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SUMMARY: Integrating complex spatio-temporal cognitive tasks such as in-situ planning and trade coordination 

of job site activities is a continuous challenge to learners in Construction Engineering (CE) courses. Spatial 

information in this context addresses how physical resources are related to one another at a job site, whereas 

temporal information defines work sequences and hierarchies that transform physical resources. This paper 

discusses the impacts of using an innovative learning environment for supporting spatio-temporal cognition in CE 

education using aerial visualizations from Unmanned Aerial Vehicles (UAVs). Learners experience a unique, 

‘birds-eye view’ of the spatio-temporal dynamics of a job site. The effects were on improved abilities to apply, 

analyze, and synthesize any form of design representation to situations and physical contexts. Our findings 

demonstrate that participants in the intervention group outperformed the control group on measures of learning 

and motivation, which underscores the potential of UAVs as an educational technology system in CE education. 
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1. INTRODUCTION  

A key challenge in Construction Engineering (CE) education is to support learners in developing critical planning 

and coordination skills to associate CE designs to unique job site situations and contexts for analysis, decision-

making, and problem-solving. Developing these skills using typical representations of project information – e.g., 

two-dimensional (2D) drawings – is a continuous challenge for CE learners. Extracting meaning from 2D drawings 

to effectively link them to problems in project management tasks is a highly intensive cognitive process, where 

learners must select, organize, and integrate new information presented in 2D with knowledge stored in the long-

term memory (Wu et al., 2010). The affordances of traditional pedagogical materials (i.e., 2D drawings, videos, 

images, and building information modeling–BIM) are insufficient to scaffold application, analysis appropriately, 

and synthesis of design representations to situational and physical contexts (Mutis and Desai, 2019), mainly when 

the learner is new to this complex cognitive activity. The abundance of variables and the ill-structured nature of 

conditions in “real-life” construction sites (Jonassen, 2011) impact a learner’s ability to effectively comprehend 

and manage significant amounts of spatial information (how physical resources are related to one another in the 

3D CE space) and temporal information (the logic of the CE process, such as the sequences and hierarchies of 

utilizing the resources to accomplish a CE task) (Mutis, 2015; Mutis, 2018). Limited ability to select, organize and 

integrate spatial and temporal information hinders a learner’s understanding of CE designs and management of the 

varying local conditions that transpire during construction processes (e.g., changes in the schedule, availability of 

required materials on the job site, etc.). The effect is that use of existing instructional methods and modalities to 

support the development of this spatio-temporal cognitive expertise is sub-optimal. The use of traditional 

instructional materials does not scaffold experiencing the critical properties of the physical context, nor does it 

adequately support spatial visualization ability that is required to translate 2D drawings to decision-making in a 

3D environment (Glick et al., 2012).  

Building on the idea that the technological environments can mediate and enhance perception and understanding 

of the physical world (Shelton, 2003), a system was designed to augment learners’ spatio-temporal cognition by 

using aerial visualizations that deliberately and systematically integrate complex spatial and temporal information. 

Each visualization is associated with keywords, categorical topics about CE working problems, and critical 

construction products and processes. The keywords were used to structure the database and as keys for storage and 

retrieval of aerial visualizations. Each keyword enables the learner to search, sort, and retrieve aerial visualization 

according to the categorical topic (e.g., façade).  

The categorical topics were the main vocabulary used in the problems, thereby streamlining the retrieval from a 

database of the aerial visualizations for each case. Each aerial visualization had multiple links or associations to 

categorical topics. The use of technology and cases enabled us to explore CE scaffolding relative to a) spatio-

temporal cognition for problem-solving and b) motivation for engaging in CE problem-solving with and without 

UAV-afforded aerial visualizations. Using the associated keywords in authentic problem-solving scenarios, the 

learner inputs a keyword of interest and selects an aerial visualization from the database. The output allows the 

user to choose the most appropriate video to use during the problem-solving process. In addition, the learning 

environment provides affordances for the user to control the speed presentation, scale, and resolution and to 

magnify the aerial visualizations. 

Our research and development address this critical issue by introducing a new educational technology system for 

CE courses – Unmanned Aerial Vehicles (UAV) – as an instructional scaffolding tool to optimize cognitive 

processing and provide authentic and contextualized meaning to spatial and temporal information (Yoon and 

Wang, 2014; Yoon et al., 2012). The contributions of the study follow: 

• Exploration of an innovative intervention to provide learners the opportunity to develop skills that 

integrate (Shelton and Hedley, 2004) procedural and configurational knowledge (Wickens and 

Hollands, 2000). 

