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SUMMARY: The built environment is responsible for roughly 40% of global greenhouse emissions, making the 

sector a crucial factor for climate change and sustainability. Meanwhile, other sectors (like manufacturing) 

adopted Artificial Intelligence (AI) to solve complex, non-linear problems to reduce waste, inefficiency, and 

pollution. Therefore, many research efforts in the Architecture, Engineering, and Construction community have 

recently tried introducing AI into building asset management (AM) processes. Since AM encompasses a broad set 

of disciplines, an overview of several AI applications, current research gaps, and trends is needed. In this context, 

this study conducted the first state-of-the-art research on AI for building asset management. A total of 578 papers 

were analyzed with bibliometric tools to identify prominent institutions, topics, and journals. The quantitative 

analysis helped determine the most researched areas of AM and which AI techniques are applied. The areas were 

furtherly investigated by reading in-depth the 83 most relevant studies selected by screening the articles’ abstracts 

identified in the bibliometric analysis. The results reveal many applications for Energy Management, Condition 

assessment, Risk management, and Project management areas. Finally, the literature review identified three main 

trends that can be a reference point for future studies made by practitioners or researchers: Digital Twin, 

Generative Adversarial Networks (with synthetic images) for data augmentation, and Deep Reinforcement 

Learning. 
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1. INTRODUCTION 

The Architecture, Engineering, Construction and Operations (AECO) sector is a significant player in the economy, 

accounting for about 6% of global GDP, and is the largest consumer of raw materials and other resources 

(Desruelle et al., 2019). Moreover, the industry is responsible for around 40% of anthropogenic carbon dioxide 

(CO2) emissions, which is central in fighting climate change (Huang et al., 2020). Recently it has been accepted 

that to ensure minimal financial and environmental impacts of a building project, the entire life-cycle cost should 

be considered (Kale, Joshi and Menon, 2016). Since roughly 80% of an asset life cycle cost is spent during the 

operations and maintenance (O&M) phase (Lu et al., 2020), the focus is widely shifting towards this stage. Despite 

its strategic and economic importance, low productivity and digitalization hinder operational activities, causing 

waste of resources, incorrect information management, and lack of optimization (Barbosa and Woetzel, 2017).  

Asset management (AM), defined in the ISO 55000 standard as “the coordinated activity of an organization to 

realize value from assets” (ISO 55000, 2014), includes procedures and processes to realize value from assets by 

balancing costs, risks, opportunities, and performance benefits. The importance of AM principles in the O&M 

phase is crucial for the following reasons: i) assets are complex, and their systems are dynamic and change during 

the lifecycle and, ii) assets are voiceless, so they must be monitored and analyzed. The effectiveness of AM in the 

O&M stage will heavily rely on a BIM-enabled environment with continuous information on asset conditions and 

performances, reliable communication channels, and documented professional knowledge from experience. 

However, technology, information, and organization-related issues in must be addressed to fully embrace the 

benefits of BIM-enabled AM in O&M (Volk, Stengel and Schultmann, 2014). 

Aiming to achieve a new industry concept – the so-called 'Construction 4.0'-, the entire sector is reshaping itself 

by opening to new technologies and digital strategies. In this context, Artificial Intelligence (AI) might act as a 

backbone for the innovative changes the industry faces. AI is a branch of Computer Science that provides 

computers with human-like capabilities, such as problem-solving and decision-making skills. According to 

Agrawal, J. S. Gans and Goldfarb, 2019, AI produces quality predictions based on available data, leading to better 

decision-making and productivity. The pandemic situation caused by the spreading of COVID-19 has even 

speeded up investment in automation and AI (Lund et al., 2021). Therefore, there is immense interest in exploiting 

AI techniques in many areas, including AECO, where a flourishing ecosystem of start-up companies, commonly 

called "Construction Tech", has grown from $250 million in 2013 to $1,000 million in 2018 (Sacks, Girolami and 

Brilakis, 2020). 

Previously, researchers have done different literature reviews about the deployment of AI in AECO (Loyola, 2018; 

Aibinu, Koch and Ng, 2019; Duan, Edwards and Dwivedi, 2019; Darko et al., 2020; Hong et al., 2020; Abioye et 

al., 2021; Pan and Zhang, 2021; Debrah, Chan and Darko, 2022). However, none focuses on AM areas, which 

comprise a broad list of disciplines. Specifically, by investigating the scientific literature, most acknowledged 

standards, corporate reports, white papers, and direct work experiences, 14 core functions were identified in AM 

(Rampini et al., 2020; Re Cecconi et al., 2020).  

The present literature review aims to frame AI applications within the 14 disciplines that characterize AM by 

answering the following research question: 

• What are the most researched AM areas for AI applications? 

• What are the possible future topics for researching AI in AM? 

To answer these questions, this research proposes a bibliometric analysis of 578 papers and an in-depth analysis 

of the 83 most relevant papers. The rest of this paper is organized as follows: the fundamental terminology adopted 

in this study is described in Section 2; the research methodology is described in Section 3; bibliometric analysis 

results are shown in Section 4; the information gathered from the in-depth review is proposed in Section 5; Future 

research trends and topic are discussed in Section 6, while Section 7 concludes the paper. 

2. TERMINOLOGIES AND FUNDAMENTALS  

The concept of “Asset Management” and “Artificial Intelligence” is evolving, and different definitions are being 

published and produced. This section helps to clarify the scope and the meaning of the terminology used to describe 

the results. 
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2.1 Asset Management 

Asset management has been highlighted as one of the most critical functions to adopt in the corporate world since 

the late 1990s. The primary reference for AM is represented by the ISO series 55000. These standards provide the 

AM discipline's general guidelines, principles, and definitions. Specifically, they define AM as the discipline that 

effectively controls and governs assets within an organization to realize value through managing risk, opportunity, 

and costs (ISO 55000, 2014). When the focus is on the physical asset, this concept can be refined further: a physical 

asset, such as a building, a portfolio of buildings, an urban area, or infrastructure, is managed by a set of procedures. 

In this scenario, Engineering Asset Management (EAM) refers to the processes, operations, and resources used to 

manage facilities, infrastructure, and equipment throughout their life cycle (Amadi-Echendu et al., 2010). EAM 

has been used in various domains where a systematic and secure administration of physical assets is essential to 

meet business goals. For this literature review, according to (Re Cecconi et al., 2020), we identified 14 main 

disciplines encompassed in AM (Table 1). 

Table 1: 14 AM core areas identified in Re Cecconi et al., 2020. 

AM functions 

Strategic functions  

 Risk management 

 Sustainability management 

 Finance management 

 Quality management 

 Value management 

Tactical functions  

 Resilience management 

 Life Cycle Cost 

 Facility management 

 Energy management 

 Property management 

Operational functions  

 Commissioning 

 Project management 

 Data management 

 Condition assessment and operations 

  

2.2 Artificial Intelligence 

There have been ups and downs in the history of AI, with logic-based approaches in the 1950s and early 60s, 

knowledge-based expert systems in the 1970s and 80s, and data-driven approaches (from 2000 onwards) with 

periods of disillusionment and reduced funding in-between (Russell and Norvig, 2003). Due to these constant 

changes, the definition of AI has always been mutable. However, the High-Level Expert Group (HLEG), appointed 

by the EU commission, defines AI as "software (and possibly also hardware) systems designed by humans that, 

given a complex goal, act in the physical or digital dimension by perceiving their environment through data 

acquisition, interpreting the collected structured or unstructured data, reasoning on the knowledge, or processing 

the information, derived from this data and deciding the best action(s) to take to achieve the given goal." (Craglia 
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et al., 2018). AI branches that mimic human intelligence include machine learning (ML), computer vision (CV), 

and natural language processing (NLP), as shown in FIG. 1.  

