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SUMMARY: State Highway Agencies (SHAs) and Departments of Transportation (DOTs) allocate their limited 

resources to thousands of competing projects in multi-year transportation programs using expert judgement for 

the expected construction costs and durations. Such estimates overlook influencing parameters known in the 

planning phase and the importance of building reliable databases to support decision making. Meanwhile, it is 

possible to generate meaningful predictions in early stages of project development based on historical data 

gathering and analysis. The present research introduces a newly developed method for conceptual cost and 

duration estimation for public highway projects utilizing an ensemble of machine learning (ML) models and data 

collected for projects completed between 2004 and 2015 (roads, bridges, and drainage projects). Unlike previous 

studies, the proposed method includes project parameters that affect construction durations and costs and were 

not studied simultaneously before. The parameters considered are facility type, project scope, highway type, 

length, width, location, level of technical complexity, and new parameters pertinent to payment and procurement 

methods. The developed method was tested using 29 and 56 randomly selected projects, and the results yielded a 

Mean Absolute Percentage Error (MAPE) of 7.4% and 4.5% for the duration and cost, respectively, which are 

lower than the estimation errors of methods reported in recent literature. Additionally, the generalization abilities 

were assessed by the Mann-Whitney test, and the developed method is found to successfully handle diverse 

projects. Thus, machine learning models can assist agencies in the review process of competing projects from a 

high-level management perspective to ultimately develop better management execution programs.  
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1. INTRODUCTION 

The construction industry provides jobs for almost 7% of the world’s working population (Pan and Zhang, 2021). 

Despite this economic importance, on average, only 2.5% of construction firms complete all their projects 

successfully without delays and/or cost overruns (Betz, 2018). This can be traced back to the uncertain, complex, 

and dynamic nature of construction activities as well as the interdependency between various risk factors (Gondia 

et al, 2020). Studies also indicate that the reason for such failure is the unrealistic and inconsistent estimation of 

duration and/or cost in the pre-design phase (Halpin et al, 2017). However, it is illogical to spend manhours and 

resources to conduct detailed estimates for all proposed projects at that early stage. 

State highway agencies (SHAs) are constrained by the limited available resources and the deteriorating state of 

existing infrastructure (Antoine et al, 2019) and should therefore avoid the repercussions of budget and schedule 

problems. To start with, both cost overrun and cost underrun are problematic (Zhang et al, 2017). Cost underruns 

may cause a suboptimum number of projects to be executed wasting the agency resources, while overruns may 

lead the agency to overspend and borrow from the next year’s budget to compensate the shortage, thereby 

impairing the agency’s credibility (Zhang et al, 2017). Additionally, schedule delays can potentially lead to 

disrupting the economic growth when road users must wait for the projects’ completion longer than necessary (El-

Maaty et al, 2017). However challenging, having reliable duration and cost estimates in early project stages can 

mitigate these community problems and their consequences for the involved stakeholders (Le et L, 2021). For 

instance, the awarding agency can use these reliable estimates to rationalise the process of project prioritization, 

making financial decisions, assessing work zone and traffic impacts, better coordinating with third-party 

stakeholders such as neighbouring businesses, and planning public safety (Qiao et al, 2019, Le et al, 2021). Hence, 

the present study aims to address the question of how we can improve the estimation of construction duration and 

cost in the planning stage of highway projects? 

2. LITERATURE REVIEW 

2.1 Cost and Duration Estimation 

Cost and duration estimation has been the focus of many studies in both the academia and the industry. State 

Highway Agencies develop project duration estimates only after the planning phase is completed using bar charts, 

critical path method, and the estimated cost method (Nevett et al, 2021). In addition, there were several attempts 

by agencies and departments to develop customized duration estimation tools. For instance, Louisiana Department 

of Transportation adopts production rate-based duration estimation based on the quantities of each activity (Nevett 

et al, 2021). These tools, however, were reported to have poor accuracy (Zhai et al, 2016). For instance, one study 

estimated the average prediction error of two such tools as greater than 200% across various projects (Taylor et al, 

2012, Abdel-Raheem et al, 2018). One reason for this could be overlooking the influential factors impacting 

highways durations and costs. 

Several studies have attempted to model the relationship between highway projects features and their durations in 

early stages (Nevett et al, 2021, Titirla and Aretoulis 2019, Son et al, 2019, Okere, 2019, Nani et al, 2017, Pesko 

et al, 2017 and others). Pesko et al, (2017) concluded that integrating the estimation of duration and cost can 

compromise the significance of input data, leading to reduction of estimating accuracy compared to that based on 

separate estimation. Nevett et al, (2021) used multiple linear regression to estimate the duration of 1,500 highway 

projects in the early planning stage based on cost data, traffic volume, terrain type, project condition, project size, 

and construction quantities. Their model was found to have a Mean Absolute Percentage Error (MAPE) of 44%. 

This level of accuracy has not been achieved by other researchers for a model that includes various project sizes 

and types. Pesko et al, (2017) conceptually estimated the duration of 166 urban roads in the tender offer by using 

construction material quantities, cost category, and work distribution across the different categories. Their 

Artificial Neural Network obtained a MAPE of 26.26%, and the Support Vector Machine Model (SVM) achieved 

a slight improvement with 22.77% MAPE. 

On the other hand, the American Association of State Highway and Transportation Officials (AASHTO, 2013) 

explains two procedures to early cost estimation in its practical guide: conceptual estimating and bid-based 

estimating. Conceptual estimates support the early planning of projects especially with limited available 

information. An example is the unit cost (center lane mile or square foot of area), which is calculated using past 

projects data and other project related factors (AASHTO, 2013). Bid-based estimates rely on bid items, project 
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quantities, and historical data after its adjustment for the current project conditions (AASHTO, 2013). The present 

research is concerned with the first type, which is the conceptual estimation of highway construction cost using 

known data at this stage. It is also known as the Top-Down Estimation method (Karaca et al, 2020), which only 

relies on the high-level project features and does not require detailed information about the project, such as the 

items quantities.  

Compared to duration estimation studies, more research was done for cost estimation in the pre-construction phase 

of projects (Elmouslami, 2020, Dehghan et al, 2020, Meharie and Shaik, 2020, Juszczyk, 2020, Tijanic et al, 2020, 

Karaca et al, 2020, Aretoulis, 2019, Meharie et al, 2019, Cao et al, 2018, Zhang et al, 2017, Gardner et al, 2017, 

Chou et al, 2015). Juszczk (2020) applied SVM on bridge projects completed between 2005 and 2018 to estimate 

their cost in the pre-construction phase by delivery method, length, width, and structural properties, and the 

optimum model had a MAPE of 10.94%. Further, Tijanic et al, (2020) employed ANN to estimate the cost of 57 

road sections completed in the last 20 years in Croatia in the initial design phase based on their length, width, and 

contracted duration with a 13% MAPE. Cao et al, (2018) utilized an ensemble of Machine Learning models to 

estimate the cost of 1,400 unit-price resurfacing highway projects, and their MAPE was found to be 7.56%. 

Tables 1 and 2 highlight knowledge gaps in recent literature of duration and cost estimation for highway projects. 

Generally, these highway-related studies are far less than those conducted for building construction projects and 

contain several limitations. For example, highway studies that achieve high accuracies are either applicable to 

certain project types or develop separate models for different project types. This can hinder their suitability to meet 

highway agencies’ need for including different project types in their transportation programs.  

TABLE 1: Conceptual Duration Estimation Studies 

Study Techniques Parameters used Findings 

Nevett et 

al, 2021 

Multiple Linear Regression 

on 1,500 completed projects 

Cost 

Project Characteristics 

AADT: Average Annual 

Daily Traffic 

Terrain Type 

Project Size 

Construction Quantities 

Estimation Error (44%). 

No sensitivity analysis to determine the most influential 

variables on the duration. 

Planning quantities may not necessarily be precisely 

determined during the conceptual phase. 

Titirla 

and 

Aretoulis, 

2019 

Neural Networks and 

Correlation Analysis on 37 

highway projects in Greece 

Initial cost 

Project Scope:  

Length 

No. of lanes 

No. of technical projects 

Embankment 

Existence of bridges, 

geotechnical projects, 

and landfills. 

Mean Squared error with a value of 6.96E-06 

No sensitivity analysis to determine the most influential 

variables on the duration. 

Son et al, 

2019 

Multiple Linear Regression 

on 623 completed highway 

projects in Dallas, USA 

Cost 

Type of Work 

County Size 

(Population) 

 

Estimation error (35.89%). 