• Advancement of the CE learners’ understanding of the perception of spatial relations of entities 

(objects) and dynamic processes, by studying the students’ abilities to process complex information 

related to CE spatial-temporal configurations, including the comprehension of interdependencies, 

interactions, and constraints among integrated and specialized engineering systems. 

• Conceptualization of scaffolding for the development of individuals’ spatial-temporal cognitive 

abilities through the observation of real-world construction information through aerial visualizations. 
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The study discussed in the empirical report addresses two critical gaps in knowledge. First is the exploration of 

how learners’ spatio-temporal cognition can be scaffolded using UAV aerial visualizations to solve authentic CE 

problems. Second is the investigation of the learners’ motivation for authentic CE problem solving with and 

without UAV aerial visualizations. To examine the role of aerial visualizations in spatio-temporal reasoning in CE 

education, the authors developed a novel intervention for scaffolding spatio-temporal reasoning during authentic 

CE problem-solving. The technological innovation consisted of a web-based learning environment that enables 

learners to explore construction job sites using UAV aerial visualizations. The visualizations represent important 

instances of spatial-temporal dynamics on actual construction sites that are often difficult or impossible to access 

in person. 

2. OVERVIEW OF UAV AFFORDANCES 

To be useful, a technology must improve interactions between the individual and the environment (Kaptelinin and 

Nardi, 2006). The reciprocal relationship between the environment and the individual acting on the environment 

has been traditionally described as an interaction between the environment’s affordances and the individual’s 

abilities (P. D. Antonenko and I. Mutis, 2017). In the context of CE education, learners experience a significant 

need to be supported as they learn to select, organize, and integrate complex spatio-temporal information as they 

translate engineering designs to construction implementation at unique job sites. Given this need, Unmanned 

Aerial Vehicles (UAVs) serve as a promising educational technology because they provide the unique affordance 

to capture a broad spectrum of spatial and temporal information from the construction job site environment. The 

UAV data generated by UAVs – aerial visualizations such as videos and images – offer instructional benefits 

currently unmatched by more traditional learning materials. UAVs enable just-in-time and dynamic visualizations 

of in-situ construction resources, processes, and management of activities as they unfold over time (see FIG. 1). 

 

FIG. 1: UAV Dynamic visualization of construction processes and resources from a construction site. 

UAV data provides observers (learners) the opportunity to develop skills that integrate spatial and temporal 

information by enhancing their understanding of interdependencies, interactions, and constraints among integrated 

and specialized engineering systems in a construction project. Fundamentally, when a learner observes UAV data, 

a mediation process occurs. The UAV data, as a representation, serves as a mediation instrument for the interpreter 

(learner). The UAV dynamically captures in-situ contexts (e.g., aerial images that capture multiple physical 

locations along a flight path), which constitutes a powerful resource for interpreting CE designs. As a mediation 

instrument, UAV affords experiential observations for awareness, facilitating the development of supporting CE 

activities, such as planning and goal prioritizing, that are essential for the success of project site activities. UAV 

visualization provides an important vicarious experience (Conle et al., 2002) that allows the learner to have a 

powerful feeling of presence at the job site without physically being there. (And there are many important financial, 

accessibility, and safety reasons why CE students should not visit certain construction sites).  

In addition, UAV technology mediates and enhances the human perception of the physical world (see FIG. 2) 

through its ability to a) record aerial visualizations that integrate spatial and temporal information, b) zoom in on 

the most relevant aspects of various processes, c) approach and observe a potentially unsafe area of the site from 

multiple angles, and, importantly, d) replay, pause, review, and discuss aerial visualization recordings to reinforce 

key concepts and practices.  

UAV visualizations allow CE learners to develop skills that integrate (Shelton and Hedley, 2004) procedural and 

configurational knowledge (Wickens and Hollands, 2000) by enhancing their understanding of interdependencies 

interactions and constraints among integrated and specialized engineering systems in the construction project. For 

example, UAV visualizations are interventions that facilitate the association of interdependencies among 

construction resources (materials, equipment) to follow-up progress on specific job site locations within project 
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controls. In addition, the UAV output enables interpreters to experience a unique, ‘birds-eye view’ of reality— a 

perspective that humans would otherwise not be able to observe directly. 