2.2.1 Machine Learning 

In computing, ML represents a paradigm shift. Traditionally, a programmer would write computer code that 

established the rules for processing data inputs and producing an output. In ML, the computer is given input data 

as well as the expected answers, and the ML agent must then generate the rules. These rules can then be used on 

new data to generate unique results. Rather than being explicitly programmed, an ML system is trained. There are 

generally three types of ML: i) supervised learning, ii) unsupervised learning, and iii) reinforcement learning (RL).  

 

FIG. 1: AI types to simulate human intelligence include machine learning, deep learning, computer vision, and 

natural language processing. 

• The main early algorithms used in supervised learning are Logistic Regression (Cox, 1959), Perceptron 

(Rosenblatt, 1958), and kNN (Nearest Neighbour) (Cover and Hart, 1967). While the Perceptron 

algorithm undoubtedly laid the groundwork for ML algorithms, they were fragmented and unstructured 

prior to the publication of the Decision Tree algorithm (Xu et al., 2021). Support Vector Machine (SVM), 

AdaBoost, and Random Forest (RF) are the most widely used supervised learning algorithms in the 

construction industry (Xu et al., 2021). The majority of the time, they are used to classify data. 

• Unsupervised learning focuses on data reduction and clustering problems and discovers knowledge from 

unlabeled data. The main algorithms in unsupervised learning are Principal Component Analysis (PCA), 

t-SNE, and K-means. These algorithms are mainly used to infer implicit, previously unknown historical 

data and potentially useful information and knowledge from unstructured datasets (Ahmed et al., 2018). 

• RL is another set of algorithms that focus on experience-driven sequential decision-making, i.e., they 

make software agents take action to maximize some notion of accumulative reward (Craglia et al., 2018). 

The review conducted by (Ahmed et al., 2018) reveals that most RL studies (45 percent) concentrate on 

either building energy management or dispatch issues. Most papers on building energy management 

systems focus on HVAC, with a few publications focusing on lighting and blind control in conjunction 

with HVAC. 

2.2.2 Deep Learning 

Deep learning (DL) allows computational models with multiple processing layers to learn multiple levels of 

abstraction for data representations (Lecun, Bengio and Hinton, 2015). These techniques have vastly improved the 

state-of-the-art in speech recognition, visual object recognition, object detection, and various other fields like drug 

discovery and genomics. DL uses the backpropagation algorithm to show how a machine should change its internal 

parameters to compute each layer's representation from the previous layer's representation, revealing intricate 

structures in large data sets (Rumelhart, Hinton and Williams, 1986). The lack of sufficient data and computational 

power hindered the deployment of DL algorithms until 2012 when the success of AlexNet (Krizhevsky, Sutskever 

and Hinton, 2017) in ImageNet – an image classification competition – prompted deep neural networks to make a 

comeback. AlexNet's main contribution was to combine DL with large datasets effectively. Convolutional Neural 

Networks (CNNs) and Recurrent Neural Networks (RNNs) are two common DL network structures: 
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• CNNs are an advanced form of ANN that use a mathematical operation known as convolution in place 

of general matrix multiplication in at least one of their layers. They are widely employed in Computer 

Vision since they were created primarily to process pixel data (Albawi, Mohammed and Al-Zawi, 2018). 

• RNN is a class of artificial neural networks where connections between nodes can create a cycle, 

allowing output from some nodes to affect subsequent input to the same nodes (Sherstinsky, 2020). 

RNNs are primarily used in time series processing applications such as speech recognition and NLP, and 

are divided into two types: Long Short Term Memory (LSTM) and Gated Recurrent Units (GRU) (Cho 

et al., 2014). LSTM and GRU work similarly: they allow storing values in "LSTM/GRU" cells and then 

use them when needed. 

2.2.3 Computer Vision and Natural Language Processing 

CV is a broad term that refers to various techniques for extracting and processing visual data from images and 

videos to make inferences. Some of these techniques that are important to construction management tasks are: 1) 

3D scene reconstruction, 2) Image and object classification, 3) Object recognition, 4) Object tracking, 5) 

Segmentation, and 6) Action recognition (Paneru and Jeelani, 2021). The tasks and related challenges are furtherly 

explained in Table 2 below. 

Table 2: Computer Vision tasks and challenges (derived from Paneru and Jeelani, 2021). 

Task Description Challenges References 

3D Scene 

reconstruction 

3D Scene Reconstruction is a 

process of creating 3D models of 

a scene from a set of 2D images. 

Construction-related 3D 

reconstruction is still a difficult 

task. The built environment is 

characterized by uniformly covered, 

poorly textured surfaces, a dynamic 

job site, unwanted or obstructed 

backgrounds, recurring patterns of 

building surfaces, and occlusion. 

(Fathi, Dai and 

Lourakis, 2015; 

Han and 

Golparvar-Fard, 

2015) 

Image and 

object 

classification 

Image classification consists in 

taking an input image and 

determining the “class” that the 

image belongs to 

Despite significant advancements, 

accurate classification still faces 

some difficulties because of the 

object's color variability, the angle 

at which it is located, and 

occlusions. 

(Rawat and 

Wang, 2017) 

Object 

recognition 

Object recognition adds 

localization to the classification 

task. 

Same as above, plus reaching a 

good precision in drawing bounding 

boxes around objects. 

(Wu, Sahoo and 

Hoi, 2020) 

Object tracking 

Object tracking is a method for 

following moving objects while 

preserving their identity and 

trajectory over many video 

frames. 

Re-identification: establishing a 

link between an object in one frame 

and the same object in the following 

frames; 

Scale change: Due to the camera 

zoom, objects in a video can have 

drastically different scales; 

Illumination: lighting changes can 

increase the consistency in tracking 

objects. 

(Luo et al., 

2021) 

Segmentation 

Semantic segmentation refers to 

linking each pixel in an image to 

a class label. 

Same as object classification, plus 

reaching a good precision in 

associating each pixel to the correct 

class. 

(Lateef and 

Ruichek, 2019) 

Action 

recognition 

Action recognition involves 

feature extraction from videos to 

identify an activity. 

Same as object tracking, plus 

reaching a good precision in 

classifying a specific activity. 

(Wang, Huynh 

and Koniusz, 

2020) 
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NLP is a set of techniques that aid machines in comprehending human languages by analyzing text structures and 

meanings. NLP is becoming more widely used, with four main application scenarios: 1) filtering information, i.e., 

extracting key information from noisy texts for specific purposes (e.g., finding accident causes from reports), 2) 

organizing documents, i.e., automatically grouping documents of different backgrounds (e.g., drawings from 

different disciplines) and enabling timely retrieval, 3) expert systems, i.e., integrating expert knowledge and 

providing answers for engineering problems, and 4) automated compliance checking, i.e., automatically comparing 

as-is situation (e.g., working plans) with requirements (e.g., contracts and standards) and identifying non-

compliance (Wu et al., 2022). 

3. RESEARCH METHODOLOGY 

The methodology adopted for this study is summarised in Figure 2 and followed the path proposed by Snyder, 

2019, who suggested conducting the review in stages by 1) reading abstracts, 2) screening for inclusion and, 3) 

reading full-text articles. Accordingly, in this study, the following steps are carried out: i) definition of the set of 

keywords for querying scientific databases (Section 3) and getting an article list for further analysis; ii) bibliometric 

analysis of the article list aimed at defining the most researched areas and topics for the literature review (Section 

4); iii) abstract content analysis to select the most relevant articles in each of the areas found from the bibliometric 

analysis; and iv) full-text review of the most relevant outlets to define the state-of-the-art (Section 5) and future 

trends (Section 6) of AI in AM.  

 

FIG. 2: Research methodology workflow. 