No feature selection method or sensitivity analysis to determine 

the most influential variables on the duration. 

Results applicable only to low-bid design-bid-build projects, in 

one geographic region 

Nani et 

al, 2017 

Relative Importance Index 

and Stepwise Regression 

Artificial Neural Networks 

using 30 completed bridge 

projects in Ghana 

Bridge Span 

Bridge Weight 

Bridge Lane 

Excavation  

In situ Concrete 

Reinforcement 

Formwork 

Site Clearance 

Estimation Error (25%-26%) 

No sensitivity analysis to determine the most influential 

variables on the duration. 

Material quantities may not necessarily be precisely 

determined during the conceptual phase. 

Very Small Sample Size 

Results applicable only to bridge projects. 

Some of the parameters of the model are only applicable to 

developing countries 

Pesko et 

al, 2017 

Artificial Neural Networks 

and Support Vector Machine 

on 166 projects of basic 

construction 

works and/or reconstruction 

of urban roads 

Quantity of construction 

materials 

Distribution of the work 

across the different 

work categories 

Project type 

Estimation Error (22.77%-26.26%) 

No feature selection method to determine the most influential 

variables on the duration. 

Planning quantities may not necessarily be precisely 

determined during the conceptual phase. 
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TABLE 2: Conceptual Cost Estimation Studies 

Study Techniques Parameters used Findings 

Meharie 

and 

Shaik, 

2020 

Random Forest, 

Artificial Neural Network, and  

Support Vector Machine using 

74 completed highway 

projects 

Project length 

Number of bridges 

Inflation rate 

Project scope 

Terrain type 

Project location 

The best model was found to be the Random Forest 

model with RMSE 0.9579, followed by the ANN 

model with RMSE 1.1802, and finally the SVM 

model with RMSE 1.2569. 

No sensitivity analysis to determine the most 

influential variables on the cost. 

Juszczyk, 

2020 

Support Vector Machine using 

road bridges, rail bridges, and 

animal bridges completed in 

Poland between 2005 and 

2018. 

Type of Bridge 

Method of Delivery 

Length, Width 

Number of Spans 

Structural Parameters of bridge 

Estimation Error (10.94%). 

No feature selection method to determine the most 

influential variables on the cost. 

Results applicable only to bridge projects. 

Tijanic et 

al, 2020 

Artificial Neural Network on 

57 road sections completed in 

the last 20 years in The 

Republic of Croatia 

Project Scope 

Length and Width of Road 

Construction Duration 

Estimation Error (13%) 

No feature selection method or sensitivity analysis 

to determine the most influential variables on the 

cost. 

Results applicable only to road projects. 

Aretoulis, 

2019 

Artificial Neural Network on 

20 highway projects. 

Culvert Construction 

Project Type 

Number of Lanes 

Tunnel Construction 

Initial Duration 

District 

Relocating Utilities  

Bridge Construction 

Project Length 

Earthmoving Cost 

Paving Cost 

Surfacing Cost 

Signs Cost 

Electromechanical Cost 

Technical Works Cost 

Geomorphology 

The optimum neural network model produced a 

mean squared error with a value of 7.68544E-05 

No sensitivity analysis to determine the most 

influential variables on the cost. 

Meharie 

et al, 

2019 

Multiple Linear Regression 

with no dataset 

Project Type 

Project Complexity 

Project Location 

Project Size 

Site Topography 

Bridge Type 

Number of Bridges 

Existence of groundwater 

Soil Type 

Inflation Rate 

Project Duration 

The developed method was neither applied nor 

validated. 

No sensitivity analysis to determine the most 

influential variables on the cost. 

Pesko et 

al, 2017 

Artificial Neural  

Networks and Support Vector 

Machine on 166 projects of 

basic construction 

works and/or reconstruction of 

urban roads 

Quantity of construction materials 

Distribution of the work across 

the different work categories 

Project type  

Estimation Error (7.06%-25.38%) 

No feature selection method to determine the most 

influential variables on the cost. 

Planning quantities may not necessarily be precisely 

determined during the conceptual phase. 

Zhang et 

al, 2017 

Least Absolute Shrinkage and 

Selection Operator (LASSO) 

Regularized Regression on 

741 completed highway 

projects 

CPPRs (contractors’ past 

performance ratings) 

Contract days 

Weather days 

Length of the project 

Number of lanes 

Consumer Price Index (CPI) 

Prime Lending Rate (PLR) 

Producer Price Index (PPI) 

Estimation Error (7.1%) 

No feature selection method or sensitivity analysis 

to determine the most influential variables on the 

cost. 

Limited to resurfacing projects in Florida. 

More focused on the financial aspects than the 

current project characteristics. 

Tables 1 and 2 also confirm that cost estimation studies outnumber the duration studies. Further, highway agencies 

develop duration estimates only after the planning phase is completed, unlike cost estimates, which are prepared 

in early phases and revised later on. Additionally, having more data is expected to lead to better accuracy. 
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However, no recent study is comprehensive and combines project characteristics (Sharma et al, 2021, Meharie and 

Shaik, 2020, Son et al, 2019), project scope (Qiao et al, 2019, Okere, 2019, Juszczyk, 2020), cost and schedule 

information (Sharma et al, 2021, Titirla and Aretoulis, 2019), level of technical complexity (Karaca et al, 2020, 

Gardner et al, 2017) and expected risk profile for different project types in one robust general model with 

acceptable accuracy. Some studies even use item quantities for duration and/or cost prediction in the conceptual 

phase when they may not be precisely determined (Nevett et al. 2021; Pesko et al. 2017; Nani et al. 2017). Besides, 

some studies rely solely on datasets that comprise factors whose probability and/or impact are determined 

subjectively by experts in questionnaires (Le et al, 2021). This could be attributed to the shortage of historical 

project data impeding quantifiable data-driven studies (Le et al, 2021). Many studies also lack sensitivity analysis 

and/or feature selection to identify the most influential project variables on duration and/or cost of highway 

projects. 

Therefore, highway agencies need a comprehensive way to successfully manage their long-term strategic programs 

with respect to both schedule and budget. This warrants the need for an estimation method that does not require 

activity durations or work sequences, since they are not known at this early stage. Such method also ought to 

achieve high prediction accuracy and at the same time, require small effort in development and update. 

Consequently, the estimators working hours can be freed to only work on the detailed estimation of projects that 

were initially pre-approved by the highway agency, thereby capitalizing on more potentially successful business 

opportunities.  

Unlike methods reported in the literature, the present study aims to provide a simple objective estimation method 

that models the relationship between a comprehensive set of high-level project parameters that are known in the 

planning and development phase, and the project duration and cost. This method can assist highway agencies in 

development of their own estimates for various project types such as: roads, bridges, and drainage projects. The 

developed method expands on previous studies by including project parameters that were not studied 

simultaneously before, adding new parameters, combining a range of project sizes and types in one model, and 

determining parameters that best predict construction duration and cost in the planning phase. However, any time 

or cost components corresponding to project phases before construction, such as the design preparation, are not 

included in the scope of this study.  

2.2 Modelling Approaches 

Estimation of construction duration and cost before the design completion can be accomplished either by 

analogous/comparative/conceptual methods or statistical/predictive methods (Son et al, 2019). Comparative 

estimation methods rely on analogy with similar past projects to estimate the duration and/or cost of the current 

project during its early stages (Son et al, 2019). This is done via combining historical information and expert 

judgement by the project manager (Hashemi et al, 2020). However, this method is questionable, as it assumes a 

linear relationship between the project cost and its basic design variables such as the location, size, type, and 

capacity of the structural components (Chakraborty et al, 2020) and doesn’t take into account data known at this 

stage such as payment and procurement methods. Predictive or Statistical estimation methods are also used before 

design completion relying on the project parameters known at this stage rather than activities relationships and 

quantities (Son et al, 2019). Hence, they provide higher reliability and accuracy than conceptual estimation (Son 

et al, 2019). Statistical methods mainly seek to model the relationship between the input variables (project features 

from a dataset of past projects) and the output (duration and/or cost) (Hashemi et al, 2020). Statistical methods 

include parametric and non-parametric modelling. The main difference is that parametric modelling such as 

regression analysis requires the definition of the mathematical form first before conducting any analysis, where 

both the dependent and independent factors must follow the parameters established for the modelling relationship: 

linear or non-linear (El-Sawah and Moselh,i 2014). This is contrary to non-parametric modelling which relies on 

fitting an unknown equation to the dependent variable and its predictors, and the number and nature of the 

parameters are determined from the data and not fixed in advance (Juszczyk, 2017). 