 

FIG. 2: UAV technology mediation and enhancement of human perception of the physical world. 

Aerial visualizations serve as a medium for reducing cognitive distance in CE learning. Traditional representations 

of designs (e.g., 2D drawings, Building Information Modeling) inadequately address the complexities of applying, 

analyzing, and synthesizing designs to the physical context. The value of static aerial visualizations, compared to 

the mental reconstruction of a set of separate static images or photographs (Wu et al., 2010) contained in drawings 

and relevant text passages from construction documents, is that the aerial visualizations integrate spatial 

information. Aerial visualizations are dynamic and add important temporal information for the observer, thereby 

enabling the visualizations to serve as a more effective medium for communication and instruction. The images 

represent an authentic physical context of construction, where multiple pieces of spatial and temporal information 

related to construction components and processes may be identified. Drawings and virtual models do not enable 

users to experience the physical context's properties and are, therefore, sub-optimal for CE learning outcomes. On 

the other hand, virtual 3D models (e.g., Building Information Modeling representations) afford methods for 

understanding spatial configurations of designs in the construction process but are entirely divorced from the 

physical world's essential features and properties, causing them to fall short of exposing learners to the wide variety 

of real-world issues that they can encounter in-situ and therefore result in less authentic learning experiences with 

limited affordances for integrating spatial and temporal information.  

Aerial images facilitate observers’ awareness when solving authentic CE problems (e.g., space management, 

which requires planning schedules and activities for potential conflicts). Aerial images can also illustrate the use 

of materials, identify construction safety issues, and other critical aspects of construction zones. They effectively 

integrate views of spatial visualizations (Glick et al., 2012) over time to represent and facilitate internalization 

(Tversky, 2005) of spatio-temporal information.  

In CE education, learners are asked to process and integrate complex spatial information from the text- and image-

based media provided in textbooks and multimedia presentations. However, their ability to effectively select, 

organize, and integrate these representations to construct a coherent mental model of a complex construction space 

along a time continuum is very limited (Glick et al., 2012). This limitation influences a learner’s ability to 

effectively process and internalize the functions and applications of construction objects (e.g., construction 

materials, equipment, tools) and representations of processes and physical contexts of a project (e.g., engineering 

designs, drawings) that unfold over time. The ability to process spatial and temporal information is the spatial-

temporal ability (P. Antonenko and I. Mutis, 2017; P. D. Antonenko and I. Mutis, 2017; Mutis, 2018; Mutis and 

Issa, 2014). The conceptualization of spatial-temporal ability is grounded in understanding spatial cognition and 

working memory, which considers visual properties of information (shapes, colors) and spatial properties (location 

and movements). Spatial cognition (The Spatial Intelligence and Learning Center, 2014) frames movements by 

employing the time dimension, going beyond the core understanding and processing of geometric shapes 
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(Newcombe et al., 2013; Wai et al., 2009). In the context of CE education, such objects may include construction 

materials or visualizations and abstract representations (2D drawings and 3D virtual objects) used in teaching. The 

integration of spatial and temporal information results in the coupling and coordination of both geometric and 

spatial features (spatial information) with representations defined by logical frameworks related to time. Logical 

frameworks define the order, sequence, and hierarchies of activities in specific periods. For example, aggregated 

materials and components required to build an assembly are strictly associated with a time unit (time of day, day 

number, etc.) at a particular point in the sequence— i.e., one element must go first for a second element to be 

installed. This specific sequence is the logical framework and the guideline to define tasks in construction.  

Associating spatial and temporal information compels mental simulations and spatio-temporal reasoning (Hegarty, 

2004). For example, the logical aggregation of materials of an assembly is based on the priority of assembly 

(Akinci et al., 2002). In the absence of direct observations, reasoning (higher-order cognition) for CE occurs 

through mental simulation. When observations of CE information occur, their integration with mental simulations 

facilitates higher-order reasoning by associating observations of in-situ information (construction materials and 

equipment) and representations (engineering designs). However, selection, organization, and integration of spatial 

and temporal information from multiple media sources (e.g., numerous engineering designs) and learning formats 

are not straightforward. Working memory can be easily overloaded, especially when the learner is new to the 

content (Jong, 2010). This condition presents a challenge and an opportunity for educational researchers, and it is 

the focus of the present study. 