The first step was the definition of keywords to query the Scopus and Web of Science (WoS) databases. The 

keywords related to AI technologies are derived from (Craglia et al., 2018), while AM core areas are taken from 

(Re Cecconi et al., 2020). Therefore, the two databases were investigated using the following query strings (1) (2): 

“artificial intelligence” OR ai OR “machine learning” OR “deep learning” OR “neural network*” 

OR “reinforcement learning” OR “computer vision” OR “natural language processing”  

AND 

(1) 

“risk management” OR rm OR “sustainability management” OR sustainability OR “financial 

management” OR “value management” OR “quality management” OR “resilience management” 

OR resilience OR “Life Cycle Costing “ OR lcc OR “energy management” OR “property 

management” OR “Facility Management” OR fm OR “Commissioning” OR “Project 

Management” OR “Data Management” OR “Condition Inspection*” OR “Condition Monitoring”  

(2) 

In both (1) and (2), “AND” and “OR” are the standard Boolean operators used as conjunctions to combine 

keywords, and the “*” sign means that both singular and plural forms of the keywords are considered.  

As of March 2022, the query gave 894 results in the Scopus DB and 1026 in WoS DB. However, the findings 

required further refinement for selecting outlets relevant to the research objectives. The refinement process is 

summarized in the flowchart in FIG. 3 . To limit the results to articles related only to AECO disciplines, the 
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journals and books selected were limited to the ISSN and ISBN numbers listed in Scott, Broyd and Ma, 2021. 

Moreover, all the duplicates were removed, leaving a total of 767 outlets. The articles were further refined through 

the exclusion and inclusion criteria for primary data derived from (Yigitcanlar et al., 2020) (Table 3). In this way, 

the bibliometric analysis was performed with 578 papers. It is noteworthy that the bibliographic metadata collected 

in WoS has better quality than Scopus since the latter presents cited references that are not standardized (e.g., the 

journal Automation in Construction is reported in three different ways), thus requiring some hand adjustments to 

provide correct information.  

 

FIG. 3: PRISMA flowchartthat describes the outlets selection process. 

The metadata was used to perform the bibliometric analysis, which helps identify insightful trends and streamlines 

the essential papers’ in-depth review analysis (Ellegaard and Wallin, 2015). Finally, according to the secondary 

exclusion and inclusion criteria (Table 3), the number of articles to be read in-depth was eventually reduced to 83. 

Table 3: Exclusion and inclusion criteria, derived from (Yigitcanlar et al., 2020) 

Primary data Secondary data 

Inclusionary Exclusionary Inclusionary Exclusionary 

Journal articles 

Conference articles 

Peer-reviewed 

English 

Full-text available online 

Books and chapter 

Industry reports 

Non-English language 

AI in AM 

Opportunities and 

challenges in 

construction relevant to 

the research objective 

Not AI in AM related 

Irrelevant research 

objectives 

4. BIBLIOMETRIC ANALYSIS 

This section discusses the results obtained from the bibliometric analysis, which helped define the main topics, 

countries, and journals. FIG. 4 shows the annual publication in the last decade. Essentially, the rising publication 
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trend shows an increase in AI in AECO research. This trend will likely continue as AI, and the Internet of Things 

(IoT) become more prevalent in the field (Internet Society, 2017). 

 

FIG. 4: Trend in research studies on AI in the AM core areas (2012-Mar 2022). The publication number might 

increase for the year 2022. 

4.1 Keywords co-occurrence analysis 

A co-occurrence keywords analysis provides hints and suggestions for discovering research trend areas. As He, 1999 

stated, a network of correlated words gives a good picture of a knowledge domain. Thus, a co-occurrence keywords 

analysis was performed with VOSviewer software. A co-occurrence is verified when two keywords occur in the 

same study. FIG. 5 shows the results, where the nodes’ dimension denotes the frequency of a keyword, i.e., how 

many times it occurs inside the analyzed dataset, and the number of links reveals which keywords are bounded 

more than others. For better visualization, keywords with at least ten co-occurrence were represented. 

 

FIG. 5: Main research interests on AI in AECO (co-occurrence network of keywords). 
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The co-occurrence representation reveals several research interests: 

• Energy-related problems have received special attention, with studies on optimizing or predicting energy 

consumption (Aguilar et al., 2021). ANNs are strongly linked with energy management (EM), while RL 

(Mason and Grijalva, 2019) and Genetic algorithm (Luo et al., 2020) are investigated in fewer research. 

Thermal comfort is another topic of EM (Halhoul Merabet et al., 2021). 

 

• Condition monitoring is another key research area: there is a cluster formed by structural health 

monitoring, condition assessment, and damage inspection that is correlated chiefly with infrastructures 

(e.g., bridges, road pavements, and so on) (Sun et al., 2020), and a second cluster closely related to 

buildings Mechanical Electrical and Plumbing (MEP) systems’ assessment and maintenance (Carvalho 

et al., 2019)  

• ANN is the most investigated AI technique that is used in different AM applications (energy optimization, 

scheduling, project management, etc.), while other techniques are used only for specific areas (e.g., 

genetic algorithm for building energy optimization (Waibel et al., 2019) or Adaptive neuro-fuzzy 

inference system (ANFIS) for project cost estimation (Dastgheib et al., 2022)) 

4.2 Top outlets for research on AI in AM 

The importance of analyzing academic journals in any scientific field has been highlighted and explained in 

numerous studies (Dastgheib et al., 2022). Journal analysis help in determining the best sources of information, 

while authors discover which journals are best suited for publication. A direct citation analysis of outlets was used 

in this study to show the importance of academic journals that publish AI in AM research. VOSviewer was used, 

with “citation” as the type of analysis and “sources” as the unit of analysis. For the best network, the “minimum 

number of documents of a source” and “minimum number of citations of a source” were set to 10. Only 23 of the 

110 sources met the criteria and were included in the resulting network, represented in FIG. 6. 

 

FIG. 6: Relevant outlets network. 

According to the findings, Applied Energy has been the most influential outlet for AI in AM research. As shown 

in Fig. 5, there is a significant flow of information (via citations) from Applied Energy to the second tier of 

influential outlets in the field, Energy, Energy and Buildings, and Sustainable cities and Societies, as shown in 

Table 4. This group of journals is strongly correlated with energy-related research, while Automation in 

Construction represents the main source with a broader scope.  

Table 4: Top 10 outlets for research on AI in AM. 

Source Documents Citations 

Applied energy 141 4883 

Energy 92 2018 

Energy and buildings 75 1946 

Automation in construction 59 1706 

Sustainable cities and societies 41 684 

Journal of computing in civil engineering 21 450 

Structural control & health monitoring 22 358 

Journal of information technology in construction 18 326 

Journal of building engineering 24 318 

Journal of construction engineering and management 19 314 
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4.3 Scientific collaboration networks: co-authorship analysis 

In any research domain, understanding current scientific collaboration networks can help to a) increase access to 

specialties, funds, and expertise and b) increase productivity. Specifically, with VOSviewer we created a network 

to identify the most influential countries and the collaborations between them: “co-authorship” was the type of 

analysis, “countries” was the unit of analysis, and “fractional counting” was the counting method. For the best 

network, the “minimum number of documents of a country” and “minimum number of citations of a country” 

were set to 10. 26 countries out of 77 met the criteria and were included in FIG. 7. From the results, the United 

States and China stand out as the top-ranked countries. Moreover, England, Australia, and Canada were the third, 

fourth, and fifth largest contributors. 

 

FIG. 7: Collaboration network of countries. 