Various studies have employed regression analysis to estimate the cost and/or duration of highway projects in the 

conceptual phase (Nevett et al, 2021, Son et al, 2019, Zhang et al, 2017, Bayram, 2017, Zhai et al, 2016, 

Czarnigowska and Sobotka, 2014). Even though regression analysis is easier to interpret, is faster when learning 

from the data, and requires less training data than non-parametric techniques (Kotu and Deshpande,, 2014), it was 

illustrated that it behaves poorly in the estimation of durations and cost in the conceptual phase of highway projects 
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(low accuracy). Furthermore, the few studies which successfully obtain high accuracy such as those conducted by 

Zhang et al, (2017) and Czarnigowska and Sobotka (2014) were applicable to certain project types: resurfacing 

projects and public roads, respectively. This can be attributed to the fact that it is a highly constrained process 

which requires the priori assumption of the type of relationship between the predictors and the dependent variable 

beforehand (Juszczyk, 2017). Such assumption hinders proper modelling of the interaction between the different 

project variables, and this does not suit the dynamic nature of construction, especially during the conceptual phase 

that contains many uncertainties (El-Sawah and Moselhi, 2014). Further, the relationships between the input 

parameters and the output may exhibit a mix of linear and non-linear relationships, and thus, they may not be 

properly captured by regression analysis (Matel et al, 2019). Additionally, the residuals of linear regression models 

must meet certain assumptions. They should be independent and normally or approximately normally distributed. 

Their mean should be zero, and their variance must be a constant (Zhang et al, 2017). Usually, the data gathered 

from the field does not meet these assumptions. Consequently, the regression models become susceptible to 

multicollinearity, which means the presence of strong correlations among the independent variables leading to 

unstable model predictions (Elmousalami, 2020).  

On the other hand, non-parametric estimators are capable of learning by detecting the implicit relationships 

between the input parameters and the output without having initial assumptions. This is particularly useful for the 

conceptual phase of construction projects when there is limited prior knowledge (Juszczyk, 2017). As a result, 

they are slower to train than parametric models, as they require more training data to estimate the mapping 

function. They also have the risk of overfitting, so they require scrutiny in their development and interpretation. 

However, these limitations are offset by their flexibility and being powerful modelers in the sense of making no 

prior assumptions. They can also approximate non-linear relationships with high accuracy and analyze raw data 

independent of their distribution or even type (Elmousalami, 2020). Hence, they have gained popularity in the 

construction engineering and management field owing to their ability to solve complex problems successfully 

(Mensah et al, 2016). In fact, non-parametric modelling has outperformed regression analysis in several studies 

(Singh and Chauhan, 2009, Petruseva et al, 2013, Chou et al, 2015). For instance, Chou et al, (2015) used 

regression analysis and ANN for estimating the cost of bridge projects, and the ANN model outperformed the 

regression model with a MAPE of 7.56%. Consequently, non-parametric modeling techniques are used in the 

present research since high accuracy and robustness are cornerstones in prediction applications that involve 

resource planning and significant financial decisions (Tijanic et al, 2019).  

2.3 Machine Learning Algorithms 

Artificial intelligence is a fundamental cornerstone in improving the way a construction project is planned and 

performed (Pan and Zhang, 2021). Machine learning is a branch of artificial intelligence that allows computers to 

learn and derive meaning from their prior experiences. i.e., raw input data, without having to be directly 

programmed (Sharma et al, 2021). This is corresponding to humans’ perception abilities that can handle complex 

problems intentionally and adaptively (Pan and Zhang, 2021). Currently, the construction industry is rapidly 

increasing AI investments, most of which is directed towards machine learning related applications that can learn 

huge and diverse amounts of data and make smart decisions, accordingly. Such innovation is considered reasonable 

given the known fact that the construction field is very rich and data intensive. Consequently, machine learning is 

well-suited for the goal of this study. It can be categorized into supervised and unsupervised learning based on the 

type of data presented to the model (Sharma et al, 2021). Supervised learning/Guided learning/ Learning with a 

teacher provides the desired output as an input to the machine, so the model learns from labelled data unlike 

unsupervised learning (Sharma et al, 2021). Since the available data consists of project parameters rather than 

activities relationships and quantities, the studied system is too complex to have known or traceable patterns. 

Therefore, supervised ML is best suited to handle it since it focuses on learning from implicit data patterns (Kotu 

and Deshpande, 2014). 

ML models are often prone to overfitting and hyper-parameter selection issues (Elmousalami, 2021). Overfitting 

occurs when the training algorithm corresponds too closely with the training data and fails to predict unseen future 

records reliably. Hyper-parameter selection is crucial for optimizing the learning process of a ML algorithm. As a 

result, it is generally advised to create more than one predictive model (Elmousalami, 2021). In the current study, 

Artificial Neural Networks (ANN), Support vector Machines (SVM), and Random Forest (RF) algorithms were 

selected, as they are commonly used in construction research domain (Elmousalami, 2021, Meharie and Shaik, 
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2020, Juszczyk, 2020, Titirla and Aretoulis, 2019, Pesko et al, 2017). They were subsequently combined in an 

ensemble to benefit from their collective strengths and balance their weaknesses. 

2.3.1 Artificial Neural Networks (ANN) 

A neural network contains multiple layers: input, output, and several hidden layers, as seen in Fig. 1. The input 

layer obtains information from the outside world, just like the human brain, and passes it onto the hidden layers. 

ANNs have been repeatedly cited in the literature. For example, they have been used for the conceptual estimation 

of highway projects cost especially when limited information is available (Meharie and Shaik, 2020, Tijanic et al, 

2019, Karaca et al, 2020, Aretoulis, 2019, Cao et al, 2018, Gardner et al, 2017, Chou et al, 2015). Additionally, 

they have been applied to estimate the duration of highway projects in their early stages, though not as widely as 

cost (Titirla and Aretoulis, 2019, Nani et al, 2017, Pesko et al, 2017, Mensah et al, 2016). ANN has gained 

popularity in several disciplines owing to its superiority in comparison with other AI techniques for several reasons 

(Sharma et al, 2021). It can handle large amounts of complex non-linear data with fast real time performance 

without having to conform to any assumptions such as linearity or normality (Kotu and Deshpande, 2014, Mensah 

et al, 2016), which is highly suited for construction data gathered from the field. It can also achieve high predictive 

accuracy by capturing complex associations and patterns even if the causal relationships are ambiguous (Karaca 

et al, 2020). Finally, it can effectively handle small sized datasets with independent attributes, like the dataset 

included herein (Kotu and Deshpande, 2014). 

 

FIG. 1: General Structure of ANN (Tijanic et al, 2019) 

2.3.2 Support Vector Machine (SVM): 

Support Vector Regression (SVR) creates a decision surface by mapping input vectors into a high-dimensional (or 

infinite-dimensional) feature space, where regression is performed (Wauters and Vanhoucke, 2014). Since the 

relationship between the multidimensional input vector x and the output y is mostly unknown and possibly non-

linear, this mapping operation is required (Kotu and Deshpande, 2014). There have been multiple successful 

applications of SVM. Pesko et al, (2017) reported that SVMs surpassed ANNs in the conceptual estimation of both 

durations and costs in the tender stage of urban roads. Juszczyk (2020) obtained a MAPE of 10.94% in the 

prediction of construction costs of bridge projects in their early stages using SVM. On the other hand, SVM can 

often have slow computation times because of the higher dimensional mapping, which can become challenging in 

machine learning problems with many attributes. However, they are widely applied as they seek to reduce the 

generalization error considering both the training error and a confidence level, unlike other techniques that only 

minimize the training error (Zhang al, 2019), and they also perform exceptionally well with both linear and non-

linear data (Wauters and Vanhoucke, 2014). Usually, construction data can include both linear and non-linear 

relationships, requiring algorithms that can handle such diversity easily. Additionally, their robustness and 

overfitting resistance against changes in the training data make SVMs one of the most versatile machine learning 

algorithms (Kotu and Deshpande, 2014). Finally, most machine learning models focus their learning process on 

the most common cases (far from the boundary), SVM prioritizes the extreme rare cases strengthening its 

predictive ability (Kotu and Deshpande, 2014). 
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2.3.3 Random Forest (RF) 

