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SUMMARY: The development of software tools is a collaborative process involving both the domain experts and 

the software engineers. This requires efficient communication considering different expertise and perspectives. 

Additionally, the two groups utilize language and communication tools in disparate ways. This, in turn, may lead 

to hidden misunderstandings in the requirement analysis phase and potentially result in implementation problems 

later on, that is difficult and costly to correct. In this paper, we demonstrate the above mentioned challenge via a 

use case from the tunneling domain. In particular, during the requirement analysis phase for a software capable 

of handling the data model of the subsoil. The domain experts in the field can best express the complexity of their 

domain by describing its artifacts, which in most cases are incomprehensible to the software engineers. We outline 

a method that interleaves requirement analysis and software modeling to enable an iterative increase of the 

accuracy and completeness of the information extracted from those artifacts and integrated into a flexible software 

model, which can produce testable software code automatically. Furthermore, we present a prototypical 

implementation of our method and a preliminary evaluation of the approach. 
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1. INTRODUCTION 

In spite of the prominence of digital modelling tools in the Architecture, Engineering and Construction (AEC) 

industry for many decades, the final output of the design, construction and operation phases remains predominantly 

analogue and paper-based (Barbosa et al., 2017). Nevertheless, similar to the stationary industry, the AEC industry 

is transitioning to a completely digital environment as digital tools become more available not only for design but 

also for construction and operation as well as the projects themselves become more complex. The resulting 

increased adoption of Building Information Modelling (BIM) (Kaewunruen et al., 2018) has highlighted the critical 

role communication plays, not just between various domains within the AEC industry, but also between those and 

the Software Engineering (SE) domain (Tallgren et al., 2020). On the one hand, it is vital that geologists, civil, 

structural and geotechnical engineers, and contractors communicate in the language of their domain. On the other 

hand, it is just as important that the software engineers developing the tools for BIM understand the requirements 

of those domains, i.e., have them translated into their own domain language. For example, (Tallgren et al., 2020) 

and (Arayici et al., 2006) show that shared understanding is a major motivating factor for participation in the 

development process of a Computer Integrated Construction (CIC) software. 

Modeling at various levels of abstraction is a well-established design step in the software development process. It 

enables software engineers to structure software into platform-independent constituent modules prior to coding 

(OMG, 2022). The communication between domain experts (or, in this context, users of software) and software 

engineers in this design step lays the foundation of the software functionality, which should ideally be well 

understood and agreed on by all stakeholders (Parsanezhad et al., 2016). However, there is a significant disparity 

in the communication tools employed by both groups (Arayici et al., 2006). While domain experts from the AEC 

industry use natural language and spreadsheets to express their domain requirements, software engineers rely on 

formal languages, such as the Universal Modelling Language (UML). Using such a formal well-defined language 

avoids any ambiguity and establishes structure, both in terms of data and function. 

Spreadsheet tools, such as Excel™, are commonly used in the AEC industry for defining requirements, for design, 

for monitoring operations (David et al., 2017), and even as a database. This is largely due to their ability to store 

and operate on large amounts of data in a two-dimensional matrix structure. For this reason, most domain experts 

are proficient in using spreadsheets, including for defining requirements for software design. Such requirement 

definitions contain the standardized terms of the domain. For example, expressing the compressive strength of a 

material in terms of cohesion and friction angle enables unambiguous communication within the domain. 

However, this type of standardization of terms is of no help to the software engineer, who has to develop software 

expressing the semantics of such domain-specific standardized terms. 

All of this makes sense, since the AEC industry is quite knowledge-intensive, and requires the capture of both 

explicit and tacit knowledge (Zahedi et al., 2022). In order to illustrate the challenge when interleaving both worlds 

in more detail, we present the following use case from the geotechnics domain. 

1.1 Motivating Example 

Multiple models produced in the geotechnics domain contain interpretations based on tests, observations, extant 

surveys, maps, etc. (German Tunnelling Committee (ITA-AITES), 2022b). Those interpretations are expressed as 

distributions of various properties along the tunnel alignment or, in the case of larger underground structures, 

within a three-dimensional volume. The properties may include rock type and quality, location and orientation of 

contact surfaces, etc., grouped into categories, such as geology, hydrogeology, geotechnics, geochemistry, and 

others. Fig. 1 makes it evident that these categories are concurrent, i.e. each part of the subsoil is categorized 

multiple times according to different aspects. For example, the same location along the tunnel alignment (the red 

mark in Fig. 1) can be categorized simultaneously as G3, H1, and GT1. This is intuitively clear to the domain 

experts due to the experience and knowledge they possess: factual ("know what"), operational ("know-how"), 

normative ("know why"), etc. (Häußler and Borrmann, 2021). However, in the context of software development, 

the following question arises: how to translate that knowledge into requirements of the software engineering 

domain? 
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FIG. 1: Some of the different aspects of subsoil: geology (a), hydrogeology (b), and geotechnics (c). Each aspect 

produces a different segmentation of the longitudinal section along the tunnel alignment. 

The domain experts have to articulate their needs, i.e., make their tacit understanding of the knowledge structure 

in their domain explicit. In Fig. 2, there is a small (intentionally blurred) excerpt of one such attempt at 

communication via spreadsheets. The full document contains about ten times the amount of information shown in 

the image. It is evident that, without knowledge of formal languages needed for Software Requirements 

Engineering (SRE), it is a difficult and time-consuming task to locate that structure in the artifacts produced by 

the domain, e.g., design drawings, geological long sections, etc. What’s more, such artifacts contain information, 

not the knowledge it underpins (Zahedi et al., 2022). To convey the knowledge to the software engineering team 

via requirements without distortion or loss is a cumbersome and complex task. The approach described in this 

work aims to provide a standardized workflow that leads to the systematic handling of this task. 

 

FIG. 2: An example of a data structure definition by domain experts in geotechnics as a spreadsheet. 

The rest of this work is structured as follows. In section 2, we give an overview of the SRE process with emphasis 

on the early platform-independent stages. In section 3, we describe the methods we apply to accommodate the 

needs of both domain experts and software engineers. Section 4 examines comparable approaches. Section 5 

provides a critical view of our approach and potential venues for its further development. Section 6 concludes this 

work. 

2. PRELIMINARIES 

In this section, we present the fundamentals of the early stages of software development to illustrate the critical 

role efficient communication, including translation, between software engineers and future software users (i.e., 

domain experts) plays in the process. 

2.1 Capturing Domain Knowledge 

In 2009 (Christiansson et al., 2009) identified the missing ontologies on multiple levels, both abstract and specific, 

as a major drawback in the development of tools for the AEC industry. Since then, considerable effort has been 

invested in that field. Some of the international standardization initiatives in the AEC domains, which usually start 

with the definition of a dedicated domain ontology, include the Industry Foundation Classes (IFC) 

(buildingSMART, 2022), the DAUB recommendation (German Tunnelling Committee (ITA-AITES), 2022b), the 

multiple Open Geospatial Consortium (OGC) standards, available at https://www.ogc.org/docs/is, and many 

national and regional guidelines. 

These standards attempt to capture domain knowledge, a process which typically utilizes requirements engineering 

techniques. In essence, it is an elaborate translation workflow from the language of the domain experts into the 

language of software engineers. It is exactly this translation process that we focus on in this work. 
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2.2 Software Requirement Engineering 

There is no universally agreed-on terminology for the phases of software development (Jaffe, 2021). Nevertheless, 

Fig. 3 depicts one of the more common ones, which we will use to situate the SRE process. It produces the 

requirement specification and is one of the first and most critical steps in software development. It starts with the 

conceptual phase, which involves articulating user expectations and researching available technologies (see the 

top left part of the curve in Fig. 3). User expectations can be formulated as a user story, e.g., a description in a 

Natural Language (NL) followed by a conversation and confirmation tests (Cohn, 2004). User expectations can 

also be expressed in a formal language, or any other form, e.g., as a spreadsheet. 

