was 55 meters. A conclusion for the tower crane specifications for both case studies is shown in Table 1. 

Table 1: The tower cranes specifications of the both case studies 

Term Case study (1) Case study (2) 

Number of tower cranes 1 1 

Lift up load (ton) 8 6 

Hight (meters) 51 48 

Boom length (meters) 65 60 

4.2 Data Collection and Analysis of the Case Studies 

For the first case study, five videos were captured during the execution of the project. A manual calculation for 

each video was calculated by a stop watch. The first video after using the stop watch resulted in 256 sec. Moreover, 

the other four videos were calculated with the same concept. Only one of the two cranes was used in the calculation. 

On the other hand, the automated tool which is used by the proposed model VRF, KCF algorithm, was used in the 

five captured videos. The calculation of the cycle time was calculated for each video by the VRF. The results of 

the manual calculation and the automated calculation are shown in Table 2, where original time means the time 

resulting from the use of the stopwatch, and estimation time means the time produced after the videos are entered 

into the program to analyze and determine the time of one cycle. The sensor’s rated load was 2,000 kg, and the 

production rate was 14,458 kg/hr. when Eq. 1 was used by hand and 13,900 kg/hr. when the VRF was used. 

Table 2: The compression between the manual method and the tool to detect the cycle time of five videos for 

each case study 

Term 
Case Study (1) Case Study (2) 

Original Estimation Original Estimation 

Cycle time video 1 256 sec 232 sec 255 246 

Cycle time video 2 422 sec 411 sec 264 209 

Cycle time video 3 568 sec 731 sec 252 240 

Cycle time video 4 387 sec 380 sec 254 247 

Cycle time video 5 859 sec 836 sec 253 221 

Avg. cycle time 498 sec 518 sec 255 sec 232 sec 

Sum cycle time 2492 sec 2590 sec 1278 1163 

Production rate 14,458 kg/hr. 13,900 kg/hr. 7,042 kg/hr. 7,739 kg/hr. 
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The second case study included the recording of an additional five videos documenting the execution of the work 

during the day. In both the manual calculation and the automated calculation produced by the proposed VRF, the 

same underlying concepts were used. Table 2 displays the results of both the manual and computerized calculations 

that were performed. The sensor had a maximum recommended load capacity of five hundred kilograms. The 

production rate was determined by dividing the total amount transferred by the typical cycle time; the production 

rate that was obtained through manual calculation was 7042 and the automated calculation was 7739 kg/hr. In 

addition, to calculate the accuracy of the proposed VRF, two evaluation methods were adopted, which are the 

mean absolute percentage error (MAPE) as shown in Eq. 2 and MAPE in Eq. 3. Based on calculations, it appeared 

that the result of the accuracy of the program ranged from ninety percent to ninety-five percent. The results for the 

evaluation of the model are shown in Table 3. 

𝐴𝑃𝐸 =  
|𝐴𝑐𝑡𝑢𝑎𝑙 − 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡|

|Actual|
 Eq. 2 

𝑀𝐴𝑃𝐸 =  
1

𝑆𝑎𝑚𝑝𝑙𝑒 𝑆𝑖𝑧𝑒
∗  ∑ 𝐴𝑃𝐸

𝑛

𝑡=1

∗ 100 Eq. 3 

Table 3 - The absolute percentage error (APE), MAPE, and the Median APE for the ten detected videos 

term Case Study (1)  Case Study (2)  

Cycle time video 1 APE 9,38 3.53 

Cycle time video 2 APE 2.61 20.83 

Cycle time video 3 APE 28.70 4.76 

Cycle time video 4 APE 1.81 2.76 

Cycle time video 5 APE 2.68 12.65 

MAPE 9.03 8.91 

Accuracy of MAPE 90.97% 90.27% 

Median APE 2.61 3.53 

Accuracy of median APE 97.32% 95.24% 

5 CONCLUSION 

Time and resources are required to collect the information necessary for monitoring the performance of the 

equipment, especially tower cranes. In large construction projects, it is necessary to automate the process of 

collecting data on tower crane activities, evaluating, and analyzing their productivity, and monitoring their 

performance. Therefore, the VRF for automating the calculation of cycle time was developed based on the 

OpenCV library, which adopts eight algorithms to track and monitor the tower crane’s cycle time. The VRF was 

developed by adopting eight single tracking detection free algorithms. To evaluate the VRF, two case studies were 

used to evaluate the proposed framework in Egypt; Kafr El-Sheikh and the administrative capital. Five captured 

videos for each case study to evaluate the model. The manual method was conducted by using a stop watch for 

each video to calculate the cycle time for the case study’s tower crane. Then the proposed VRF was used to 

calculate the cycle time of the tower crane automatically. After analysis of the videos and calculate the production 

rates of the two case studies, the proposed model was achieved accuracy 97% and 95%, respectively. 
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