Random Forest was proposed by Breiman (2001). It is a version of ensemble learning, where it consists of a set of 

decorrelated decision trees to avoid their frequent overfitting issues (Kotu and Deshpande, 2014). Each tree is 

trained using a bootstrapped sample of the training data (drawn with replacement) on a subset of the parameters 

that are randomly selected for each tree (Chakraborty, 2020). The final result is predicted for every new record 

using a majority vote in case of classification or by averaging the predictions for regression tasks, thereby 

improving the predictive accuracy (Chakraborty, 2020). Many studies employed Random Forest alongside other 

ML techniques for the estimation of construction projects cost (Cao et al, 2018, Chakraborty et al, 2020, Meharie 

and Shaik, 2020). Understandably, Random Forest requires extensive computation resources and time to train 

multiple trees and combine their outputs. It can be complex and require comprehensive training data, as it does not 

predict beyond the range of its previously seen data (Chakraborty, 2020). On the other hand, it offers the following 

advantages for data-based prediction problems: it is more stable and less susceptible to performance changes due 

to changes in the dataset than individual decision trees (Kotu and Deshpande, 2014), it can handle large numbers 

of input parameters (Cao et al, 2018), and it can effectively handle small sized datasets with independent attributes 

(Kotu and Deshpande, 2014). Therefore, it offers an opportunity for flexible modelling, which is convenient for 

construction related applications. 

2.3.4 Ensemble Learning 

ML algorithms suffer from generalization errors that are composed of two parts: an irreducible error (cannot be 

eliminated) and a reducible error (bias and variance) (Ahiaga-Dagbui and Smith 2014). The irreducible error is the 

noise which is by definition a random intrinsic aspect of data, and little can be done about it (Aggarwal, 2015). 

Bias is the average error between the actual and predicted values of the target output, while variance refers to the 

sensitivity of the model to different training sets (Ahiaga-Dagbui and Smith, 2014). The modelling effort should 

be directed towards the reducible error (Aggarwal, 2015). However, if we attempt to reduce the bias, the variance 

will increase and vice versa.  

A bias-variance trade-off can be achieved using ensemble methods, where several models are combined to improve 

their overall predictive performance (Moon et al, 2020). In other words, a strong learner is built using several weak 

learners. It is sometimes compared to consulting a “committee of several experts”, the individual models in this 

case, before making a final decision (Ahiaga-Dagbui and Smith, 2014). This enables the end user to collectively 

benefit from their strengths and balance their weaknesses as well as reduce the risk of overfitting (Aggarwal, 

2015). An ensemble model effectively deals with high-dimensionality issues, complex data structures, small 

sample size, and missing data (Elmousalami, 2020). On the downside, the presence of multiple models may 

increase the complexity, thereby reducing the interpretability (Elmousalami, 2020). Nonetheless, the numerous 

benefits including the improved predictive accuracy and reduced risk for overfitting certainly outweigh the 

interpretability issues, especially in applications that are more concerned with making accurate financial decisions.  

There are many studies in various fields in which the ensemble learners surpassed the individual base models. Cao 

et al. (2018) developed an ensemble of Extreme Gradient Boosting, ANN, and RF for the prediction of unit-price 

bids of resurfacing projects. The proposed ensemble learning model performed much better than the baseline 

models with MAPE of 7.56%. Ahiaga-Dagbui and Smith (2014) developed a pre-contract cost estimation model 

using non-parametric bootstrapping and ensemble learning of ANNs for water infrastructure projects. The 

ensemble models were superior to the bootstrapping model, where 92% of the validation predictions were found 

within +/- 10% of the actual cost and 77% within +/- 5% of the actual cost. Zou et al. (2020) applied an ensemble 

model comprising a gradient boosting tree and a deep neural network to predict the travel time of highways. These 

studies indicate better performance of ensemble models than individual base models. 

Ensemble models can be developed either by (Moon et al, 2020): 

1. Voting which is mainly averaging of various models’ predictions on one level or  

2. Stacking where the predictions of multiple models on the same dataset are combined in two levels. The 

predictions produced from the Level-0 Base Models are used to build a new Level-1 Meta Model, which 

makes the final predictions on the testing dataset. 

Fig. 2 explains the difference between voting and stacking ensemble models. 
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FIG 2: Voting vs Stacking Ensemble Models (adapted from Moon et al, 2020) 

3. DEVELOPED METHOD 

A newly developed method is presented for conducting efficient conceptual estimates of cost and duration for 

highway projects. The method encompasses four main steps/phases (Fig. 3):  

1. Identifying the factors impacting the costs and durations of this class of projects 

2. Collecting and organizing data 

3. Training the Machine Learning Models 

4. Testing and Verifying the Machine Learning Models 

 
FIG. 3: Developed Method 

3.1 Factors Identification 

The most recent and relevant research studies were examined to extract the factors influencing the conceptual 

estimation of construction duration and cost of highway projects. More specifically, the studies selected were those 

conducted between 2017 and 2022 and concerned with the estimation of construction duration and cost in the 

planning phase of highway projects when not much detailed information is available. This selection process was 

done by the help of Google Scholar search engine to ensure a comprehensive database search. For instance, the 

extensive review study conducted by Sharma et al, (2021) identified various necessary input parameters impacting 

highway projects preliminary durations and costs including location, procurement, payment, facility type, project 

scope, highway type, and project technical complexity. Le et al, (2021) also presented an extensive literature 

review to highlight the most influencing factors on a public roadway project duration: project technical complexity 

and project risk profile.  



 

 

 
ITcon Vol. 27 (2022), Mohamed & Moselhi, pg. 604 

The current study aims to expand upon the study conducted by Nevett et al, (2021) for estimating highway projects 

construction duration using multiple linear regression, which obtained an error of 44%. This level of accuracy has 

not been achieved by other researchers for a model that includes various project sizes and types. Selecting the 

parameters to be included in the conceptual estimation models was based on the recent literature. The project 

location was one of the most cited factors for duration estimation by Sharma et al, (2021), Le et al, (2021), and 

Son et al, (2019). The facility type also impacts the schedule of a highway project (Sharma et al, 2021, Le et al, 

2021, Qiao et al, 2019). The reviewed cost estimation literature included facility type (Sharma et al, 2021, Tijanic 

et al, 2019, Aretoulis, 2019), highway type (Sharma et al, 2021, Juszcczk, 2020, and Karaca et al, 2020), and 

expected technical complexity level (Sharma et al, 2021, Karaca et al, 2020, Meharie et al, 2019, Gardner et al, 

2017). Furthermore, the project location was employed in various cost estimation studies (Sharma et al, 2021, 

Meharie and Shaik, 2020, Aretoulis, 2019).  

Tables 3 and 4 include the parameters used in the developed method, their types, and source. The target output 

variables in the collected dataset refer to the total project duration in working days including design and 

construction and the construction cost in USD including change orders. 

TABLE 3: Estimation Parameters for Construction Duration 

Factor 1 2 3 4 5 6 7 Parameter Type Possible Values 

1. Project Agency ● ● ●         Categoric US State (Location) 

2. Facility Type ● ●   ●       Numeric Roads, Bridges, Drainage, and 

Intelligent Transportation System 

(ITS) as % of Total Cost 

3. Project Scope ●       ●     Numeric New Construction/Expansion, 

Rehabilitation/Reconstruction, and 

Resurfacing/Renewal 

4. Highway Type ●   ●         Numeric Rural Interstate, Urban Interstate, 

Rural Primary, Urban Primary, and 

Rural Secondary. 

5. Length in Kilometers           ● ● Numeric Kilometers 

6. Number of Lanes           ● ● Numeric Number 

7. Technical Complexity ● ●           Numeric Non-complex, Moderately Complex, 

and Most Complex 

TABLE 4: Estimation Parameters for Construction Cost 

Factor 1 8 9 10 11 12 13 14 15 Parameter 

Type 

Possible Values 

1. Project Agency 

(Location) 
● ● ●       ●     Categoric US State (Location) 

2. Facility Type ●           ● ●   Numeric Roads, Bridges, Drainage, and 

Intelligent Transportation System 

(ITS) as % of Total Cost 

3. Project Scope ●   ●             Numeric New Construction/Expansion, 

Rehabilitation/Reconstruction, and 

Resurfacing/Renewal 

4. Highway Type ●     ● ●         Numeric Rural Interstate, Urban Interstate, 

Rural Primary, Urban Primary, and 

Rural Secondary. 