 

FIG. 3: The relationship between the adaptability of a software solution to its level of completion, based on the 

cone of uncertainty (Boehm, 2001).The shaded part underneath the curve indicates the extents of the SRE process. 

2.2.1 Definitions 

The SRE process is iterative and fuzzy (Parsanezhad et al., 2016, Jaffe, 2021). Despite this, there are some key 

quality assurance milestones whose definitions we will list here. Just as the DIN EN ISO 9000-2015-11 

(https://www.beuth.de/de/norm/din-en-iso-9000/235671064) defines the terms "quality" and "requirement" in the 

wider context of quality management systems (Häußler et al., 2020), so does the ISO/IEC/IEEE 29148:2018 

(ISO/IEC, 2018) in the context of software engineering. 

• 3.1.19 requirement “statement which translates or expresses a need and its associated constraints 

and conditions”; 

• 3.1.20 requirements elicitation “use of systematic techniques, such as prototyping and structured 

surveys, to proactively identify and document customer and end user needs”; 

• 3.1.25 requirements validation “confirmation that requirements (individually and as a set) define 

the right system as intended by the stakeholders”; 

• 3.1.26 requirements verification “confirmation by examination that requirements (individually an 

as a set) are well-formed”. 

(ISO/IEC, 2018) goes on to list some of the criteria of a well-formed requirement: (i) it solves a particular problem 

or achieves a specific objective, (ii) it is qualified by measurable conditions, (iii) it can be subject to constraints, 

(iv) it is always about the system, never about the user, and (v) it is verifiable. 

Depending on the domain, additional norms may have to be translated into requirements, e.g., the ISO 26262 

(https://www.iso.org/obp/ui/}iso:std:iso:26262:-1:ed-2:v1:en) for critical systems, such as electronic components 

in vehicles, or the DO-178C Software Considerations in Airborne Systems and Equipment Certification in avionics 

(Jaffe, 2021). As we can see, translation plays a central role in the SRE process. 
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2.2.2 Best Practices and Issues 

According to (Arayici et al., 2006), in addition to the recommendations from the previous section, best practices 

in SRE include as follows: good user involvement, allocation of 15 to 30% of project resources to SRE, providing 

specification templates and examples, developing models and prototypes, and maintaining traceability between 

requirements and solutions. 

When these are not followed, multiple issues can arise. Failing to involve the users to a sufficient degree or to 

consider their feedback properly leads to misunderstanding, misinterpretation of the requirements, incompleteness, 

and inconsistency (Arayici et al., 2006, Häußler and Borrmann, 2021). Missing specification templates and 

examples may lead to hidden divergence of definitions, e.g., of fundamental terms like "constraint" or "objective", 

even "requirement" (Parsanezhad et al., 2016, Dalpiaz et al., 2018). Not building models or prototypes reduces the 

user reviews to observations after the deployment phase (last in Figure 3), two thirds of which could be effectively 

useless to the software developers (Panichella and Ruiz, 2020). Even the traceability between requirements and 

solutions can become difficult in cases of inconsistently classified requirement types in guidelines, e.g., high-level 

and low-level safety requirements in avionics (Jaffe, 2021). Finally, even the scope and scale of the axes in Fig. 3 

could shift dramatically, as both starting and stopping point of the software development may differ, as well as the 

needed level of abstraction of the requirements and the number of refinement steps, which depend on the project 

phase (Jaffe, 2021) and the specific domain (Parsanezhad et al., 2016). 

All those shortcomings affect the time and cost aspects of any software development project (Osama et al., 2021). 

For example, in middleware projects, about 50% of defects and about 80% of rework can be traced back to a poor 

requirement specification (Uddagiri et al., 2020). In other words, the quality of the requirement specification has 

a massive influence on the software development process in its most adaptable, and therefore most crucial, phases. 

2.2.3 Location and Duration of Software Requirements Engineering 

As Fig. 3 shows, the degree of adaptability of developing software is the highest right at the beginning, during the 

first four steps, when there are still a large number of open decisions. Even between articulating user expectations 

and the formalization of those as a requirement specification, there is a sharp drop in adaptability. However, as 

was discussed in the previous section, without a working software model to test user assumptions, and without 

good traceability, or a translation workflow, it is difficult to produce a full set of requirements. 

On the other hand, if the SRE process extends over the phases of software structure definition and design, user 

feedback on the software models can help revise the requirements iteratively (Parsanezhad et al., 2016) up until 

the production of source code and even beyond since software models are capable of automatically generating 

code (Brambilla et al., 2017). It is exactly this extension of the time available for adapting the requirement 

specification which we aim to achieve with our approach. 

2.2.4 Formulating Requirements 

Requirements can be formulated in a multitude of ways. NL formulations are in wide use, but even those are 

subject to formal requirements (ISO/IEC, 2018). User stories, for example, could be evaluated for proper syntax, 

sound semantics (e.g., problem-oriented, unambiguous, and conflict-free), and pragmatics (e.g., uniqueness, 

independence, and completeness) (Dalpiaz and Brinkkemper, 2018). In general, any requirement can be expressed 

as a user story, e.g. the design process in any of the AEC domains (Zahedi et al., 2022). 

In addition, requirements can be formulated in a multitude of formal languages. Use case diagrams, which are part 

of the Universal Modeling Language (UML) (see https://www.uml.org/), can capture user interactions with a 

system, but not necessarily the interactions within the system (Arayici et al., 2006). The Business Process Model 

and Notation (BPMN) (see https://www.bpmn.org/) is often used as a tool for the definition of the Information 

Delivery Manual in the AEC industry (Häußler et al., 2020) and can be applied as formal notation in SRE as well. 

Automated quality assurance methods can be applied much easier to formal requirement formulations. For critical 

systems, such as electronic components in vehicles, ISO 26262 even mandates the application of formal methods 

for software quality assurance, which necessitates the formulation of formal requirements only (Osama et al., 

2021). 

The automated quality checking of NL requirements is more challenging and expensive (Dietsch et al., 2020). In 

addition, such requirements do not provide an automated path towards simulating functionality, which delays the 
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validation phase and could incur unnecessary implementation effort and cost. Various pipelines may include 

required phrase matching, sentence structure compliance, relationships between concepts, and ambiguity checks 

(Osama et al., 2021), or text mining techniques for the extraction of implied meaning (Saxena and Chakraborty, 

2014). However, formal confirmation tests are seldom integrated in the process correctly (Cohn, 2004). For this 

reason, there are multiple methods for the formalization of NL requirements, which we will present in more detail 

in section 4. 

In general, NL requirement specifications enjoy considerable popularity due to their apparently informal style. 

However, from the point of view of quality assurance, this can be misleading. As (Lucassen et al., 2015) point out, 

there are multiple criteria NL requirements have to fulfill to be considered well-formed - syntactic, semantic, and 

pragmatic. We will not list all of them here. Instead, we will concentrate on our motivating example and the criteria 

relevant to the requirements we need to elicit from geotechnics domain experts. 

2.3 Communication Support Requirements: Motivating Example Part 2 

For this reason, we must further specify the type of software we aim to design. In section 1.1, we spoke about 

categorizing the subsoil and connecting observations and interpretations in the geotechnics domain, which suggests 

information management and exchange support, concerns common to the entire AEC industry. Support for 

communication workflows is typically provided by middleware. However, many of the tools developed to facilitate 

pre-construction communication do not enjoy wide user acceptance because they require a change in the already 

established domain and cross-domain workflows. This leads to pronounced user resistance (Tallgren et al., 2020), 

which is one of the reasons for the high activity in international standardization we mentioned in section 2.1. The 

aim of this standardization is the development of data models suitable for communication support. Naturally, the 

first step in any such process is the requirements elicitation from domain experts. What makes the process 

particularly challenging, in this case, is the varied background of those experts - they come from different 

countries, have worked under different guidelines and conditions, they may be involved in various branches of 

industry, governance, or research. For this reason, the use case we aim to address with our approach is the SRE 

process during the development of a data model suitable for communication support, specifically within the 

geotechnics domain. We will discuss the applicability of our approach to other domains in the AEC industry in 

section 5. 