5. LITERATURE REVIEW 

The first study about AI in AM appeared in the journal “Urban System” in 1978 (Bohl, 1978). Initially, research 

studies were limited on this topic until the beginning of the 21st century, when the growing interest and spreading 

of AI in various fields also increased attention in the AECO sector. In this paragraph, we investigated the literature 

in the AM areas identified from the bibliometric analysis by thoroughly reading the most relevant articles selected 

with the abstract content analysis. Therefore, the following subparagraphs show the main core AM areas where 

AI applications are currently being researched (FIG. 8). 

 

FIG. 8: Summary of the AM core areas where AI is mostly investigated. 

5.1 Energy Management  

The objective of EM is to keep the asset under an acceptable level of energy consumption and relative comfort 

through technical (maintenance) and administrative actions (contracts). Residential, educational, office, 

healthcare, and industrial buildings are increasingly energy consumers. Buildings consume 30–45 % of global 

energy (Ashouri et al., 2019); thus, efforts are currently focused on meeting the requirements for energy-efficient 

buildings by ensuring operative needs at the lowest possible energy cost while remaining environmentally friendly. 

In this context, three different approaches for modeling building energy analysis have been developed: 
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• The white-box method, also known as the engineering method, is divided into two categories: simplified 

and elaborate. Both white-box approaches' sub-categories use physical principles to calculate thermal 

dynamics and energy behaviors for individual building components or the entire building (Ahmad et al., 

2014). 

• The AI-based method (also called the black-box method) investigates building-energy-related output 

without knowing its internal relationships. 

• The hybrid method (also known as the grey method) combines white-box and black-box methods to 

overcome the limitations of each. 

The white-box and grey-box methods require detailed building information as inputs to simulate the inner relation 

and build the energy model, that is often limiting the accessibility of these methods. Furthermore, constructing a 

building energy model is time-consuming and labor-intensive, making it difficult to apply widely (Fumo, 2014). 

However, AI-based building energy modeling methods can forecast desired building energy outputs based on 

correlated variables like environmental conditions and occupancy status (Fumo, 2014). This section reviews AI 

applications in EM for i) energy consumption prediction, ii) building energy control, iii) post-occupancy 

evaluation, and iv) decision-making energy policy. 

5.1.1 AI for energy consumption prediction 

The rising of AI significantly impacts economics, reducing the cost and accessibility to data-driven predictions 

(Agrawal, J. Gans and Goldfarb, 2019). In EM, AI methods have been used to predict electricity or HVAC prices 

and various load types. For instance, short-term forecasts can help with electricity scheduling, allowing 

aggregators to provide better services and consumers to react more quickly. On the other hand, better long-term 

forecasts (i.e., more than 24 hours) can help service providers and operators better understand the available 

flexibility, which consumers to target for disaster recovery, and set demand/response signals. 

Artificial neural networks (ANN) (Bagnasco et al., 2015), SVM (Dong, Cao and Lee, 2005), autoregressive 

integrated moving average (ARIMA) (D Zhao et al., 2016), deep neural networks (DNNs) models (Fan, Xiao and 

Zhao, 2017a), and other regression algorithms have been successfully used to predict building energy loads. A 

general process of regression-based methods includes four steps, i.e., data transformation, feature selection, 

optimization of model parameters, and model training (Zhao et al., 2020). The literature on this topic is sometimes 

controversial, and many studies confronted algorithms to determine the best for predicting energy consumption. 

For instance, Mocanu et al., 2016 discovered that the DNN model outperformed ANN and Support Vector 

Regression (SVR) in predicting the electricity load of residential buildings. On the other hand, Amber, R Ahmad, 

et al., 2018 DNN model’s performance in predicting electricity load was compared to four other regression 

algorithms, including multiple linear regression (MLR), genetic programming (GP), ANN, and SVR. The results 

revealed that the DNN prediction performance was no better than that of ANN. However, recent research 

evidenced the power of ensemble methods in overperforming single ones. Ensemble learning is a more advanced 

regression algorithm that can take advantage of several different regression algorithms. Fan, Xiao and Wang, 2014 

proposed an ensemble prediction model for predicting public building electricity loads. MLR, ARIMA, SVR, RF, 

ANN, boosting tree, multivariate adaptive regression splines, and k-nearest neighbors were among the eight base 

regression algorithms used in the ensemble model. The results showed that the ensemble model's prediction 

accuracy was significantly higher than that of base models. The methods reviewed in this section are listed in 

Table 5. 

Table 5: A list of AI-based building energy load prediction methods. 

Year Application Algorithms Asset Ref. 

2014 Electricity load prediction ANN Large building (Mena et al., 2014) 

2014 Electricity load prediction Ensemble 

learning*, ARIMA, 

SVR, MLP, kNN 

Large building (Fan, Xiao and 

Wang, 2014) 

2015 Electricity load prediction ANN Hospital (Bagnasco et al., 

2015) 

2015 Electricity load prediction MLR, ANN, SVR* Large building (Massana et al., 

2015) 

2016 Electricity load prediction ANN*, SVR, 

ARIMA 

Office (Deyin Zhao et al., 

2016) 
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Year Application Algorithms Asset Ref. 

2018 Electricity load prediction MLR, GA, DNN, 

SVR, ANN* 

Office (Amber, R. Ahmad, 

et al., 2018) 

2022 Electricity load prediction MLR, ANN*, SVR Residential (Seo et al., 2022) 

2017 Cooling load prediction DNN, XGB*, SVR, 

MLR, RF 

Educational 

building 

(Fan, Xiao and 

Zhao, 2017b) 

2019 Cooling load prediction RNN, LSTM, 

GRU* 

Educational 

building 

(C. Fan et al., 2019) 

2022 Cooling load prediction Hybrid method Large commercial 

building 

(Gao et al., 2022) 

* represents that the algorithm has the best performance compared with the others. 

5.1.2 AI for building energy control 

Traditional building control is a rule-based feedback control that uses pre-determined schedules to select set points 

(such as supply air and water temperatures and zone thermostat temperature) and then uses traditional control 

techniques to track those set points. Wang and Hong, 2020 found two significant flaws in the prescriptive and 

reactive control strategy: i) predictive information (such as weather) is ignored, resulting in sub-optimal 

performance; ii) the control strategies are predetermined, meaning they are not customized to the specific building 

and are unable to adapt to changes (such as retrofits). ML can help address both issues (Zhang et al., 2021): ML 

could predict weather, occupancy, and building load (as explained in Section 5.1.1) and use those data to optimize 

the building. Second, ML could allow the controller to learn from building operation data, identifying states, 

updating parameters, and adapting to changes in the target structure. Currently, there are two major approaches 

for building control: Model Predictive Control (MPC) and RL (RL).  

The MPC uses a system model to forecast the system's future states and generates a control vector that minimizes 

a specific cost function over the prediction horizon (Camacho and Bordons, 2007). The prediction is conducted in 

the presence of disturbances and constraints that can be represented by weather conditions, occupant activities, 

and equipment use. MPC controllers have been used in various HVAC systems in buildings: for example, to 

control the temperature of individual zones in a single-story office building with a cooling system but no heating 

or mechanical ventilation (Ma et al., 2012). 

Compared with other ML classes, RL is preferable when dealing with problems involving sequential dynamics 

and optimizing a scalar performance objective. The following are RL's most appealing features: i) direct 

application to a real-world scenario, ii) it is unnecessary to have any prior knowledge, iii) self-adapt to the 

surrounding environment, and iv) self-adjust to input variations, i.e., adaptation to stochastic processes like 

occupant behavior and preferences (Yang et al., 2015). On the other hand, RL approaches can be more data-

intensive and time-consuming than MPCs (Nweye et al., 2021). The methods reviewed in this section are listed in 

Table 6. 

Table 6: A list of AI-based building energy control methods. 

Year Application Algorithms Asset Ref. 