5. Length in Kilometers       ●           Numeric Kilometers 

6. Number of Lanes       ●           Numeric Number 

7. Technical Complexity ●       ● ●     ● Numeric Non-complex, Moderately 

Complex, and Most Complex 
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Sources for Construction Duration & Cost: 

1. Sharma et al. 2021 

2. Le et al. 2021 

3. Son et al. 2019 

4. Qiao et al. 2019 

5. Okere 2019 

6. Titirla and Aretoulis 2019 

7. Nani et al. 2017 

8. Liang et al. 2021 

9. Meharie and Shaik 2020 

10. Juszczyk 2020 

11. Karaca et al. 2020 

12. Meharie et al. 2019 

13. Aretoulis 2019 

14. Tijanic et al. 2019 

15. Gardner et al. 2017 

Moreover, the present study includes other project attributes which have not been included in duration and/or cost 

estimation studies to date: 

1. Payment Method: Unit price, Lump Sum, Guaranteed Maximum Price, and Cost Reimbursable 

(Categoric Parameter) 

2. Procurement Method: Low Bid, Best Value, Qualifications-based, and (A+B) Cost + Time (Categoric 

Parameter) 

3.2 Data Collection and Organization 

3.2.1 Data Collection 

Usually, data is hard to obtain, as the construction industry is still largely deficient in recording and publishing 

projects data. The present study was developed using data from the literature, as a part of the research study 

“Project Delivery Methods’ Change-Order Types and Magnitudes Experienced in Highway Construction” 

(Alleman et al, 2020) and other studies conducted by the same authors such as (Antoine et al, 2019). Fortunately, 

the authors were generous enough to provide us with their original dataset. The collected data includes but is not 

limited to the project name, project ID, project agency, project location, facility type, project scope, highway type, 

construction cost, engineering services cost, construction duration, change orders values, encountered delays, 

lessons learned, project risk profile, project delivery method, payment method, procurement method, and the 

project technical complexity. A sample project information is found in Appendix A. The projects sizes range 

between two million and fifty million USD. The collected data comprised 291 US highway construction projects 

completed between 2004 and 2015 from state and federal highway transportation agencies: duration data was 

available for 146 projects, and cost data was available for 284 projects. Projects were completed in several states 

including Florida, Utah, Arizona, Colorado, Oregon, and Maine among others (FHWA, 2018). An adjustment for 

inflation was done by the FHWA National Highway Construction Cost Index to ensure a fair comparison of the 

projects’ costs at the same time by converting them to equivalent values in June 2015.  

The purpose of the original study was to examine the relationships between highway projects delivery methods 

and the types and magnitudes of encountered change orders (Alleman et al, 2020). Initially, this data was collected 

by the authors from state and federal highway agencies through mining cost and schedule performance datasets 

and distributing a questionnaire survey to projects’ representatives to obtain additional project performance data. 

This was part of a big first-of-a-kind FHWA national study in 2018, and at the time, it was considered one of the 

biggest empirical highway construction datasets (FHWA, 2018). The data collection process was completed under 

rigorous quality control measures for 18 months, and there was no need to merge data from various sources for 

any one project (Antoine et al, 2019). All the collected data can be found in the final FHWA project report (FHWA, 

2018). The current research utilizes the variables relevant to its scope of work, and these variables are sometimes 

referred to as: parameters, factors, and attributes.  
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3.2.2 Preliminary Data Analysis and Preparation 

In the present study, data analysis is done to ensure that the dataset is correctly representative of US public highway 

projects and hence corroborate the applicability of the concluded insights in the study. For example, the 

percentages of Design-Bid-Build (DBB), Design-Build (DB), and Construction Management/General Contractor 

(CM/GC) are 40%, 48%, 12%, respectively, of the collected projects sample, which is representative of US 

highway projects according to FHWA (2016). Contrary to popular belief, agencies use alternative contracting 

methods (DB and CM/GC) on all project sizes not only larger projects (FHWA, 2018). It was also noted that 

projects twice as large were completed in half the time by DB and CM/GC in comparison with DBB (FHWA, 

2018). Regarding the procurement method, almost 60% of the dataset were based on the lowest bid, which is 

particularly common with government-owned projects. 

The data preparation process involves the following steps: 

1. Handling Missing Data and Outliers: The collected dataset had no missing values within the variables 

selected for the scope of the current research. On the other hand, the modified z-score, which is suitable 

for smaller datasets than z-score, was applied to eliminate the outliers using Equation 1 (Abdelaty et al, 

2020). The data points whose modified z-score is more than 3.5 are eliminated from further analysis. 

Thus, five projects were excluded from the dataset based on this value.  

Mi = (0.6745 (Xi-X’))/MAD …. Equation 1 

where Mi: Modified z-score, Xi: Observed Value, X’: Median, and MAD: Absolute Difference between 

median and observed value. 

2. Encoding categorical data: Most machine learning models can only handle numeric attributes and not 

nominal data. Hence, categorical attributes such as the location are transformed into several columns of 

0 and 1 (dummy variables) 

3. Splitting into training and testing datasets: In this research, the dataset was divided into 80% for training 

the model and 20% for testing it, using a stratified sampling procedure to ensure the same distribution 

of the output variables in the two sub-samples (Kotu and Deshpande, 2014). 

4. Feature Scaling: Scaling means to reduce all data values (both input and output) to the same order of 

magnitude (Pesko et al, 2017). Hence, all data will have equal significance in the modelling process in 

contrast to having a smaller attribute be overlooked by a larger attribute like the cost (some values reach 

millions). The method applied here is the Zero-Mean normalization, which entails shifting the entire 

dataset vertically so that their average is equal to zero. It was selected because of its simplicity and 

suitability for all kinds of distributions in the dataset (Pesko et al, 2017). 

3.2.3 Size of Dataset 

An important aspect in developing machine learning models is the size of the data set used for the training and 

testing processes. Small sized datasets can adversely affect the reliability of the developed models through 

overfitting, where the machine learning model memorizes the specific patterns of the training records instead of 

establishing a generalized structure from the records and/or generating highly varied performance indices among 

the test folds (Kim et al, 2008). On the other hand, large datasets can often contain noise, and this necessitates the 

use of noise modeling and outlier analysis techniques (Gondia et al, 2020).  

It should be noted that the present model satisfies the minimum sample size reported by Elmousalami et al, (2020) 

and Kass and Tinsley (1979) for construction estimation modelling which is between 5 and 10 times the number 

of all variables. Hence, for the construction cost and duration models, the minimum sample size would be between 

5x9= 45 and 10x9 = 90. The gathered data included 146 and 284 data points for the duration and cost models, 

respectively satisfying the minimum data requirements. Nevertheless, it can still be considered a relatively small 

dataset in the realm of machine learning based predictive models. This small size of datasets in most studies is 

attributed to the challenges of obtaining confidential information owned by governmental agencies about highway 

projects (Karaca et al, 2020). Hence, the selection of the adopted ML models was limited to those techniques that 

are well-suited to handle such consideration with a demonstrated history of satisfactory performance. As a final 

note, even though the limited number of project records can somehow impede the model generalizability, this is 
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highly dependent upon having access to more data. The developed method can be applied to larger datasets where 

the required data is available to produce customized models for highway projects cost and duration prediction. 

3.2.4 Analysis of Lessons Learned Reports Text Data 

Even though the information included in the lessons learned and bidding documents is classified as unstructured 

data in the world of machine learning, it was found quite useful when converted into structured data in the format 

used by ML algorithms. Further, the inferences made from this data can be quite beneficial in predictive 

applications, like the study at hand. The dataset had more complete information about the encountered delays than 

cost overruns. Table 5 shows the words and word pairs that were found to be associated with the three delay levels:  

1. Less than 30% (Minor)  

2. Between 30% and 60% (Moderate)  

3. More than 60% (High)  

For instance, for projects with high delay, the associated words reveal some encounters and activities that can be 

challenging to estimate or perform such as: “government shutdown”, “utility relocation”, “disputes”, “cranes 

productivity”, “labor productivity”, and “traffic control”. Hence, having established systems in place to deal 

proactively with possible claims, disputes, and productivity issues can help avoid high levels of schedule delays 

in future projects. It is also shown that such projects often experienced uncertainties such as “unknown quantity” 

or “unpredicted condition”. Thus, encountering such words in future projects will prompt the planners to request 

clarification in advance during the bidding stage. Projects with moderate delays are shown to relate to other word 

pairings that can explain why they had a lower level of delay such as: “aggressive schedule” and “reduced impact”. 