If we were to attempt the typical NL requirement specification, according to (Lucassen et al., 2015), we would 

have to develop a strategy for dealing with, at the very least, the following semantic features: 

• (F1) Ambiguity. For example, “is a lithological unit” can mean “is of type lithological unit” or “is part 

of a lithological unit” or “is a specialization of lithological unit” due to the ambiguity of the word "is" 

(Kühne, 2006). On the other hand, synonyms (Dalpiaz et al., 2018) or homonyms can also lead to 

ambiguity. For example, “material” might mean “any substance found in a borehole” for the domain 

expert, but it can easily be interpreted as a “man-made material”, such as concrete, by the software 

engineer as this is the more common usage of the term in the AEC industry. For a full taxonomy of 

ambiguity, see also (Berry and Kamsties, 2004); 

• (F2) Technical jargon. Avoiding technical jargon of any kind is one of the central premises of the 

user story (Cohn, 2004). However, it is not possible to achieve it in a very specialized field, such as 

geotechnics; 

• (F3) Lack of conceptual soundness. For example, a requirement for a particular specialized view of 

the data when designing a data model is not sound, as it addresses a feature that cannot be covered by 

a data model, but is customarily delegated to the user interface; 

• (F4) Overlaps or contradictions. A NL requirement specification has no safeguards against semantic 

overlap or conflict. For example, the same concern could be addressed by multiple (and possibly 

contradictory) requirements with no formal mechanism in place to detect the overlap or conflict 

(Dalpiaz et al., 2018); 

• (F5) Non-problem-oriented statements. Requirements should act as translations of functional 

concepts into solution concepts (Ye et al., 2009). If one or both are unclear or missing, the requirement 

is not well-formed (ISO/IEC, 2018). For example, "Chainage shall be associated with a tunneling class" 

or "It should be possible to create tendering documents" are not well-formed requirements, since they 

both seem to contain only functional concepts. However, "Chainage shall be associated with a 
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tunneling class to enable the creation of tendering documents." contains both and is, therefore, a well-

formed requirement. It is of note that there is a difference between a solution concept and an 

implementation instruction. If the above mentioned requirement was as follows, "Chainage shall be 

associated with a tunneling class to enable the creation of tendering documents in software X.", it again 

would not be considered well-formed. 

Furthermore, the following pragmatic aspects should be considered (Lucassen et al., 2015): 

• (F6) Validatability. The specification should not contain requirements whose fulfillment cannot be 

measured (ISO/IEC, 2018). For example, in our case, a requirement of the user interface has no place 

in the specification of a data model; 

• (F7) Uniformity. All requirements should conform to a pre-defined template and cover a scope of 

similar size; 

• (F8) Uniqueness. Duplicate requirements should be removed; 

• (F9) Explicit Dependencies. If there is a tacit dependency between requirements it should be made 

explicit. Otherwise it cannot be considered or validated; 

• (F10) Completeness. The requirement specification should cover 100% of the software functionality. 

In practice, completeness is achievable only over multiple iterations. 

In summary, we want to enable domain experts and software engineers to design a data model cooperatively by 

taking the above-listed aspects into account. In other words, we want to facilitate a high-quality translation process, 

not just between different languages, but between different perspectives, different prioritization hierarchies, and 

even between different work rhythms. This is, obviously, a huge and error-prone task to undertake, which is why 

we aim to provide as much flexibility as possible without sacrificing precision in places where it is necessary. A 

very good fit for these requirements is software modeling as it allows us to vary the level of abstraction fairly 

independently across the model, but also to generate highly specialized code, if needed. Here we will give a brief 

outline of the concept of modeling, specifically modeling data, information, and knowledge. 

2.4 Modeling 

The term modeling will be used extensively in this work, since is applies to multiple aspects of digitalization, both 

from the domain experts’ and the software engineers’ point of view. For the domain expert (e.g., in geotechnics) 

in our use case, modeling means building an abstract formal representation of the relevant domain concepts 

(Kühne, 2006), including defining the domain taxonomy and the relationships between its elements. In addition, 

this can include the formal representation of relevant use cases, processes, data exchange workflows, etc. In 

software development, modeling means building an abstract platform-independent representation of the software 

based on the requirement analysis and specification. These two types of modeling often run in parallel, especially 

in the earliest stages of the software design. 

In section 2.1 we showed that a standard, i.e., a domain model, has the task of capturing domain knowledge. A 

standard has, by definition, a certain degree of universality, even if it is within a single domain, which precludes 

it from representing a single person’s skill, understanding, or opinion. However, within the group of domain 

experts developing the standard some common understanding could emerge. Furthermore, effective 

communication could facilitate reflection and synthesis, whose results can be captured by the developing model. 

Since knowledge is a property of people (Rowley, 2007), the model cannot capture it directly, but the modeling 

process can - by (formally) guiding some of the processes that convert information into knowledge. This is a 

significant aspect of our approach. 

2.5 Software Modeling Approaches 

As we already established, the development of a software starts with eliciting requirements. The waterfall method 

necessitates a complete requirement specification before implementation even starts (Royce, 1970, Boehm, 1987). 

In a complex field with multiple domains involved, such as the AEC industry, it is unrealistic to expect all 

requirements to emerge before the users have had the opportunity to test the software and, thus, test their 

assumptions about their own domain (Flewelling, 2018). For this reason, the agile method is much more suitable 

for our approach. In it, requirement elicitation can be initiated and the resulting specification gradually refined 

with each development cycle, while continuously incorporating user feedback into the requirement set. 
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The implementation itself does not start with producing code. It starts with software models defined in a suitable 

formal language. Models can play the role of drafts, guidelines or programs (Combemale et al., 2017) and have 

some major advantages over code. They are platform-independent and can be used to generate code automatically 

in any programming language (Brambilla et al., 2017). Functionality and conformity to the requirements can be 

tested automatically. They are particularly well-suited for Rapid Application Development (RAD) in the agile 

method. In summary, software models put the focus not on a particular data item or process, but on the adaptivity 

of software development, which is exactly the aspect where communication and translation between domain 

experts and software engineers play the largest role. 

One of the most widely used modelling languages in software engineering is UML. Any type of UML model in 

the context of the agile method has the ability to facilitate communication between domain experts and software 

engineers by producing an easily adaptable formal schema of the way information is structured. From the 

perspective of domain experts, its ability to produce compact visualizations of the discussed schema has a 

significant advantage over text-based approaches. In general, formal languages with a graphical concrete syntax 

have wider acceptance in the AEC industry, e.g. the Grasshopper (see https://www.grasshopper3d.com/) plug-in 

for Rhinoceros 3D (see https://www.rhino3d.com/), Dynamo Sandbox (see https://dynamobim.org/download/) for 

Autodesk REVIT (see https://www.autodesk.de/products/revit/overview?term=1-YEARŹtab=subscription) and 

Marionette (see https://www.computerworks.de/produkte/vectorworks/vectorworksarchitektur/marionette.html) 

for Vectorworks (see https://www.vectorworks.net/en-GB/2023?igeo=true) (Preidel and Borrmann, 2016). What 

such languages have in common is a graph which carries information not only by means of labelling and 

connectivity, but also through the use of color and shape. Furthermore, a graph can represent not only entities and 

relationships (as in a database), but a procedural algorithm (Ilčík et al., 2015), a workflow, a transformation both 

in software modeling (Brambilla et al., 2017) and in engineering (Kolbeck et al., 2022), a state transition, and 

many more. Modelling requirements directly as graphs, or translating them to graphs, has the potential to reduce 

the amount of tacit assumptions present in NL formulations by explicitly identifying elements and relationships 

that are normally regarded as “intuition” or “expert knowledge”. Of particular relevance to our approach is that 

graph rewriting is well suited to depicting workflows in problem solving. Such graphs and the rules that operate 

on them have been shown to help in the formalization of domain knowledge (Kolbeck et al., 2022), which is 

exactly what we want to achieve. 