2.1 Other applications of UAV in construction 

UAV use has exponentially expanded in the last few years with demonstrated applications in the construction 

industry (Albeaino and Gheisari, 2021; Irizarry and Costa, 2016; Zhou et al., 2018). Fields of application include 

progress, inspection, structural and health monitoring (Álvares and Costa, 2019; Duque et al., 2018); transportation 

(Greenwood et al., 2019; Kwon et al., 2017); project control, and site planning (Asadi et al., 2020); disaster 

management, preservation (Bakirman et al., 2020; Ellenberg et al., 2014); energy efficiency in the built 

environment (Chen et al., 2021; Ficapal and Mutis, 2019); and earthwork and construction safety (Kim et al., 2019; 

Liu et al., 2019; Siebert and Teizer, 2014). Although the applications require a human-based post-processing 

approach— where users process and interpret information collected from UAV—the trend is to use machine 

learning and robotic applications with higher levels of autonomy (Mutis et al., 2021), thereby reducing required 

human input in the operations. 

3. METHODOLOGY 

The goal of the study was to enhance CE learning and amplify students’ understanding of the dynamic complexity 

of the CE physical and social contexts through aerial visualizations using UAVs. This approach provided students 

with authentic, real-world physical and social contextual information through aerial visualizations that immerse 

learners in situated construction environments. For this purpose, a within- and between-groups quasi-experimental 

study was designed to address the following research questions: 

• RQ1 (focus on cognitive outcomes): How does a UAV-aerial visualization, enhanced-learning 

environment influence students’ spatio-temporal reasoning during authentic CE problem-solving?  

• RQ2 (focus on non-cognitive outcomes): To what extent does UAV-supported instruction influence 

student motivation in a selected CE course? 

3.1 Participants 

The participant pool for the study included students from the Construction Methods and Cost Estimating course, 

which relies on interpretation of design representations (e.g., 2D drawings and construction documents). The 

learning goal of the course is to provide knowledge and skills to estimate a construction project’s scope of work 

by teaching students to recognize engineering design components and subsequently quantify materials, labor, 

equipment, and associated construction methods. The course learning activities demand spatio-temporal reasoning. 

Learners need to identify: (1) temporal flow using construction products and (2) associated features (e.g., 

dimensions, location in the building context) that are key to temporal dependencies that define the sequences of 

construction processes.  
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Students were invited to partake in the study and receive course credit for their participation. In coordination with 

the course instructor, two authentic problems were developed about Cost Estimating topics. Each problem was 

administered separately at an appointed time during the semester. When the problem was administered, 

participants were asked to work individually to solve the problems within 75 minutes. The experiments took place 

during a lab section, where participants were randomly assigned to either the treatment or the control group. For 

the control group, students worked with traditional learning materials (see FIG. 3a). For the treatment group, 

students worked with the UAV technology intervention (UAV images and videos) and traditional learning 

materials (see FIG. 3b). Each recruited learner participated in one of the experiments during the course. The 

experiment was repeated for three consecutive semesters. A total of 61 students (n=61) participated in the study 

over three semesters (ntreatment=32, ncontrol=29). 

 

FIG. 3: Treatment and control group learning materials. 

3.2 Learning Intervention and Study Procedure 

The two authentic problems and their associated assessments (Richard J. Shavelson, 1994) focused on spatial-

temporal ability. Each problem covered content related to a particular portion of the Cost Estimating course. 

Authentic problems are nonroutine problems (e.g., performing an estimation of quantities from a section design of 

a new project) that reflect authentic practices (e.g., construction engineering management practices), and they go 

beyond acquiring procedural knowledge (Caleon et al., 2015). Using a representative case allows the authentic 

problem to be framed as it would be for practitioners encountering the challenge within the complexities of real-

world contexts. 

At the time each problem was administered, the treatment and control groups worked on the same authentic 

problem. Participants in both groups were asked to estimate the scope of the work to construct a portion of an 

engineering design. To arrive at the solution, the participants had to identify the materials used in the construction 

process for each object in the engineering design and to fill out a template with the quantities of materials to satisfy 

the process or estimate the scope of work. A research assistant supervised the experiment and collected the 

templates for both groups at the end of the experiment. 

Identifying types of construction materials is a critical and first step in defining the scope of the work. Once the 

types of construction materials are identified, it is possible to quantify the total amount of materials in the 

construction process.  