Another interesting inference is that moderate delay projects included “value engineering” and “completion 

incentive”. The idea behind value engineering is to encourage the construction contractor, with a monetary 

incentive, to make suggestions to improve the design constructability, cost effectiveness, and smoothness of 

installation, since contractors are typically more experienced in this regard (Halpin and Senior, 2017). There are 

fewer word pairs for minor delay projects than the previous two categories, and the most frequent words are found 

in Table 5. Hence, the high and moderate delay groups can be differentiated from each other and from the other 

group, as their risk factors were more predictive and exclusive. This unstructured text data can provide the user 

with invaluable insights, that interpret the past projects’ experiences and can be helpful to plan for future projects 

as well to avoid unnecessary delays. 

TABLE 5: Text Analysis Results 

  High Moderate Minor 

Word/Word Pair government_shutdown damage expedite_project 

  utility_relocation aggressive_schedule traditional_design 

  traffic_control value_engineering allowed_overlap 

  Replace commit ahead_schedule 

  crane_productivity completion_incentive   

  Assess negotiate   

  unknown_quantity reduced_impact   

  unpredicted_condition additional   

  Disputes minimize_impact   

  labor_productivity accelerate   

3.3 Training Machine Learning Models  

Training ML models comprises selecting optimum parameters and validation to ensure a satisfactory and reliable 

performance for the developed models. 
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3.3.1 Selecting the parameters of the ML Models 

The success of any ML model highly depends on the tuning of its hyperparameters (Wauters and Vanhoucke, 

2014). Selecting values for these hyperparameters was based on a) following the best practices from previous 

studies to ensure practicality, simplicity, and low computation requirements, b) suitability for the task at hand, and 

c) Grid Search. Grid Search Optimization is a wrapper method which uses a feedback loop, namely the cross-

validation technique, to iteratively select values for the parameters of a ML model to customize its performance to 

the dataset (Kotu and Deshpande, 2014). Grid search optimization was selected because of its low requirements 

of computation time and resources, as it is well-suited for conducting small quick searches among a group of 

hyperparameter values, that are generally known to provide a satisfactory performance (Wauters and Vanhoucke, 

2014). 80% of the gathered data was randomly selected for the optimization process, which corresponds to 117 

and 228 projects for the estimation of duration and cost, respectively. 

3.3.2 Validating the ML Models 

The k-fold cross validation method is known for its reliability in the assessment of both the training error and the 

generalization error and the optimization of the bias-variance trade-off (Gondia et al, 2020). In this method, the 

entire data set is randomly split into k distinct and almost equal number of folds, where k is a positive integer. One 

fold is set aside for testing, and the remaining k-1 folds are used for training the model. The testing fold is known 

as the validation sub-set, and it is mainly used to fine tune the model parameters. This process is repeated k times. 

The predictive performance of the model is evaluated by averaging the selected prediction metrics across the 

different folds (Wauters and Vanhoucke, 2014). According to the literature, the best value for k is 10 to ensure 

optimal computation time and estimation of error (Kohavi, 1995). The grid search is conducted by repeating this 

process for the different combinations of the model hyperparameters, and the combination that achieves the best 

score across the k folds is selected (Wauters and Vanhoucke, 2014). The main advantage in this technique is that 

the entire data set is used for training and testing the model, and each example is used once for testing. Further, 

this eliminates the probability of overfitting and strengthens the generalization ability of the developed model 

(Wauters and Vanhoucke, 2014). 

The next sections explain the parameter selection and validation processes of the individual ML models and the 

formulation of the ensemble learning model which will be subsequently tested. 

3.3.3 Artificial Neural Networks (ANN): 

ANNs have a few parameters to be selected. The selected network architecture is the Multi-Layer Perceptron 

(MLP), as it is commonly used for regression applications (Pesko et al, 2017). It consists of an input layer which 

receives the task to be processed, an arbitrary number of hidden layers which process the input data, and an output 

layer which performs the required regression task (Abirami and Chitra, 2020). Other architectures exist for ANN 

such as the convolutional neural network which has more sophisticated uses like image processing, object 

detection, optical character recognition, natural language processing, and sound (Abirami and Chitra, 2020). 

Another type of ANN is the recurrent neural network which is more suited for modeling sequence data like sound 

or time series sensor data than MLP (Abirami and Chitra, 2020). Moreover, the back propagation algorithm is 

selected for practicality owing to its simplicity, excellent generalization capability, and lower computation 

requirements in comparison to General Regression and Radial Basis Function Neural Networks (Tijanic et al, 

2019). The optimum number of hidden layers has been confirmed by many results in different engineering fields 

to be not more than two (Huang and Lipmann, 1988, Pesko et al, 2017). In fact, it is generally recommended to 

begin with only one hidden layer in the grid search (Hyari et al, 2016). In the present study, the grid search was 

done with 1 and 2 hidden layers to minimize the computation speed and requirements. Selecting the optimum 

number of neurons in the hidden layers is necessary to avoid the two extreme cases of: too many hidden neurons 

leading to overfitting, or insufficient neurons causing the omission of basic functions (Pesko et al, 2017). In this 

study, the number of neurons in the hidden layers was set to 1,2,3,5,7,9 in the grid search. Fig. 4 shows the variation 

of prediction error with the number of neurons in the hidden layers for the duration ensemble model. The activation 

function translates the given input or set of inputs into an output. The options for regression are either the rectifier 

function or hyperbolic tangent (Pesko et al, 2017). The learning rate is responsible for the amount of updating the 

model according to the prediction error, thereby controlling the training speed. The grid search is done between 

0.01 and 1 (Kotu and Deshpande, 2014). 200 epochs were repeated for every combination in the grid search to 
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eventually obtain the least prediction error. Table 6 shows the optimum values for the duration and cost ANN 

models. 

 

FIG. 4: Number of Neurons in the Hidden Layers vs Prediction Error 

TABLE 6: Optimum Values for the Ensemble Learning Models 

 No. of Hidden Layers No. of Neurons in Hidden Layers Activation Function Learning rate 

Construction Duration 1 5 Hyperbolic Tangent 0.01 

Construction Cost 1 3 Hyperbolic Tangent 0.035 

3.3.4 Support Vector Machine (SVM): 

SVMs also have several parameters to be selected. Kernel functions transfer the nonlinear spaces into linear ones 

(Kotu and Deshpande, 2014). The possible types include Gaussian Radial Basis Kernel Function (RBF), Sigmoid 

Kernel, and Polynomial Kernel. In this study, the RBF Kernel was selected due to its demonstrated ability to map 

non-linear relationships and having little numerical difficulties (Wauters and Vanhoucke, 2014). Fig. 5 shows an 

example of a developed Support Vector Regression Model showing the remaining hyperparameters. In order to 

obtain an optimum performance, we need to minimize Equation 2: 

0.5 | w ||2 + C∑( ε – ε*) …. Equation 2 

 
FIG. 5: Support Vector Regression 

We must also select the SVM complexity constant “C” that controls the optimum trade-off between good training 

and generalization behavior (Wauters and Vanhoucke, 2014). Values that are too high create softer boundaries, 

while values that are too low create more rigid boundaries (Kotu and Deshpande, 2014). Sequences of C = (2−5, 

2−3,…, 213, 215) are tried. The Epsilon parameter defines the width of the insensitive tube around the true values of 

the target variable. The prediction error is discarded if the difference between the actual and predicted values is 

less than ε (Juszczyk, 2020). Its range in this study ranged between 0.05 and 0.2 with step of 0.05. Last but not 

least, the kernel gamma for the radial basis function is assumed as the inverse of the number of inputs (1/9=0.111). 
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Table 7 shows the optimum combinations that resulted in the lowest error, which will be used for the validation 

sub-set. 

TABLE 7: Optimum Values for the Ensemble Learning Models 

 C Epsilon 

Construction Duration 27 0.1 

Construction Cost 25 0.15 

3.3.5 Random Forest (RF): 

Even though Random Forests do not have many parameters that require optimization in a grid search, they are 

generally computationally challenging and time-consuming. The main reason for this would be the number of 

trees. As rule of thumb, the greatest performance boost occurs in the first 250 trees or so (Kotu and Deshpande, 

2014). The selected splitting criterion is the least square for numeric attributes (Kotu and Deshpande, 2014). The 

sub-set ratio of randomly chosen attributes to test must be selected carefully to maintain the balance between bias 

and variance. A small value will likely reduce the variance at the cost of increasing the bias. However, this can be 

avoided if the data has high quality and few noisy features. On the other hand, for more noisy data, a larger value 

is encouraged to include more worthy variables (Kotu and Deshpande, 2014). Its range in this study ranged 

between 0.125 and 0.5 with step of 0.05. The optimum ratio was found to be 0.2 and 0.3 for the duration and cost 

models, respectively. Finally, the size of the Bootstrapped Dataset parameter is often neglected because the 

bootstrapped dataset of the individual trees, which is sampled with replacement, will be completely different from 

the complete training set, even if they have the same size. As a result, each tree can be trained with a bootstrapped 

sample of the same size as the training data (Kotu and Deshpande, 2014). 