However, graphs are limited by the amount of visual clutter they produce when sufficiently large (Dalpiaz et al., 

2018). This necessitates careful modularization and separation of concerns. Hierarchical graphs, for example, such 

as trees, port graphs, or hierarchical hypergraphs, can be used since they can be applied at both very coarse and 

very fine levels (Kolbeck et al., 2022). 

Finally, software modelling includes automated conformity checks. Hard-coding design standards or guidelines 

for compliance checking in the engineering domains has proven to be laborious for the software engineer and to 

lower user acceptance (Häußler et al., 2020, Preidel and Borrmann, 2016). Conformity checks depicted, for 

example, as graph matching rules that are fully editable by domain experts could alleviate the situation during the 

SRE process (Kolbeck et al., 2022). 

3. APPROACH 

In this section, we present our approach to interleaving requirement analysis and software modelling accompanied 

by continuous automated translation between domain experts and software engineers. We will show the resulting 

benefits by employing it to determine the requirements on the data structure for holding subsoil information in our 

motivating example. 

Fig. 4 and Fig. 6 show two of many possible data structures for modeling the subsoil expressed as spreadsheets. 

The 2022 DAUB recommendation (German Tunnelling Committee (ITA-AITES), 2022b) contains the concept of 

an element hierarchy (see the top row in the table in Fig. 4): A Domain model containing Domain submodels, 

which in turn contain Object groups, which consist of Objects, which may contain Partial objects (not shown in 

the spreadsheet). Applied to the subsoil it produces a parallel data structure for geology, hydrogeology, and 

geotechnics by declaring those as Domain sub-models (German Tunnelling Committee (ITA-AITES), 2022b), 

which can be subdivided down to Geological, Hydrogeological and Geotechnical Units, respectively, on the 

Object level (see the last column in Fig. 4). 
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FIG. 4: A data model extracted from the DAUB recommendation 2022 (German Tunnelling Committee (ITA-

AITES), 2022b). 

The standards for geoscience and water observation developed by the OGC propose the data structure shown in 

Fig. 5. However, when referenced by domain experts, a spreadsheet representation, such as in Fig. 6, is more 

widely used, due to convenience.  

 

FIG. 5: An excerpt of the UML class diagrams for GeoSciML and WaterML defined by OGC (see 

https://www.ogc.org/docs/is). 

If we compare the spreadsheets in Fig. 4 and Fig. 6, they show not just different conceptual models, but also a 

different view of each of those models. Fig. 4 displays the containment structure of the conceptual model, whereas 

Fig. 6 - the type structure. For example, if we compare the relationship between the elements in columns C and D 

in each table, in the case of Fig. 4, we have a Subsoil Model “containing” a Geological Model, a Hydrogeological 

Model, a Geotechnics Model, and a Typical Sections Model. In the case of Fig. 6, we have a GeologicUnit not 
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containing, but being the “generalization of”, HydroGeoUnit. In the UML diagram in Fig. 5 the difference between 

the containment and the generalization relationship is clear due to the UML syntax. On the one hand, GeologicUnit 

contains CompositionPart, and on the other, it is the generalization of HydroGeoUnit, which is the generalization 

of AquiferUnit and Basin. 

It is to be noted that the excerpts of the shown models do not contain information about all the relationships 

between the various data elements. We leave this out for brevity. However, such considerations are of vital 

importance in practice and contribute significantly to the complexity of any data model. The question we have to 

answer is, how can all these different modeling possibilities be communicated between domain experts and 

software engineers? 

 

FIG. 6: A spreadsheet representation of the data model extracted from the GeoSciML and WaterML standards. 

In section 2.2 we outlined the different degrees of formalisation a user requirement can adopt. On the one hand, 

even synonyms could be misleading, since, in most cases, they represent similar but not identical concepts (Dalpiaz 

et al., 2018), which speaks for a high degree of formalisation. On the other hand, there is a danger that this might 

have a negative effect on flexibility (Parsanezhad et al., 2016) and impede communication and domain expert 

involvement, which speaks for formalisation in a familiar environment for the domain expert, e.g. spreadsheets 

(David et al., 2017). According to the investigation presented by (Uddagiri et al., 2020), spreadsheet templates are 

suitable for middleware projects with up to 100 interfaces, which should suit our motivating example. Furthermore, 

the report on the standardisation activities at buildingSmart International (bSI) on the projects IFC-Road and IFC-

Rail demonstrates a successful utilization of Excel as a tool for gathering "data requirements" (Borrmann et al., 

2020). This gives us our means of communication. 

 

FIG. 7: A first draft of the template to be used by the domain experts. Levels are interpreted as associations. 
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FIG. 8: The same draft of the template as in Fig. 7. Levels are interpreted as both associations and containers. 

In addition, in order for this communication to be effective, we have to establish a formally well-defined workflow 

including both sides of the conversation (Tallgren et al., 2020, Panichella and Ruiz, 2020), or, in other words, a 

fast and accurate translation. As we noted in section 2.4, it is the process of modelling and communication that has 

the potential to extract not merely information, but knowledge. What’s more, a well-structured workflow has been 

shown to improve user acceptance even in SRE (Dietsch et al., 2020). Fig. 9 shows such a workflow as a UML 

activity diagram. Several actions are not part of the typical software development process. For example, Action 1 

and Action 2 involve the production of a spreadsheet specification template by the software engineer (see Fig. 7) 

and its testing, with a focus on usability, by the domain expert, respectively. Action 3 allows the domain experts 

to express their domain knowledge in a familiar environment, i.e. the spreadsheet, and receive instant feedback in 

the form of an automatically translated UML class diagram (see Action 4a) that provides a graphical representation 

of that knowledge. More importantly, this feedback provides the software engineers with a software model that 

can be used as is for requirement testing (see Action 4b). 

These steps and the automated translation between modeling languages encourage extensive communication 

between the domain expert and software engineer at the very start of the project, which allows problems and 

misunderstandings to be identified at a time when their correction costs the least amount of effort (Cohn, 2004). 

In Fig. 9 this is expressed in the activity flows encompassing all actions from Action 1 to the transition to Action 

5. Here, both the software engineers and the domain experts have the opportunity to test different aspects of the 

specification via a preliminary software model, each in their preferred language. If all tests are successful, we can 

regard the requirement specification as complete and can proceed with Action 5, which includes the production of 

a (higher resolution) software model. Otherwise, we return to Action 3 for another iteration of specification 

refinements, or even to Acton 1 for adaptation of the specification template. This adaptation of the template is 

effectively a refinement of the translation process, in our case, between a spreadsheet and UML. It is of note that 

Action 3: define or update specification, and therefore Acton 1 as well, can be revisited multiple times until the 

detailed software model is complete, similar to the process described in (Cohn, 2004). 

3.1 Application to the Motivating Example 

In this section we visit each action depicted in the diagram in Fig. 9 as it applies to our motivating example. 

Action 1: propose or update specification template. The software engineers create a spreadsheet template for 

the specification that could, for example, allow for a listing of data elements as shown in the table excerpts in Fig. 

7. This template provides a structuring mechanism through the use of levels. However, there is an inherent 

ambiguity at those levels. Is an element on Level 1, for example, the “parent”, the “container” or the “type” of 

elements on Level 2? 