2014 HVAC control MPC Experimental room (Zakula, Armstrong and Norford, 

2014) 

2018 HVAC control MPC Office (Wang et al., 2018) 

2019 HVAC control MPC Virtual building (Blum et al., 2019) 

2017 HVAC control RL Power grid (Zhang et al., 2017) 

2019 HVAC control RL Residential (Zhou et al., 2019) 

2019 Lighting control RL Office (Park et al., 2019) 

2019 Window control RL Several buildings (Han et al., 2019) 

2017 Hot water control RL Residential (De Somer et al., 2017) 

2017 Hot water control RL Residential (Al-Jabery et al., 2017) 
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5.1.3 AI for post-occupancy evaluation 

Another area of growing interest and research is the application of big data analytics to post-occupancy 

evaluations. Indoor air quality (IAQ), indoor environmental quality, occupant health and safety, occupant comfort, 

and occupant complaints are all factors that are frequently evaluated in these studies (Mcarthur et al., 2018). The 

ability to mine indoor environmental data from measurements and occupant satisfaction/comfort data from surveys 

open up new possibilities for facility managers to respond to occupant complaints more effectively. For instance, 

Kim et al., 2018 introduced a novel approach for generating personal comfort models that anticipate an individual's 

thermal preference based on occupant feedback and heating and cooling behavior. The model is based on field 

data collected from 38 tenants in an office building, including human control behavior, environmental variables, 

and mechanical system settings, and incorporates six ML algorithms for classification. 

Moreover, Cheung et al., 2017 studied individual thermal acceptability and perceived air quality acceptability in 

relation to objective physical parameters (temperature, relative humidity, and CO2 concentration), individual 

location, air-conditioning status, occupants' sleeping ventilation habits, and personal environmental exposure 

history in longitudinal monitoring experiments. They used a Gaussian process (that performed better than MLR) 

to simulate individual acceptability levels. Potential applications of this study include smart air-conditioning 

systems that communicate with portable personal sensors to create a personal comfort environment in private 

spaces such as autos, offices, or beds. Finally, the methods reviewed in this section are listed in Table 7. 

Table 7: A list of AI-based post-occupancy evaluation methods. 

Year Application Algorithms Asset Ref. 

2013 Indoor thermal comfort SVR Several buildings (Rana et al., 2013) 

2016 Indoor thermal comfort SVR Office (Jiang and Yao, 

2016) 

2018 Indoor thermal comfort ANN Office (Deng and Chen, 

2018) 

2018 Indoor thermal comfort RF, Gaussian, XGB, 

kSVM 

Office (Kim et al., 2018) 

2019 Indoor thermal comfort Fuzzy logic Large building (Aguilera, Kazanci 

and Toftum, 2019) 

2017 Indoor environmental comfort Gaussian Office (Cheung et al., 

2017) 

5.1.4 AI for decision-making energy policy 

Currently, producing new high-performance buildings and effective retrofit solutions for existing structures is a 

major issue. Retrofit decision-making primarily relies on expert knowledge and involves time-consuming 

processes, including on-site building audits to collect building attributes and, in some situations, detailed building 

retrofit performance studies to determine the potential of each retrofit measure. Because this is unlikely to scale 

throughout the whole building stock, a new field of research focuses on automating the retrofit analysis process 

(Sun et al., 2016). For example, Beccali et al., 2018 trained two different ANNs: the first detected the energy 

performance of buildings in the southern area of Italy, while the second assessed key economic indicators. The 

model was conceived for a better-informed selection of energy retrofit initiatives. 

Moreover, (Re Cecconi, Moretti and Tagliabue, 2019) developed a data-driven method for supporting regional 

energy retrofit strategies for school buildings, focused on using open data, ANN, and Geographic Information 

Systems (GIS). The key benefit is the ability to forecast post-retrofit energy savings without a costly on-site 

Condition Assessment. Finally, Re Cecconi, Khodabakhshian and Rampini, 2022 proposed a support decision 

system based on clustering techniques to define the optimum retrofit scenario. 

5.2 Condition assessment and operations 

Condition Inspection and Monitoring (CIM) is a term used to describe the process of controlling and measuring a 

product or service performance. CIM is formed by a set of procedures for evaluating a product or serviceability to 

execute as planned in real-world scenarios. Asset performance evaluation and reporting are critical in this context 

for creating a holistic awareness of physical items and preventing potential flaws produced by unanticipated 
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events. CIM activities are usually conducted with manual processes that can be time-consuming and error-prone. 

However, the widespread deployment of sensors, images, and videos provides the essential big data to train ML 

and DL algorithms and develop AI-based CIM. For instance, Rampini, Khodabakhshian and Re Cecconi, 2022 

used a CNN to automatically detect building façade’s colors and materials, while Dias et al., 2014 used an ANN 

to predict exterior painted facades' service life. The authors identify three main factors to establish the durability 

of paint coatings in Portugal: age, distance from the sea, and façade's orientation. The authors could predict the 

service life of painted surfaces with reasonable accuracy. In conclusion, these models can be incorporated into 

maintenance management procedures. In this section, we review applications of AI in CIM for i) structural health 

monitoring (SHM), ii) predictive maintenance, and iii) scan-to-BIM of Mechanical, Electrical, and Plumbing 

(MEP) elements. 

5.2.1 AI for structural health monitoring 

Due to the impracticality of visual inspection for vast and complex civil infrastructures and long biennial 

inspection intervals, condition-based evaluation methodologies have been introduced. As a result, SHM has 

evolved to bridge the gap between offline damage detection and near-real-time and online damage assessment. In 

other words, SHM is a damage detection approach that uses a succession of continuous measuring sensors to 

monitor a structure over time (Malekloo et al., 2021).  

DL techniques are commonly investigated for SHM applications, especially image processing and recognition 

(IPR). CNNs are one of the most widely used deep neural networks for IPR, and various architectures are 

increasingly being used to automate visual inspection by detecting structural faults in images. CNNs have been 

employed for the application of crack detection in steel decks (Xu et al., 2019), asphalt pavements (R. Fan et al., 

2019), and concrete surfaces (Cha et al., 2017), with very high accuracy being achieved in all cases. Because 

videos include more information than photos, they enhance data-collecting efficiency, especially in complex or 

risky contexts. For example, Chen and Jahanshahi, 2018 used video frames to train a CNN model to detect cracks 

in nuclear power plant components underwater and discovered that pooling information from many video frames 

could reach a 98 percent success rate on microscopic cracks. Noteworthy, Object Detection (OD) algorithms 

accuracy progressed in the last five years: the first step for OD optimization was made by Regional-CNN (R-CNN) 

(Girshick et al., 2014), then fast R-CNN (Girshick, 2015), and finally, faster R-CNN (Ren et al., 2017). The latest 

advancements in OD accuracy are reached by YOLO ("You Only Look Once") algorithm (Redmon et al., 2016), 

now in its fourth version, which triggered real-time OD (Bochkovskiy, Wang and Liao, 2020). For instance, Pan 

and Yang, 2020 used YOLO v2 algorithm to assess the damage state in Reinforced Concrete (RC) columns since 

RC buildings are the most prevalent structures worldwide. Overall, Image classification and object localization 

are lower-level tasks. Instead, Semantic image segmentation, which separates target regions from the background, 

is a higher-level activity. Semantic segmentation can extract skeleton information from raw photos at the pixel 

level, allowing unstructured image data to be transformed into structured data. The full convolutional network 

(FCN), which replaces fully-connected layers in classic CNN with convolutional layers, is a semantic 

segmentation architecture. Zakeri, Nejad and Fahimifar, 2017 divided segmentation tasks into five major 

processes: i) pre-processing, ii) segmentation, iii) feature extraction, iv) feature selection, and v) detection and 

classification. In this context, Huang, Li and Zhang, 2018 used a VGG-16-based FCN model to extract defect 

regions of tunnel cracks and leakages and discovered that target regions might be retrieved in two-defect 

overlapping pictures. Although the accuracy is still restricted, Yang et al., 2018 developed an FCN model based 

on VGG-19 to detect concrete fractures. Finally, the methods reviewed in this section are listed in Table 8. 