3.3.6 Ensemble Machine Learning Model 

Generally, different ML models have different sources of bias and variance. Simple models such as SVM and 

shallow decision trees have high bias, since they make a lot of assumptions about the prediction boundaries 

(Aggarwal, 2015). More complex models such as ANN and RF have high variance due to their tendency to overfit 

the data (Aggarwal, 2015). As a result, it is crucial to select the component predictors to optimize the bias-variance 

trade-off. In the present study, two ensemble learning methods are adopted to combine the individual trained ML 

models: 

1. Voting: Averaging of predictions on one level from ANN, SVM, and RF. 

2. Stacking: Combining the predictions from multiple models using two levels:  

a. Level-0 Base Models: ANN & RF  

b. Level-1 Model (Meta Model): SVM 

3.4 Testing and Verifying Machine Learning Models  

Models of complex systems are usually simplifications of reality because it is rather difficult to fully represent the 

characteristics of the actual systems virtually. Additionally, the construction industry usually considers ML models 

to be black boxes and practitioners are reluctant to adopt them until they assess their predictive performance, their 

ability to extrapolate on unseen data, and the degree of importance of the features (Tijanic et al, 2019). Thus, 

performance evaluation of such models is a fundamental step to reduce the uncertainty and ensure the reliability 

of the output results (Balci, 1994). The evaluation process includes two steps: Testing and Verification. 

1. Testing: Using empirical data, that wasn’t exposed to the model during its training, to test whether it 

accurately represents the system being modelled in a realistic and acceptable way (Balci, 1994), thereby 

assessing the model’s predictive performance through the hold-out method and the ability to generalize 

its predictions via the Mann Whitney U test. 

2. Verification: Making sure that inputs are correctly replicated as outputs by testing the functionality of 

the model using some of its parameters (Balci, 1994) and measuring the degree of importance of the 

model’s variables through sensitivity analysis. 
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3.4.1 Testing  

The training and testing of the predictive models were done on different subsets of the data to ensure an unbiased 

evaluation using the hold out method. The hold-out method helps the modeler assess the generalization capabilities 

of a ML model by testing its ability to provide satisfactory results through applying the prediction to a sub-set of 

the data that was not known to the model during its development (training) (Pesko et al, 2017). The hold out 

method is very common in developing machine learning models, where the entire data set is randomly split into 

two portions: 60-80% and 40-20% for training and testing the models, respectively (Gondia et al, 2020). In this 

study, the dataset was divided into 80% and 20%. 80% of the gathered data was used in the training of the ML 

models, and the remaining 20% are used for the testing. The developed method was tested using 29 and 56 

randomly selected projects, for the duration and cost, respectively. The evaluation technique used in this study is 

the Mean Absolute Percentage Error (MAPE), which compares the actual and predicted values of the target output. 

It is calculated as per Equation 3, and its classification ranges are found in Table 8. 

MAPE =
1

𝑛
 ∑

𝑦 𝑎𝑐𝑡𝑢𝑎𝑙 𝑖−𝑦 𝑝𝑟𝑒𝑑 𝑖

𝑦 𝑝𝑟𝑒𝑑 𝑖

𝑛
𝑖=1  x 100 …. Equation 3 

TABLE 8: Classification Ranges (Elmousalami 2020) 

MAPE Value Range Classification of ML model 

<10% Excellent 

10% - 20% Good 

20%-50% Acceptable 

>50% Inaccurate 

Tables 9 and 10 show the MAPE values for the ML individual models. It is evident that the individual models had 

MAPE values ranging between 10% and 20% indicating that they are ‘good’ predictors. The voting ensemble 

models obtained MAPE values lower than 10% (6.4% for duration and 4.3% for cost), and the stacking ensemble 

models obtained MAPE values lower than 10% (7.4% for duration and 4.5% for cost) improving the predictive 

ability to ‘excellent’. Hence, combining a group of ‘good learners’ led to the formation of an ‘excellent learner’. 

Such results outperform those of similar recent studies conducted to estimate highway construction durations and 

achieved a MAPE of 44% using parametric estimation (Nevett et al, 2021). One reason could be the necessity of 

having normally distributed data, a condition which can not always be satisfied by the data collected from the 

construction field.  Moreover, the cost estimation results of the developed method are superior to those of Tijanic 

et al, (2019) which obtained a MAPE of 13% for road projects and Juszczyk (2020) whose study had a MAPE of 

11% for bridge projects using non-parametric estimation. In addition, the proposed method estimation error 

constitutes an improvement above the customized agencies tools whose error was found to be 200% in some 

studies (Abdel-Raheem et al, 2018). Further, the obtained results are in conformity with the literature finding that 

prediction of construction duration is more challenging than cost (Pesko et al, 2017, Yeom et al, 2018). This is 

demonstrated by the results where the error percentages of ensemble duration models are higher than those of 

ensemble cost models. The model was further tested with 40% and 50% testing data, and it was found that the 

MAPE fluctuated around +/- 0.05% only. 

TABLE 9: Duration Models 

  MAPE 

SVM 15.4% 

ANN 16% 

RF 15.2% 

Voting 6.4% 

Stacking 7.4% 
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TABLE 10: Cost Models 

3.4.2 Verification (Sensitivity Analysis)  

Changing the input data can reveal the sensitivity of the model to changes in such input parameters (Balci, 1994). 

This is specifically important for complex models (Kermanshachi and Rouhanizadeh, 2019). For verification 

purposes, the input variables will be divided as follows: 

1. Group 0: Project Scope, Highway Type, Length, Number of Lanes, and Location 

2. Group 1: Facility Type 

3. Group 2: Procurement and Payment Methods 

4. Group 3: Technical Complexity 

Changing one element at a time (OAT) to see if it affects the performance is one of the most realistic ways of 

conducting sensitivity analysis and has been commonly favored by modelers in a number of fields (Kermanshachi 

and Rouhanizadeh, 2019). This method entails modifying one of the input variables while leaving the others 

unchanged, and then repeating the procedure with all other inputs in the same way. The sensitivity is measured by 

measuring changes in the system's output, which is a rational method since any observed shift in the output is 

attributable to the moving variable's changes. The same folds of projects for cross validation were used in these 

new runs to obtain better insight about the various model parameters. This process was repeated for each of the 

four variable groups, and the models were run 20 times for each parameter.  

Table 11 shows the conducted model runs, the resulting Mean Absolute Percentage Error, and the included model 

parameters/features for the construction duration model.  

Table 12 shows the conducted model runs, the resulting Mean Absolute Percentage Error, and the included model 

parameters/features for the construction cost model.  

TABLE 11: Sensitivity Analysis Results for Duration Models 

Attribute MAPE (%) % Improvement Rank 

Group 0 18.5%   

Group 0 + Group 1 15.3% 3.2% 2 

Group 0 + Group 1 + Group 2 9.7% 5.6% 1 

Group 0 + Group 1 + Group 2 + Group 3 7.4% 2.3% 3 

TABLE 12: Sensitivity Analysis Results for Cost Models 

Attribute MAPE (%) % Improvement Rank 

Group 0 16%   

Group 0 + Group 1 9.85% 6.15% 1 

Group 0 + Group 1 + Group 2 6.5% 3.35% 2 

Group 0 + Group 1 + Group 2 + Group 3 4.5% 2% 3 

 

  MAPE 

SVM 16.7% 

ANN 14.2% 

RF 14.8% 

Voting 4.3% 

Stacking 4.5% 
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The base model was conducted using the variables from Group 0 to be easily comparable to the studies conducted 

in the field (Nevett et al, 2021, Meharie and Shaik, 2020, Juszczyk, 2020). These variables reflect the project 

characteristics. The additional runs were conducted by adding 1 group at a time (Facility Type, Payment and 

Procurement Methods, and Level of Technical complexity). From the results, it is evident that the duration is more 

sensitive to the choice of payment and procurement methods, followed by facility type and level of technical 

complexity. On the other hand, the impact of input parameters on the output value is not the same for cost. Thus, 

it was found that cost is impacted by facility type, payment and procurement methods, and finally level of technical 

complexity. This analysis addresses gaps in the literature of related studies, as most of the studies in the literature 

lack a sensitivity analysis (Nevett et al, 2021, Meharie and Shaik, 2020, Juszczyk, 2020, Tijanic et al, 2020, 

Aretoulis, 2019, Meharie et al, 2019, Son et al, 2019, Pesko et al, 2017). Consequently, the output of this research 

can guide researchers and industry practitioners acquire knowledge about the key project variables that were 

established to impact highway projects durations and costs. These variables were not included in similar studies 

before (payment and procurement methods), included in only few studies (level of technical complexity), or 

overlooked in many studies (facility type). 