Action 2: test specification template. The domain experts produce a specification for the data structure using this 

template. If the software engineers interpret the levels in the template as "containers" they could say that Tunnel 

Segment contains a Geotechnical Unit, a Geological Unit and a Hydrogeological Unit. From the domain experts’ 

perspective, this interpretation is incorrect. In reality, if we take the example of the DAUB recommendation in 

Fig. 4, the levels should be interpreted as simple associations, in the sense that there is a connection from Tunnel 

Segment to all elements on Level 2. 
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FIG. 9: A UML activity diagram depicting the synchronization of software and domain modelling performed by 

the software engineer and the domain expert. The thicker lines indicate automated translation. 
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Transition to Action 3. Following Action 2 we have to decide if the template offers adequate translation support 

or not. If the intended goal of the domain experts is to work with primarily one type of relationship, the template 

in Fig. 7 would be sufficient as long as it is used consistently. If, on the other hand, the domain experts need 

different types of relationships, the template has to either offer a dedicated sheet per type of relationship, or each 

sheet has to allow for multiple types. An example of the potential confusion is shown in Fig. 8, where two 

interpretations of the levels are mixed in the same sheet. On the one hand, the Tunnel Segment is associated with 

a Geotechnical Unit, on the other hand, the Geotechnical Unit contains a Geological Unit and a Hydrogeotechnical 

Unit. Only NLP and expensive consistency checks (Elrakaiby et al., 2018) coupled with domain knowledge might 

be able to detect this. 

Action 3: define or update specification. Here the domain experts define the actual specification by applying the 

template, e.g. filling in the spreadsheet. 

Action 4a: produce (partial) type model based on use case. After the first version of the specification has been 

produced by the domain experts, the software engineers can create a first (partial) software model. In our case, this 

happens as an automated translation via our tool Excel2UML, i.e. without the involvement of software engineers. 

At this stage, their role can be reduced to reviewing the resulting UML model. 

Action 4b: assess the type model on use cases. This model can be simultaneously assessed by the domain experts 

themselves as the graphical representation of the data structure makes it easier to read, comprehend and discuss 

(Tallgren et al., 2020). In addition, our tool allows the model to be instantiated here automatically, and the resulting 

specific instance structures can be compared with the user expectations, thereby providing nearly instant feedback. 

For example, here the domain engineers can evaluate the types of structural dependencies between geology, 

hydrogeology, and geotechnics that are achievable by the application of this model on a pre-selected set of use 

cases. 

Action 4c: test specification on use case. A more freeform testing of the specification on these use cases is also 

suitable at this stage. In the context of our motivating example, this could mean examining the exact perspective 

on the modelled domain (see Fig. 10, Fig. 11, and Fig. 12). In each figure, the top part shows the subdivision of 

the subsoil according to, from left to right, the subdomain of geology, hydrogeology, and geotechnics. The tunnel 

segment between two typical sections is displayed in red. The middle part of the figure shows the corresponding 

UML model generated from the initial specification using our spreadsheet template, as shown in the bottom part 

of the figure. 

For example, in Fig. 10 we have a data model that allows for arbitrary subdivisions along the tunnel alignment (cf. 

Tunnel Segment) that simply point to the geological, hydrogeological, and geotechnical units relevant for them. 

There is no hierarchy between the subdomains. In Fig. 11, the segmentation along the tunnel alignment is handled 

identically. However, there is a hierarchy between the subdomains - the geotechnical domain has the dominant 

perspective and, therefore, forces additional subdivisions of the geological and hydrogeological units. In Fig. 12, 

the segmentation along the tunnel alignment is dependent on the structures resulting from all three subdomains. It 

reflects a requirement that each segment is homogeneous in its geology, hydrogeology, and geotechnics. This 

necessitates a more complex geometric representation of each segment. 

The workflow described by Action 4b and Action 4c triggers some of the processes responsible for converting 

information into knowledge (Awad and Ghaziri, 2004, Rowley, 2007): e.g., reflection and synthesis. The 

subsequent discussion of the instantiated models adds expert opinion and experience to the domain information 

contained in the filled-in template, thereby eliciting a feeling of ownership and commitment in all involved parties, 

which has been noted to improve overall performance (Tallgren et al., 2020). 

Transition to Action 5. After performing the tests above, another decision has to be made. On the one hand, the 

template for defining the specification can be rejected even at this stage, if the translation is found to be inadequate. 

On the other hand, the specification itself can be refined further by cycling through Action 3, Action 4a, Action 4b, 

and Action 4c multiple times. Even if the specification is accepted and the workflow proceeds to Action 5, we can 

still return to Action 3 at a later stage, e.g. after Action 6b or Action 8. It is of note that the activity diagram in Fig. 

9 covers the process depicted in Fig. 3 only up to design (high-resolution model), i.e. the grey part of the chart. 

Only after we have completed the process in Fig. 9 will the production of platform-dependent code fully 

commence. 
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FIG. 10: Data structure design including only references. 

 

 

FIG. 11: Data structure design including aggregation. 
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FIG. 12: Data structure design allowing more complex relationships and geometry. 

Action 5: model (part of) specification. Here, the formally defined specification is automatically translated into 

a type model, i.e. a model defining the types of objects we can work with – for example, Tunnel Segment, 

Geotechnical Unit, Geological Unit, and Hydrogeological Unit (cf. Fig. 12). This is where the software model 

takes shape and, through multiple iterations, develops into the full high-resolution software model. 

Action 6a: verify model via use cases. The (intermediate) type model has to be verified (see definition 3.1.26 in 

section 2.2.1). When it is produced separately from the specification, this is an indispensable step, as it is the only 

method for guaranteeing that the model conforms to the specification. In our case, since the model is created 

automatically from the specification, which is produced directly by the domain expert, this conformity relationship 

is realized by design through the automated translation. 

Action 6b: instantiate model for use cases. The (intermediate) type model has to be validated as well (see 

definition 3.1.25 in section 2.2.1), i.e. it has to satisfy all use cases that stand at the very beginning of the process. 

Since, in our approach, the type model is instantiated automatically it produces (empty) instance models. These 

can be enriched with specific information by the domain experts and directly compared to the relevant use cases 

to make sure that the instance models and, therefore, the specification itself is fit for the purpose defined at the 

start of the process. For this reason, after this action, there is another decision to be made, which can result in a 

return to Action 3 for specification refinement. 

Action 7: bugfixing. This is an action typical for manual model development. In our case, through the automatic 

creation of the type model, any errors (or bugs) are likely to result from problems in the specification, which is 

why we can return to Action 3 even after Action 6a for another iteration of specification refinement. 

Action 8: test for completeness. Here the domain experts have one last opportunity for evaluating the models, 

and therefore the specification, which in our case, produces them automatically. Even after this action, we can still 

jump back to Action 3 and refine the specification. (Uddagiri et al., 2020) recommend using a multi-dimensional 

viewpoint model for completeness checks. In our case, viewing the data model separately from the perspective of 

geology, hydrogeology, and geotechnics could prove useful. 
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In summary, this workflow enables a full interleaving of software requirement engineering and software 

development in the early stages, when adaptability is high and the cost of revisiting decisions is low. In addition, 

the method for requirement elicitation, e.g., in our case the template, can be adapted even during the early stages 

of software development to provide the best environment for communication between domain experts and software 

developers. In essence, we can adapt the translation between the language of the domain experts and the language 

of the software engineers to the very end of the SRE process. In the case of our motivating example, it results in 

the template shown at the bottom of each of Fig. 10, Fig. 11, and Fig. 12. It expands the concept of levels we 

discussed under Action 1 and Action 2 to four different types of relationships: specialization, containment, 

aggregation, and association. In addition, an element’s properties of elementary type, such as text or numbers, are 

also handled separately. This demonstrates that throughout the workflow shown in Fig. 9 the translation itself 

undergoes a considerable adaptation. 