Table 8: A list of AI-based structural health monitoring methods. 

Year Application Algorithms Asset Ref. 

2014 Structural Health Monitoring RF Dam (Dai et al., 2018) 

2020 Structural Health Monitoring XGBoost Concrete electrical resistivity (Dong et al., 2020) 

2019 Structural Health Monitoring SVM Bridge, building (Zhang et al., 2019) 

2020 Structural Health Monitoring ANN Steel fatigue (Gulgec, Takac and 

Pakzad, 2020) 

2019 Structural Health Monitoring RNN Large buildings (Perez-Ramirez et 

al., 2019) 

2021 Crack detection CNN Facade (Chen et al., 2021) 
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5.2.2 AI for predictive maintenance 

Different nomenclature and categories of maintenance management strategies can be found in the literature. (Susto 

et al., 2015) identified the following types of maintenance: 

• Corrective maintenance is only performed after an item stops working. This is the simplest maintenance 

plan because it necessitates both a production stop and the repair of the replacement parts, resulting in a 

direct cost to the process. 

• Preventive maintenance, often known as scheduled maintenance, is a maintenance approach conducted 

with a predetermined schedule in time or process iterations to predict process/equipment breakdowns. It 

is often a successful strategy for avoiding failures. On the other hand, unnecessary corrective actions are 

taken, resulting in increased operational costs. 

• Predictive Maintenance (PdM) is a method of determining when maintenance is required using predictive 

technologies. It is based on constantly monitoring a machine's or process's integrity, allowing 

maintenance to be done only when required. Furthermore, predictive tools based on historical data (e.g., 

ML techniques), integrity variables (e.g., visual aspects, wear, coloration different from original), 

statistical inference methods, and engineering approaches enable early detection of failures. 

Although maintenance based on periodic revisions is the most widely utilized strategy, these strategies are rapidly 

being categorized as flawed and unreliable (Butler and Smalley, 2002). After completing a study with identical 

systems evaluated under equal settings (Canizo et al., 2017), it was discovered that the time it takes for a system 

to fail varies greatly amongst systems. Maintenance based on periodic modifications is thus unproductive because 

it is complicated to predict when a component of an industrial process will break over a specific period. The review 

by Carvalho et al., 2019 revealed that RF, ANN, SVM, and k-means are the most used algorithms for PdM. For 

example, Pan et al., 2017 deployed a CNN to predict faults in the acoustic sensor. The proposed solution allowed 

self-checking to reduce washing machine damage and unnecessary maintenance and increased productivity 

through automatic problem identification using acoustic sensor data and precise part preparation. Similarly, CNN-

based PdM has been applied to photovoltaic panels (Huuhtanen and Jung, 2018) and wind turbines (Canizo et al., 

2017). The applications reviewed in this section are listed in Table 9. 

Table 9: A list of AI-based predictive maintenance methods. 

Year Application Algorithms Asset Ref. 

2014 Predictive maintenance ANN Oil and gas pipelines (El-Abbasy et al., 2016) 

2014 Predictive maintenance SNN, SVM Sewer (Sousa, Matos and Matias, 2014) 

2017 Predictive maintenance CNN Acoustic sensors (Pan et al., 2017) 

2017 Predictive maintenance CNN Wind turbines (Canizo et al., 2017) 

2018 Predictive maintenance CNN Photovoltaic panels (Huuhtanen and Jung, 2018) 

2013 Service-life prediction ANN Facade (Dias et al., 2014) 

5.2.3 AI for AM Scan-to-BIM applications 

Large structural components such as floors, ceilings, walls, and apertures such as doors and windows have been 

the focus of Scan-to-BIM research on automatic OD. BIM models with many other features, such as MEP 

components, are required to maintain buildings and other structures properly. MEP assets comprise a significant 

portion of building maintenance expenditures (Adán et al., 2018). As a result, they provide crucial data for 

maintenance and renovation. There is an evident demand for Scan-to-BIM technology that extends current 

capabilities to MEP components. Detecting MEP components comes with its own set of difficulties. They are 

typically much smaller than structural components, making OD models challenging to detect (Li et al., 2017). 

MEP assets also have a wider range of variation within classes than structural components, necessitating an MEP 

detector learning of additional feature patterns. Radiators, for example, will have somewhat varied labels, valve 

designs, and other characteristics depending on the brand. 

Recent advances in DL have yielded impressive results in detecting a variety of small object classes (Liang et al., 

2018). If successful, DL will detect MEP components in photographic and point cloud data, allowing them to be 

integrated into Scan-to-BIM frameworks and produce more detailed BIM models. Different ML algorithms have 

been used to classify asset-related items: Krispel et al., 2015 detect plugs and light switches using an RF classifier 

and a sliding window on orthophotos of walls. Huang and You, 2013 created a system for recognizing items in 

point cloud data, such as MEP equipment like valves and spotlights. An SVM is used to identify primitive objects 
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like pipes and planes. Walls and other large primitives are presumed to be background elements and are eliminated. 

The remaining points are then grouped based on their Euclidean distance. A rigorous matching procedure 

compares clusters that pass the linearity filter to components in a pre-made 3D object library. When a cluster's 

alignment with a target component surpasses a certain threshold, the cluster is considered a discovered instance of 

the target.  

The most promising results have recently come from DL models. For example, Babacan, Chen and Sohn, 2017 

created a DL model that segregated furniture in laser images of interior rooms based on semantics. In the S3DIS 

point cloud data collection, Chen, Kira and Cho, 2019 employed a neural network to detect structural features like 

beams and columns. These achievements provide even more encouragement to look into using DL to detect MEP 

assets. 

5.3 Risk management 

Risk management (RM) is a discipline that allows for “reducing financial losses, improving health and safety, 

goodwill and reputation, minimizing environmental and social impact, can result in reduced liabilities such as 

insurance premiums, fines and penalties” (ISO 31000, 2018). In other words, RM increases the possibility and 

impact of positive events while decreasing the likelihood and impact of bad ones. Most of the evaluations in RM 

are subjective and based on experience; therefore, much research focuses on establishing a methodology for 

making objective, data-driven decisions and adopting AI solutions. 

Case-Based Reasoning (CBR) (Adán et al., 2018) is a general term in project risk management for solving new 

problems based on similar past experiences. CBR helps identify and mitigate project risks at early stages, such as 

design and construction planning. Some efforts have been noted in gathering risk cases and building a risk case 

database to facilitate CBR for practical use in the construction industry. However, because risk case databases 

frequently contain large amounts of data and reports written in unstructured textual data, manually examining, 

analyzing, and comprehending these reports is time-consuming, labor-intensive, and inefficient. When it comes to 

collecting 'right' situations and information in a short amount of time, the necessity of learning from previous 

experience is sometimes overlooked. As a result, some researchers noted that a key challenge in current CBR 

research for project risk management is retrieving relevant data from the database quickly and accurately so that 

knowledge and experience can be incorporated into new risk identification and assessment on time (Tixier et al., 

2016). Recently, NLP has been used to handle textual document analysis and management difficulties, such as 

retrieval of CAD drawings (Yu and Hsu, 2013), automatic injury report analysis (Tixier et al., 2016), retrieval of 

relevant information for assisting decision-making (Lv and El-Gohary, 2016), and automatic grouping of 

construction project documents based on linguistic similarity (Al Qady and Kandil, 2014). Finally, Zou, Kiviniemi 

and Jones, 2017 combined two NLP techniques, namely Vector Space Model (VSM) and semantic query 

expansion, for risk CBR. When a query is supplied, the results show that the proposed system can swiftly and 

effectively find and score valuable risk situations. In this way, end users rapidly locate risk examples that are 

useful references to new situations or difficulties, and information and experience from previous accidents might 

be embedded into daily work. Any new cases might be flexibly added to the risk case database for retrieval without 

pre-processing. 