3.5 Assessing Applicability to a Variety of Highway Projects 

The Mann Whitney U Test is conducted to evaluate the generalization abilities of the developed models: whether 

the distributions of the actual and estimated values for the dataset were the same. The Mann Whitney U test, also 

known as the Wilcoxon Rank Sum Test or the Mann Whitney Wilcoxon Test, is used to determine if two samples 

are likely to come from the same population (i.e., that the two populations have the same shape) (Son et al, 2019). 

The test combines two groups, ranks their values, and compares the rankings of each group's values separately to 

see if one is smaller than the other (Son et al, 2019). 

The following are the null (H0) and alternative hypotheses (Ha) for the two-tailed Mann-Whitney test. 

1. H0: Both the actual and estimated values have the same distributions (i.e., neither distribution is 

smaller). 

2. Ha: The actual and estimated values do not have the same distributions (i.e., either distribution is 

smaller). 

The Mann Whitney U test was conducted on 25 random sub-samples of 15 projects from the validation subset of 

the dataset. The test was repeated to ensure that various types and sizes were included and to have a number of 

projects that is large enough to form a distribution. The null hypothesis could not be discarded at the significance 

level of 0.05 since the p-value was 0.2144 for construction duration and 0.5982 for construction cost. The test was 

also performed on the entire validation subset (58 projects), yielding the same results. This confirms the proposed 

framework’s generalizability to the various types of highway projects included in the dataset (roads, bridges, and 

drainage projects) since the distributions of the actual and estimated values were the same. This is contrary to 

previous studies that obtained comparable accuracies in duration and/or cost estimation for highway projects in 

the pre-design phase and were limited to certain types of highway projects. Examples include Juszczyk (2020) 

who estimated the costs of bridge projects with an error of 10.94% and Tijanic et al (2020) who employed ANN 

to assess the costs of road sections and obtained an error of 13%. Finally, the present study outperforms the study 

conducted by Nevett et al (2021) which included a variety of highway project types and sizes in one model but 

was only limited to duration estimation and an error of 44%. 

4. CONCLUSION 

Proper gathering and mining of construction projects’ data can create useful corporate value and facilitate 

evidence-based decisions. Therefore, this study aims to provide highway governmental agencies with a fast and 

reliable method to estimate the construction durations and costs of different highway projects included in their 

multi-year transportation programs.  This is achieved using non-parametric statistical estimation utilizing various 

types of project-related data documented for past projects, which were identified from recent research studies and 

industrial reports. It enables estimation of highway projects duration prior to design completion, which has 

received little attention from researchers compared to cost estimating. Additionally, the construction industry has 

not fully exploited the capabilities of machine learning in making use of the abundance of historical projects’ data 

for estimation purposes, and the present research aims to bridge this gap. Such data is far from being fully utilized 
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and is either lost or seen in limited perspective. Ultimately, this can prevent knowledge loss and lead to re-using it 

to sustainably build capacity and maintain efficient resource allocation among new construction and rehabilitation 

projects, while addressing the drawbacks of the current literature in this respect. Testing efforts revealed that the 

proposed method has excellent predictive accuracy over previously developed methods in the literature: 7.4% for 

duration and 4.5% for cost. Additionally, the performed sensitivity analysis reveals that the estimation of highway 

projects construction durations and costs is most sensitive to the constructed facility type as well as the choice of 

payment and procurement methods, which have not been included in duration and/or cost estimation studies to 

date. The developed method’s applicability to a wide range of highway projects was also proved by the Mann-

Whitney U Test. Furthermore, interesting insights were concluded from analyzing the projects’ Lessons Learned 

Reports. For example, highway projects that experienced more than 60% delays were found to be associated with 

events pertaining to “government shutdown, utility relocation, disputes, crane productivity, and unpredicted 

condition”. What’s more, the reports of projects with lower level of delays (30%-60%) had other occurrences such 

as “aggressive schedule, value engineering, and completion incentive”, and reports of projects with less than 30% 

delays had word associations such as “allowed overlap”. These occurrences clarify their improved performance.  

Such insights can interpret the past projects’ experiences and improve future projects planning to avoid preventable 

setbacks in highway projects execution. 

Notwithstanding, the presented method holds certain constraints and opportunities for future research. For 

instance, as with any data-driven methodology, the specific properties and conditions associated with the analyzed 

dataset means that the resulting numeric values are not necessarily transferable to other cases. However, the 

collected data contains enough information to create meaningful and reliable estimations and be applicable to a 

variety of highway projects. Further, the results herein are determined by the average performance of many 

projects. Any one project can outperform or underperform the average. Additionally, the proposed prediction 

method does not model the uncertainty involved in multiple projects selection in a SHA’s long-term program. For 

instance, similar projects could cause managerial problems in case of competition for resources. Concerning the 

covered projects, the facility types are limited to roads, bridges and drainage projects, and the project delivery 

methods are limited to DB, DBB and CM/GC delivery methods. Other delivery methods such as Public Private 

Partnership (PPP) and Integrated Project Delivery (IPD) are not included. Future research studies can also address 

conducting a sensitivity analysis to assess the duration estimation risk associated with the accuracy of the cost 

estimate, since the analysis is conducted in early project stages, where the cost estimate is subject to change. 
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APPENDIX A 

Sample Project Data used in Training: 

Project ID Hidden for privacy 

Project Location Tacoma 

Facility Type 34% Roads, 25% Bridges, and 14% Drainage 

Project Scope Reconstruction 

Highway Type Urban Interstate 

Construction Cost Hidden for Privacy 

Construction Duration 3,646 working days 

Change Orders Value Hidden for Privacy 

Project Delivery Method DBB 

Payment Method Unit Price 

Procurement Method Low Bid 

Project Technical Complexity 1 

Length in Km 100 

Number of Lanes 6 

Uncertainty in Geotechnical investigation (Cost) 4 

Uncertainty in Geotechnical investigation (Duration) 4 

Work Zone Traffic Control (Cost) 2 

Work Zone Traffic Control (Duration) 2 

Environmental Impacts (Cost) 2 

Environmental Impacts (Duration) 2 

Unexpected Utility Encounter (Cost) 4 

Unexpected Utility Encounter (Duration) 4 

 


	Conceptual estimation of construction duration and cost of public highway projects
	1. INTRODUCTION
	2. LITERATURE REVIEW
	2.1 Cost and Duration Estimation
	2.2 Modelling Approaches
	2.3 Machine Learning Algorithms
	2.3.1 Artificial Neural Networks (ANN)
	2.3.2 Support Vector Machine (SVM):
	2.3.3 Random Forest (RF)
	2.3.4 Ensemble Learning


	3. DEVELOPED METHOD
	3.1 Factors Identification
	3.2 Data Collection and Organization
	3.2.1 Data Collection
	3.2.2 Preliminary Data Analysis and Preparation
	3.2.3 Size of Dataset
	3.2.4 Analysis of Lessons Learned Reports Text Data

	3.3 Training Machine Learning Models
	3.3.1 Selecting the parameters of the ML Models
	3.3.2 Validating the ML Models
	3.3.3 Artificial Neural Networks (ANN):
	3.3.4 Support Vector Machine (SVM):
	3.3.5 Random Forest (RF):
	3.3.6 Ensemble Machine Learning Model

	3.4 Testing and Verifying Machine Learning Models
	3.4.1 Testing
	3.4.2 Verification (Sensitivity Analysis)

	3.5 Assessing Applicability to a Variety of Highway Projects

	4. CONCLUSION
	5. ACKNOWLEDGEMENTS
	REFERENCES
	APPENDIX A