3.2 The Tool for Automated Translation 

Here, we will give a brief description of the Excel2UML translation tool we implemented in order to evaluate our 

approach. It is an open source tool written in C# and can be downloaded from our university website 

(https://doi.org/10.48436/v0ng0-xy233). In the activity diagram depicted in Fig. 9, it is applied along each 

transition marked by a thicker line. 

 

FIG. 13: The user interface of the Excel2UML translation tool. 

The user interface in Fig. 13 lists the steps required for the translation of a requirement specification in an Excel 

spreadsheet to a UML model. In step 1, the user (e.g., the domain expert) selects the file and sheet containing the 

filled in template devised by the software engineer (e.g., see the templates shown at the bottom of Fig. 10, Fig. 11, 

or Fig. 12). This is the basis for the type model (see Action 4a in Fig. 9). 

 

FIG. 14: An excerpt of the filled in instance model corresponding to Fig. 10: Instances. 

In step 2, the tool generates the type model (see Action 4a or Action 5 in Fig. 9), and directly instantiates it (see 

Action 4b or 6b in Fig. 9) to enable the testing of use cases. Excerpts of those instantiated models are shown in 

Fig. 14 and Fig. 15. For example, from the type Tunnel Segment the tool produces the header of the first table in 
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Fig. 14, where the domain expert can fill in some specific tunnel segments, such as Segment 120 and Segment 125. 

One such segment (Segment 120) is highlighted in red in the top portion of Fig. 10. The other table headers in Fig. 

14 provide the opportunity for defining some instances of Geological Unit, e.g., GeoUnit G1, GeoUnit G2, and 

GeoUnit G3, as well as some instances of Geotechnical Unit, e.g., GeotechUnit G2. All of these are shown in the 

longitudinal sections in Fig. 10. The definition and instantiation of attributes, such as Name and Lithology for the 

Geological Unit, were omitted here for brevity. 

 

FIG. 15: An excerpt of the filled in instance model corresponding to Fig. 10: Relationships. 

In addition to instantiating types, step 2 instantiates the relationships between them (see Fig. 15). For example, the 

type model in the centre of Fig. 10 shows an association between Tunnel Segment and Geological Unit. This 

relationship is instantiated as the first table header in Fig. 15. Following this, the domain expert can fill in the fact, 

that, in the specific use case in Fig. 10, Segment 120 actually overlaps with GeoUnit G1 and GeoUnit G3, i.e. is 

associated with them. In the same manner, the associations between Tunnel Segment and Geotechnical Unit and 

between Geotechnical Unit and Geological Unit are instantiated in the next two table headers in Fig. 15. In essence, 

this step allows for extensive use case testing. Missing or superfluous tables indicate problems in the type model 

itself. 

In step 3, the type model can be visualised as a UML class diagram in an open source modeling software, Modelio 

(https://www.modelio.org/), for inspection both by the software engineers and the domain experts. Finally, in step 

4, an adapted UML diagram can be exported for further processing by the software engineers. 

3.3 The Relationships 

In this section, we will discuss the types of relationships between model elements that emerged through the 

application of our approach and the advantages as well as disadvantages associated with them. In essence, they are 

the most commonly used relationships in a UML class diagram. 

• Generalization. Element A is the generalization of element B if element B inherits all properties and 

relationships of element A. Element B can have additional properties and relationships, or restrictions 

on existing ones, that make it a more specialized version of element A. Therefore, it can be described 

as the specialization of A; 

• Containment. Element B makes sense and can exist only within Element A, i.e. it is contained in 

Element A. Therefore, each instance Bi of Element B belongs to exactly one instance Aj of Element 

A. Should instance Aj cease to exist, so does instance Bi; 

• Aggregation. Element B makes sense and can exist on its own or within Element A. Therefore, each 

instance Bi of Element B can belong to zero, one, or multiple instances Aj of Element A. The 

continued existence or deletion of instance Aj does not affect the existence of instance Bi. In this 

case, Element A aggregates Element B; 

• Unidirectional Reference. Element B knows Element A if Element B references Element A. The 

relationship can have any multiplicity, i.e. any number of instances Bi of Element B can reference 

any number of instances Aj of Element A. 
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Requiring of the domain experts to consider four types of relationships makes at least the initial phases of the 

template evaluation and application more challenging. However, as we demonstrated with our example here, the 

judicious application of these relationships has the potential to encourage critical thinking and creativity as defined 

by (Facione, 1990) and emerges naturally in the specification process. As we can see, it can give rise to different 

data model designs, each with its own focus. The three designs depicted in Fig. 10, Fig. 11, and Fig. 12 demonstrate 

this versatility. Comparing the filled templates at the bottom of each figure reveals that different data structures 

stem from very different specifications since each type of relationship occupies its own dedicated column and 

performs a different structuring role. The additional clarity that comes with the formalization of relationships 

between elements enables the domain experts to communicate to the software engineering team not just the 

domain’s semantics, but also its pragmatics, since, "meaning is at the heart of both semantics and pragmatics" 

(Fetzer, 2004).  

4. RELATED WORK 

In this section we present existing approaches to the software development phases user expectations, technologies, 

requirement specification, structure (low resolution model), and design (high resolution model) depicted in Fig. 

3, and compare them to our work. Some are partial, other complete solutions. 

4.1 Requirement Elicitation 

In the AEC industry, there have been multiple strategies for obtaining requirements for CIC software. For example, 

(Arayici et al., 2006) utilize the Contextual Design method, which allows the inclusion of typical domain 

workflows and interfaces in their proper work context in the requirement elicitation process. Similarly to our 

approach, they rely on incremental prototyping followed by end-user tests. They propose a methodology for the 

development of a SRE framework for CIC systems and identify 44 key issues for its evaluation. One of them is 

the mutual understanding of the stakeholders’ perspectives, something that is indispensable in our approach as 

well. 

A framework for requirement elicitation from domain experts based on the Methodology for Knowledge-Based 

Engineering Applications (MOKA) is presented in (Häußler and Borrmann, 2021). MOKA includes a cycle of the 

following steps: "identify", "justify", "capture", "formalize", "package", and "activate" with the aim to minimize 

the communication barriers between domain experts and software engineers. It has been used in aerospace, 

mechanical engineering, and manufacturing. The authors give an example of the application of MOKA to the 

domain of railway infrastructure. In the "capture" phase they obtain expert knowledge by means of interviews 

documented in ICARE (Illustrations, Constraints, Activities, Rules, and Entities) forms, including the performance 

of a task and its explanation. The authors use UML diagrams in the "formalize" step, which when using the fUML 

(https://www.omg.org/spec/FUML/1.5/About-FUML/) supported subset, could be actually executed. Those 

diagrams are created not by the domain experts, but manually, by the software engineers, due to the lack of uniform 

notation in MOKA, which the authors identify as a communication disadvantage. Finally, the result of the entire 

process was expressed as formal diagrams created by the software engineers in collaboration with the domain 

experts. In comparison, in our work, we give many opportunities for collaboration but remove the necessity for 

the software engineers to manually translate the domain experts’ input, in order to avoid the above mentioned 

disadvantage. 

In (Zahedi et al., 2022), the authors present a methodology for eliciting decision-making information from 

designers. Explanation tags and constraints, based on a dedicated metamodel, are attached to the BIM model 

elements to provide a decision tracking aid. Links to international guidelines fulfil a similar role. The designers’ 

intent is communicated via text, not in their typical language of sketching, drawing, or painting, which might be a 

hindrance in effective communication. Furthermore, the applied explanation tags require an organization in a full 

taxonomy, which should ideally be developed by the designers themselves. In our approach, we allow the domain 

experts to use at least one of their typical tools and don’t expect the emergence of a full taxonomy until the very 

end of the workflow depicted in Fig. 9. 