5.4 Project Management 

The concept of Project Management (PM) is broad and needs to be narrowed down when used inside the scope of 

this literature review. In this context, the project manager ensures the proper installation and development of a 

new physical service-based product or service using AI tools to comply with proper quality, time, and cost.  

Typically, construction projects involve enforcement and compliance with standards and codes that are manually 

processed. Each building compliance review cycle takes several weeks, and a construction project can go through 

numerous cycles of plan reviews. Failure to follow construction codes result in further fines, penalties, or even 

criminal court prosecutions (Zhang and El-Gohary, 2016). Many research projects attempted to automate the 

compliance checking process as computing technology advanced. Recently, many researchers focused on NLP-

enabled automatic code compliance checking. In fact, compliance can be verified through comparisons, such as 

determining if the required safety information is included in project plans (Martinez-Rojas et al., 2018; Moon, Lee 

and Chi, 2021) and detecting inconsistencies in accident categories in reports (Gerber and Tang, 2013). According 

to Wu et al., 2022, the standard procedure involves four steps: i) extract rule patterns from texts, ii) transform rules 
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to machine-readable logic (usually with a standardized schema like XML), iii) extract as-is information (from 

BIM/GIS models), and iv) fill-in rule variables and conduct checking. For example, Zhang and El-Gohary, 2017 

integrated three types of algorithms into a single unified computational platform: (1) semantic NLP algorithms to 

extract regulatory information from regulatory documents automatically (e.g., building codes) and transform the 

extracted regulatory information into logic rules, (2) semantic EXPRESS data processing algorithms to 

automatically extract design information from building information models (BIMs) and transform the extracted 

design information into logic facts, and (3) semantic EXPRESS data processing algorithms to automatically extract 

design information from BIMs and transform the extracted design information into logic facts. The proposed 

system was evaluated for conformity with Chapter 19 of the 2009 International Building Code, which set the 

requirements for US concrete buildings. In noncompliance detection, 98.7% recall and 87.6% precision were 

reached when evaluatued against a manually generated gold standard (i.e., a benchmark for testing NLP 

performance that includes compliant and noncompliant instances). At the moment, NLP-based compliance 

verification is mostly used to evaluate building design, working procedure dependencies, and spatial combinations 

between subsurface utilities and their surroundings. In addition to the above, other minor AI applications in project 

management are shown in Table 10.  

Table 10: A list of AI-based project management methods. 

Year Application Algorithms Asset Ref. 

2016 
Automated compliance 

checking  
NLP Buildings (Zhang and El-Gohary, 2016, 2017) 

2015 
Assess and predict construction 

labour productivity 
ANN Buildings (Heravi and Eslamdoost, 2015) 

2014 Time and cost forecasting SVR Buildings (Wauters and Vanhoucke, 2014) 

2015 Predict project award price ANN Buildings (Chou et al., 2015) 

2017 
Predict construction labour 

productivity 
ANN Buildings 

(El-Gohary, Aziz and Abdel-

Khalek, 2017) 

2012 
Litigation prediction of site 

condition disputes 
SVM Buildings (Mahfouz and Kandil, 2012) 

2019 
Predict time and cost claims in 

construction projects 
ANN Buildings (Yousefi et al., 2016) 

2017 Bid/no bid decision making SVM Buildings (Sonmez and Sözgen, 2017) 

2017 
Classification of construction 

waste material 
CNN Buildings (Davis et al., 2021) 

2021 Forecast material prices ANN Buildings (Mir et al., 2021) 

6. FUTURE RESEARCH TRENDS 

In the future, AM will continue to embrace digital transformation. More and more AI-based technologies will be 

adopted and spread in all the AM core areas. These future paths are increasingly researched for establishing a more 

inexpensive and effective way to ease the load of human labor and promote smart construction asset management. 

This paragraph addresses the three most relevant AI research areas promising to enhance AM. 

6.1 Digital Twin 

The Digital Twin (DT) is a key component of a cyber-physical system for visualization, modeling, simulation, 

analysis, prediction, and optimization. DT combines three fundamental components: a physical entity, a virtual 

entity, and a data connection. Typically, the virtual part is built on top of the physical part and replicates the 

physical part in a controlled environment (Min et al., 2019). The connections between the two parts (physical and 

digital) allow data to be transferred and controlled. DTs have a comparatively short development history since it 

is widely acknowledged that their origin was in 2002 (Grieves and Vickers, 2016). Sometimes, the term DT is 

confused with cyber-physical systems (CPS) or BIM in construction. According to Davila Delgado and Oyedele, 

2021, DT is an information construct that defines a digital reproduction of a physical asset and its data links, 

whereas CPS is a system that combines digital and physical components. Consequently, it can be assumed that in 

a DT solution, a physical asset will have a digital replica whose behavior can be mimicked and whose status can 
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be monitored and anticipated. On the other hand, a CPS solution entails greater management and optimization of 

physical processes supported by other digital processes without the need for digital and physical components to 

be in sync. Finally, despite DT and BIM referring to the digital representation of physical assets, the former is an 

extension of BIM since it enables real-time data capture and feedback (Boje et al., 2020). 

The DT has been researched mainly in the operation and maintenance stage. The applications can be divided into 

three topics: i) monitoring, ii) analysis, and iii) action (Jiang et al., 2021): 

• “Monitoring” focuses on obtaining data from physical components to update virtual parts, such as defect 

detection and asset monitoring. By processing data such as point clouds, digital photos, thermal images, 

and sensor data from laser scanners, cameras, thermal imaging devices, sensors, and other devices, the 

DT provides a visual and efficient means for inspection and fault detection. Moreover, The DT uses 

sensors to upgrade data in real-time for accounting virtual parts from actual parts to achieve AM, focusing 

on geometric and non-geometric information. For instance, Bonci et al., 2019 built a BIM-based DT for 

real-time automated monitoring of buildings during normal operations, which was evaluated using a 

tailored simulator. To aid facility managers in making decisions, the DT model can mirror the physical 

system and store the real status recorded by the building.  

• “Analysis”, focuses on analysis using virtual parts, including diagnosis and decision-making. In this 

context, a DT can create high-fidelity 3D models for simulation and mechanical calculation by focusing 

on geometric information. For example, Dong, O’Neill and Li, 2014 designed an information 

infrastructure for energy problem detection and diagnostics that expedited the information interchange 

process in a building.  

• Finally, “action” refers to collecting data from physical components and doing something with the 

physical parts utilizing virtual parts, such as autonomous control, retrofitting, and demolition. For 

instance, Volk et al., 2018 built a unified system with hardware sensors. Building information acquisition, 

3D reconstruction, OD, building inventory generation, and project plan optimization are all software 

modules included in the system. Planners, experts, or decision-makers can assess a building while 

digitally recording, analyzing, reconstructing, and storing it.  

The government and public clients increasingly recognize the importance of DT: the UK defined a set of nine 

guiding principles, called Gemini principles, to guide the development of a National DT (Bolton A, Enzer M, 

2018). At the same time, a new standard for DT is in development (BSI, 2022). 

6.2 GANs and synthetic images for AM data augmentation 

DL techniques require the availability of a huge dataset, which sometimes represents a problematic limitation. 

This is true, especially in Construction, where extensive open databases are seldom available since companies and 

institutions do not share their sources willingly (World Economic Forum, 2016). Therefore, considering the limited 

data samples and expensive annotation costs, many researchers have attempted to increase the size and diversity 

of the dataset available with synthetic images (Hong et al., 2021). This process is usually called data augmentation, 

and recently, the most popular technique to improve the quantity and distribution of data is the Generative 

Adversarial Network (GANs) (Bowles et al., 2018). Introduced by (Goodfellow et al., 2020), GANs are neural 

networks that learn to create synthetic samples with the same properties as a training distribution. In the case of 

pictures, this entails learning to generate images (via a generator) that are visually identical to a set of real photos 

to the point where an opponent (the discriminator) cannot detect them. However, the synthetic images created by 

GANs are frequently of poor quality. The discriminator can easily distinguish poor-quality samples with higher 

image resolution (Karras et al., 2018). As a result, rendering engines are being used to create synthetic datasets in 

controllable virtual environments. 

In the AECO sector, the introduction of synthetic images can be facilitated by the presence of several existing 

BIM models, which can be used to render images either at the level of structural elements (Hong et al., 2021) or 

facility management related objects (Wei and Akinci, 2022). For example, Soltani, Zhu and Hammad, 2016 

developed an automated system for producing and classifying synthetic photographs of excavators based on 3D 

equipment models. Di Benedetto et al., 2019 created virtual employees wearing hard hats to train detectors for 

personal safety using the Rockstar Advanced Game Engine (RAGE) from the GTA-V computer game. Finally, 

Wei and Akinci, 2022 provided an approach to produce synthetic data for training semantic understanding models 

reflecting changes in site conditions using 4D-BIM and Unreal Engine, based on as-designed information available 
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in building information models. The results were twofold: i) the proposed workflow addressed issues with 

changing scenes by generating synthetic images with ground truth semantic segmentations based on given 

schedule information at any stage of construction, and ii) the proposed method reduced labeling effort by utilizing 

the semantically rich as-designed information available in a BIM. 

6.3 Deep Reinforcement Learning 

As discussed in section 5.1, AI has been increasingly applied to enable smart EM of buildings. Recently, Deep 

Reinforcement Learning (DLR), where NNs are used to approximate optimal value functions or policies in RL, is 

gaining momentum (Li, 2017). According to Yu et al., 2021 DRL has an excellent representation capacity and a 

good decision-making ability in the face of uncertainty. Specifically, the authors identified five main advantages 

of using DRL for smart building EM: 

1) DRL agents can learn the best control rules by trial and error using information from real-world building 

environments. As a result, DRL can support system operation even if detailed building thermal dynamics 

models are not known. 

2) After the training process is completed, the trained DRL agent will be used for performance testing. The 

DRL agent will generate an action based on the present state of an actual environment using a mapping 

function. DRL can deal with system uncertainties because it does not need forecasting or statistics 

information from building environments in the procedure above. 

3) Building energy subsystems can coordinate with one another under the framework of multiagent DRL by 

creating appropriate incentive functions. As a result, operational restrictions that are spatially connected 

are guaranteed. 

4) Because only forward propagation in deep neural networks (DNNs) is involved during the testing phase, 

the computational complexity of the DRL algorithm is very low. The best control actions can be 

determined almost rapidly even when given a high-dimensional raw state. 

5) Because DRL approaches employ simulated or actual data to train agents, they do not require formal 

mathematical models or premise conditions. Furthermore, when confronted with various building 

conditions, the trained DRL agent can continue to work or even improve through online learning. As a 

result, DRL approaches can solve many smart building EM problems.  

7. CONCLUSIONS 

The growing adoption of AI and data-driven analytics method has attracted researchers’ attention to investigating 

AI applications in the AECO industry. While several literature reviews focus on AI applications for the design and 

construction phases, this study attempts to cover the methodologies applied for Asset Management processes, 

which mainly focus on the operational stage. In reviewing AI in AM applications, we conducted a bibliometric 

analysis and an in-depth review of previous articles. The contributions of this review are:  

1) To provide a basic understanding of AI techniques and AM terminologies and reveal the potential value 

of AI in supporting and improving AM; 

2) To depict and discuss state-of-the-art papers related to AI applications in AM; 

3) To identify the evolution of future research trends that can help researchers target studies about AI in 

AM. 

 Based on the screening protocol, 578 papers were identified as eligible for bibliometric analysis, while 83 articles 

were thoroughly reviewed for in-depth analysis. The bibliometric analysis of the relevant articles revealed the time 

series, journals of publication, co-occurrence of keywords, and co-authorship networks. The AI in AM applications 

proposed by the in-depth review were summarized and grouped according to the core discipline of AM. In 

particular, the findings revealed: 

1) Energy Management, Condition assessment and operations, Risk management, and Project management 

are the four most researched areas among the 14 AM core disciplines; 

2) Specifically for Energy management, most applications focused on: i) DL techniques for energy 

consumption prediction and decision-making energy policy; ii) RL for building energy control; and iii) 

ML for post-occupancy evaluation. 
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3) Specifically for Condition assessment and operations, the main tasks are: i) Structural health monitoring, 

ii) predictive maintenance, and iii) Scan-to-BIM. For these applications, DL and CV techniques are the 

most used. 

The literature identified the status and the research gaps in the abovementioned areas. On the other hand, the 

industry will benefit from further research in those areas that are not yet appropriately investigated, i.e., the 

remaining 10 AM disciplines. Moreover, the in-depth review revealed future trends that point out valuable 

directions in which to make breakthroughs. In particular, we identified the following future trends: 

1) Driven by the increasing need to monitor and control assets throughout their whole lifecycle, Digital 

Twins (DTs) – an exact digital replica of a construction asset – are more and more investigated. DTs are 

created by collecting and combining real-world information about the asset. Moreover, with the support 

of AI and IoT, a DT can learn from various sources and automatically update to reflect changes made to 

its real-world counterpart. 

2) In order to take advantage of the vast number of virtual 3D models that are created in our industry (e.g., 

every object created inside a BIM model), synthetic images and GANs can be used to improve the 

accuracy and the precision of CV applications for enriching AM model with up-to-date information 

automatically 

3) Combining the characteristics of DL and RL, it is possible to increase the efficiency and customization 

of energy management in our built environment. 
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APPENDIX 1: ACRONYMS AND ABBREVIATIONS 

Table 11: Acronyms and abbreviations. 

AECO Architecture, Engineering, Construction and Operations 

AI Artificial intelligence 

ANN Artificial neural Network 

AM Asset Management 

ARIMA Auto Regressive Integrated Moving Average 

BIM Building Information Modeling 

CBR Case-based Reasoning 

CV Computer Vision 

CIM Condition Inspection Monitoring 

CNN Convolutional Neural Network 

DL Deep Learning 

DRL Deep Reinforcement Learning 

DT Digital Twin 

EM Energy Management 

EAM Engineering Asset Management 

FCN Full Convolutional Network 

GRU Gated Recurrent Units 

GAN Generative Adversarial Network 

GDP Gross Domestic Product 

IAQ Indoor Air Quality  

IoT Internet of Things 

kNN k-Nearest Neighbour 

LSTM Long Short Term Memory 

ML Machine Learning 
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MEP Mechanical, Electrical and Plumbing 

MPC Model Predictive Control 

MLR Multiple linear Regressor 

NLP Natural Language Processing 

OD Object Detection 

O&M Operations and Maintenance 

PCA Principal Component Analysis 

PM Project Management 

RF Random Forest 

RNN Recurrent Neural Network 

RL Reinforcement Learning 

SHM Structural Health Monitoring 

SVM Support Vector Machine 

WoS Web of Science 

YOLO You Only Look Once 
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