Another methodology for gathering requirements from various stakeholders in the AEC industry by conducting 

formal interviews is presented in (Ye et al., 2009). The authors state that the interviews offered much more 

flexibility than online questionnaires. The next step involved the utilization of the Hamburger Model by Gielingh, 

essentially locating the "functional concept" and the "solution concept" in the NL requirements, followed by 
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attaching a relative importance index. The verification was done by hand and the results were grouped in the 

following requirement themes: "energy management", "comfort", "life cycle costing", "customer-orientation", 

"flexibility", and "building process". Similarly, in the templates that start the SRE process in our approach, and 

gradually evolve as the workflow progresses, we give the domain experts the opportunity to add their own 

categorization, in addition to the various relationships that emerge. For example, some users chose to use some of 

the categorization proposed by (German Tunnelling Committee (ITA-AITES), 2022a), such as "Object" and 

"Partial Object", other chose domain-specific ones, e.g., "energy efficiency" or "risk". 

In section 2.3, we pointed out the difficulty in adoption of new tools in the AEC industry, at least in part, due to 

them requiring a change in well-established workflows. In (Tallgren et al., 2020), the authors present an approach 

to gathering workflow information for a new collaborative planning tool by combining observations, field notes 

and interviews. During prototyping, there were multiple evaluation phases, in which the users were recorded 

interacting with the software and with their colleagues. This level of collaboration was also one of the main 

principles we followed in designing both the workflow and the tool that supports it. 

4.2 Formal Requirement Extraction 

As we established in section 2.2.4, NL requirements are quite common. (Dalpiaz and Brinkkemper, 2018) show 

that 90% of agile developers fall back on user stories, 70% of which adhere to quite simple templates containing 

only a few placeholders, e.g., for "role", "action", or "benefit". What’s more, in the AEC industry, there is a push 

to include many guidelines and norms, written in NL, into the set of requirements of a CIC software. Consequently, 

there are multiple methods for translating such texts into a formal language for easier processing. However, neither 

the Requirement, Applies, Select, Exception (RASE) template nor Natural Language Processing (NLP) produce 

reliable results (Häußler et al., 2020, Zahedi et al., 2022). 

One of the reasons is that guidelines and norms often describe complex and multi-factorial decision processes that 

exceed the capabilities of simple templates, such as RASE, which are hindered by the lack of higher order 

predicates, and consequently, cannot encode experience or procedural knowledge (Preidel and Borrmann, 2016). 

Therefore, in (Häußler et al., 2020), the authors show a method for automatic classification of the rules contained 

in some of the guidelines of the Deutsche Bahn AG into classes and their subsequent translation into executable 

Business Process Modeling Notation (BPMN) models. They report a success rate of 52% of all rule sets for twelve 

rule classes. An important feature of the BPMN models is the inclusion of scripts for various routines into the 

model elements. Furthermore, Decision Model Notation (DMN) allows the integration of decision tables that go 

beyond the "if then else" mechanism of BPMN. The encoding of guidelines as BPMN diagrams is a field we intend 

to explore in our future work by devising a method for translating spreadsheet requirements into BPMN diagrams. 

Another domain where the translation of guidelines into formal requirements is absolutely critical is avionics. This 

a domain that relies heavily on a complex body of knowledge organized in multiple taxonomies. However, 

taxonomies can be overused and contribute to confusion rather than to clarity. For example, as Jaffe points out in 

(Jaffe, 2021), the taxonomy of requirement types includes: “functional, performance, high level, low level, lower 

level, derived, interface, design, operational, system, system operational, safety-related, security, initial, user, and 

detailed requirements”, with no clear distinction between the types. This ambiguity of terms may result from the 

need for consensus, so that more general terms are adopted in place of more precise ones, or from the 

accommodation of legacy documents. Avoiding confusion is one of the reasons we restrict the number of formal 

relationships in a spreadsheet template to a minimum in our approach. However, in order to allow the domain 

experts the freedom to use a less than well-defined taxonomy, they themselves consider essential, we provide them 

with the additional categorization fields we mentioned in the previous section. 

It is to be noted that our approach was evaluated on a use case of extracting a suitable data structure for a particular 

domain. In more complex scenarios with multiple conflicting viewpoints or the involvement of legacy 

technologies, requirements may take various forms, including pieces of code or even sentiment (Werner et al., 

2019). In essence, freeform requirements cannot be entirely avoided. The following publications demonstrate 

various strategies for formalizing those. 

According to (Dalpiaz et al., 2018), important checks to consider when dealing with multiple viewpoints include 

consistency within one viewpoint and consistency between viewpoints. The main utility of viewpoints is to make 



 

 

 
ITcon Vol. 28 (2023), Paskaleva et al., pg. 379 

differences in terminology explicit, which can manifest as "consensus", "correspondence", "conflict", or 

"contrast". This differentiation helps with the detection of ambiguity. 

A formalization method based on examples is presented in (Bragilovski et al., 2022). The authors propose example-

based guidelines for the derivation of formal requirements out of user stories. The results from the controlled 

experiment suggest that those are only partially useful, e.g. for more complex domains. 

An approach that bypasses user involvement, at least in the early stages, is reverse engineering - specifically 

application and transaction logs in complex middleware systems, as demonstrated in (Uddagiri et al., 2020). This 

can provide a good overview of functional requirements and pinpoint deficits in the requirement specification. In 

our case, however, since the requirements of data models are not functional, we cannot make use of such 

techniques. 

4.3 Visualization Methods 

Multiple works indicate that visualizations during the SRE process enhance both the mutual understanding and the 

quality of communication, which is one of the reasons we chose to translate the spreadsheet requirements into easy 

to visualize UML class diagrams, or graphs. 

(Kolbeck et al., 2022) outline a method for representing the structure of a product as a graph whose nodes represent 

entities and whose edges represent the relationships between them, i.e., quite similar to the data structures we 

captured in our motivating example. Based on such graphs, the engineering workflow, including decision-making, 

can be formulated as graph transformation rules. This includes (i) the representation of the problem as a graph, (ii) 

the generation of solutions as graph transformations, (iii) the evaluation of these solutions via, e.g., graph matching, 

and (iv) guidance for the next step in the search for solutions. 

Furthermore, requirements in the form of graphs can be subject to formal reasoning, as presented in (Elrakaiby et 

al., 2018). The authors propose a formal calculus for discussions about the correctness, completeness or 

consistency of a requirement set, represented by graphs, between end users and software engineers, which results 

is a refinement graph. 

Other approaches make use of visual programming. In (Preidel and Borrmann, 2016) the authors introduce the 

Visual Code Checking Language (VCCL) as a means of representing a guideline rule visually. It has a hierarchical 

graph structure, which at the lowest level consists of method nodes with input and output ports. In (Preidel et al., 

2017) the authors present a graph-based querying mechanism for rules represented as graphs and, after evaluation, 

conclude that formal textual query languages perform worse with domain experts than formal graphical query 

languages, such as vQL4BIM and the aforementioned VCCL, due to the users’ lack of programming knowledge. 

This is a promising development. It demonstrates that both structural as well as functional requirements can be 

represented as graphs, which allows for the application of similar methods in their elicitation and processing, 

something we intend to explore in our future work. 

4.4 Relationships in Data Models 

In section 3.3, we presented our motivation for restricting ourselves to only four different relationship types in our 

template. However, BIM related standards actually tend to have many more. Here we will give a few examples. 

As one of the most comprehensive open BIM standards, the Industry Foundation Classes (IFC) (buildingSMART, 

2022) defines a multitude of relationships, including assignment to specific types (e.g. IfcRelAssignsToProduct), 

association with specific types (e.g. IfcRelAssociatesMaterial), connection of various kinds (e.g. 

IfcRelConnectsStructuralMember), declarations (e.g. IfcRelDeclares), decompositions (e.g. IfcRelDecomposes or 

its subtype IfcRelNests), and definition (e.g. IfcRelDefinesByType or IfcRelDefinesByProperties). 

IFC is first and foremost a multi-domain data model for the AEC industries. Therefore, it contains many domain-

specific elements such as IfcCableFitting for the electrical domain. In addition to that however, it contains elements 

that allow a very generic approach to domain modeling, akin to a metamodel (Brambilla et al., 2017). This is where 

the above listed relationship types contribute to the differentiation of elements, even if the elements themselves 

are as generic as, for example, IfcProcess. This mechanism is meant to supplement the already existing domain-

specific model, since state-of-the-art in the AEC industries moves faster than the implementation cycle of IFC, 

and domain expert-driven additions become necessary. 
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Another example is the DIN EN 17632 guideline (CEN/TC-442, 2021). It outlines generic methods for data 

exchange and integration in BIM, which involve the definition of multiple relationships, e.g., for locations in space 

and time alone: hasBoundary, hasInterior, hasPart, hasPeriod, begins, ends, triggers, hasState, transforms, etc. 

A related guideline, for document exchange, the DIN EN ISO 21597-2 (ISO/TC 59 and CEN/TC 442, 2020), offers 

the following types of relationships: IsSpecialisedAs, HasPart, HasMember, Supersedes, IsElaboratedBy, 

Controls, IsIdenitcalTo, ConflictsWith, and IsAlternativeTo, among others. 

It is to be noted that this great diversity of relationships is justified in a multi-domain industry as means of 

communication. However, in a tool for requirements specification, the relationship complexity may obscure the 

domain semantics and make errors difficult to locate (Preidel et al., 2017, Tallgren et al., 2020). In fact, the 

relationships listed above could be regarded as specializations of the UML-typical relationships we use in our 

approach. For example, hasBoundary and hasPeriod are in essence subtypes of Aggregation; IfcRelDecomposes, 

hasPart, or HasMember - subtypes of Containment, etc. Therefore, it is possible for a requirement refinement step 

to include even the refinement of the relationships offered by the template. This would indeed allow the physical 

world and digital models representing (parts of) it to be coupled to an ever increasing degree of closeness 

(Christiansson et al., 2009), which is one of the major advantages of software modeling, and facilitate a more 

gradual and controlled SRE process. 

5. DISCUSSION 

Let us now return to section 2.3 and to the five semantic and five pragmatic aspects of NL requirements we wanted 

to address in our approach. 

• (F1) Ambiguity. We showed that even a template that defines only levels can enforce consistency in 

the presence of a consensus about the meaning of "level". Our template goes one step further and 

differentiates between four different types of relationships: specialization, containment, aggregation 

and association. We excluded the "type of" relationship as it is reserved for the instantiation of the type 

model into an instance model, or in the context of a software, for the instantiation of a class into an 

object. The reduction of ambiguity greatly contributes to effective translation between the languages 

of different experts; 

• (F2) Technical jargon. As the purpose of developing a data model for a highly specialized domain is 

to organize and structure technical jargon, this is not something we aim to achieve. In order to reduce 

the usage of software engineering jargon, we restricted our template, at least initially, to only four types 

of relationships; 

• (F3) Lack of conceptual soundness. The utilization of an appropriate template makes requirements 

of, e.g., the user interface quite easy to distinguish from requirements of the data model simply because 

those cannot be properly connected - no appropriate relationship, e.g., represents, is available to the 

domain expert. In general, if there are (nearly) disjunct sets of elements in the UML model, that are 

not separated by design (as might be the case with hydrogeology and geochemistry), it is an indication 

that there may be conceptual "cross-contamination" from other domains. It is also of note, that our 

workflow depicted in Fig. 9 explicitly allows the refinement of the template, thereby improving the 

contextual soundness of the resulting specification; 

• (F4) Overlaps and contradictions. Since our approach generates a UML model from the spreadsheet 

specification automatically, duplicates and conflicts lead to invalid models. This allows us to recognize 

and correct such problems without delay; 

• (F5) Non-problem-oriented statements. This is handled by the automatic translation of the filled-in 

template into a UML model. By analyzing the graphical appearance of this model, it becomes apparent 

if there are elements that are largely disconnected from the rest, or elements that are connected to nearly 

all other elements. Both are signs of poor design. The first case could prompt a discussion about the 

necessity of including the disconnected element in the model at all. The second case could indicate 

that, for example, generalization has not been utilized properly; 

• (F6) Validatability. In our case, in the context of a fairly specialized domain, the fulfillment of 

requirements can be measured by automatically instantiating the data model and attempting to 

manually represent the chosen use cases; 

• (F7) Uniformity. This aspect is an integral part of any uniform template by design; 
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• (F8) Uniqueness. Even if there is a semantic duplication through, e.g., a spelling error, the UML model 

should display this as two elements that have identical connectivity, which should trigger a re-

examination of the model; 

• (F9) Explicit Dependencies. This is where the differentiation of the relationships admissible in the 

template plays an important role. There is a balance to be found between connecting everything to 

everything, just to be "on the safe side", which robs the connections of their meaning, and barely using 

any relationships for fear of too much flexibility and mixing up "fact" and "opinion". This is a 

significant challenge, which brings the domain knowledge of the involved parties to the front; 

• (F10) Completeness. In section 4, we mentioned the concept of viewpoints as a tool to aid 

completeness (Dalpiaz et al., 2018). In our motivating example, we can adopt the different aspects, 

geology, hydrogeology, geotechnics, and others, as viewpoints. An additional tagging system in the 

template allows each element to be tagged as belonging to one or more aspect, or viewpoint. In this 

way, each viewpoint can be evaluated separately and in conjunction with the others, which still does 

not guarantee completeness, but brings us closer to it. 

In addition to the aspects enumerated above, our approach provides the following benefits to the participants in 

the workflow: 

• (B1) Our approach can be utilized as a learning tool. The domain experts can learn data modelling on 

a familiar platform and, if they so choose, transition to pure UML modelling or to a hybrid approach; 

• (B2) The automatically generated graphical representation of the data structures makes them easier to 

read, comprehend and discuss; 

• (B3) Finally, the automation inherent to our approach provides the domain experts with automatically 

generated spreadsheets ready for the definition of specific instances of the data types they have defined. 

As the distinction between a type and its instances is not always easy to make or communicate, but is 

absolutely essential to the software development process, this has the potential to uncover fundamental 

misunderstandings as early in the SRE process as possible. 

6. CONCLUSION 

In this paper, we present an approach to software requirement engineering which allows it to be extended well into 

the code production phase of a software solution for the AEC industry, while at the same time encouraging 

engagement from both the domain experts and the software engineers involved in the project. While there are 

many frameworks that pursue the same goal, they can easily become too complicated or too rigid to use 

comfortably, especially by domain experts with limited programming knowledge. Previous research shows that 

personal conversations, e.g., via interviews, deliver some of the best results, in no small part due to the increase in 

motivation and engagement of all participants. 

Our approach involves an Excel sheet template which allows the geotechnics domain expert to define model 

elements connected by as many or as few relationships as needed for a particular task. It also enables model 

elements to be tagged as belonging to one or more viewpoints in the familiar Excel environment. Through the 

automatic translation of the template content into a UML type model and a UML instance model, this approach 

gives instant feedback on the data structure to both the domain experts and the software engineers, and it also 

provides ready-to-fill-out templates for model instances in order to test the model on use cases. 

The workflow we described allows multiple iterations of template and specification refinement with the aim to 

adapt the translation between the languages of different domains and provide as much accuracy and as much 

abstraction, as deemed appropriate by the participants in the communication. In addition, by using fUML and 

automated code generators, the approach enables an automated prototype production and testing. The process is 

designed with balance between formalization and conversation in person in mind, since it is the human interaction 

that unlocks the domain knowledge and amplifies its influence on the final software specification. 
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