The assessments of authentic problems were focused on the levels of achievement for spatial and temporal ability 

problems. Details are shown in Table 1. 

 

(b) Learning with UAV 

visualizations.  

 (a) 2D representation: Traditional learning 

materials  
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TABLE 1: Assessment focuses on levels of achievement for spatial and temporal ability problems 

The problem statements for each case, along with the instructors’ answers for each problem, are shown in Table 

2. The answers represent the two criteria used: recognition (types of construction materials successfully identified) 

and accuracy (estimated quantities for identified types of construction materials). Table 2 presents the experts’ 

approach to the number of items and the quantities related to the estimation, which was used as a reference to 

compare the control and the treatment groups. The instrumentation section (following section) elaborates on the 

rubric created for the assessment. 

TABLE 2: Problem statements and experts’ solutions  

To further illustrate the procedure, consider problem 1 from Table 2. The problem frames a representative case, a 

foundation wall and spread footing belonging to one wall that exists on one side of the building. FIG 4 shows the 

visual representation (excerpt from drawings) for the representative case. FIG. 4 images are of traditional learning 

material (2D representations). Students used the given sections of 2D representations of the foundation wall from 

a sheet of architectural and structural drawings that correspond to the problem. The given sections have the most 

details to solve problem 1. 

Treatment group participants retrieved UAV aerial visualizations using a simple keyword search (e.g., foundation 

wall, spread footing). The UAV visualization search included the key objects found in the 2D representations of 

the design. Once retrieved, learners observed an analogous representative case similar to the case of the problem 

(see FIG. 5). Thus, as learners retrieved and selected cases, the case content was exemplified and amplified by 

UAV visualizations, which was expected to reinforce learners’ case-based reasoning skills (Kolodner, 1993) and 

their understanding of how unique contexts shape spatio-temporal dynamics of a CE project. Case-based reasoning 

supports problem-solving by helping learners identify a common structural principle shared among multiple cases. 

Spatial-Temporal Ability Experiment Actions for Problem-solving Assessment Metrics 

* Use the learned CEM concepts, 
methods, and theoretical principles 

in-context observations. 

 

* Breaking down and mapping design 

parts to understand their functionality 
within the system design and 

organizing (orderly fitting parts) into 

a logical task. 

* Find meanings and apply uses of observed 
representations of designs, including hidden 

(no-observable) features. 

 

* Aggregate and map design components into 

categories of a system. 
 

*Number of design components. 
 

* Number of parts or quantities integrated 

into a design 

 

* Number of parts or quantities integrated 
into a design 

Problem Statement Type of Construction Material Estimated 

Quantity 

1) “You are a project engineer from a General Contractor (GC) 

organization. Your role is to plan and submit a bid for a 

commercial construction project. As a professional project 

engineer for this GC firm, you are required to estimate the price 

of some sections of the construction project. Due to limited time, 

you are required to execute a quantity estimation for the 

foundation wall and spread footing of one wall on one side of 

the building. You are to assume that the job site is flat ground. 

The job site is near a batch plant.”  

• Excavation  

• Forms 

• Keyway 

• # 5 Rebar 

• Concrete 

• Backfill 

 

• 55 CY 

• 496 SFCA 

• 141 LF 

• 600 LF 

• 24CY 

• 34 CY 

2) You are a project engineer from a General Contractor 

(GC) organization. Your role is to plan and submit a bid 

for a commercial construction project. As a professional 

project engineer for this GC firm, you are required to 

estimate the price of some roof sections of the 

construction project. The roof section inside the parapet 

walls is 81’ 6’’ by 106’ 9’’ on which you need to perform 

a materials estimation. Use the section details and plan 

notes provided”. 

• 5/8’’ Gypsum 

• Air Barrier bitumen 

• 2.5’’ Polyisocyanurate Insulation 

• ¼’’ slope Tapered Insulation 

• ½’’ Cover Board 

• EPDM membrane (rubber) 

8701 SF 

• 8701 SF 

• 17402 SF 

• 8701 SF 

• 8701 SF 

• 8701 SF 
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Case-based reasoning promotes analysis of similarities as well as associations, thereby enhancing the application 

of the structural principle to the problem and the transfer of learning in other contexts (Mayer and Wittrock, 1996). 

As the UAV images represent various aspects of the complexity of objects and their relationships in time, learners 

viewing these images in the context of a CE problem should develop more flexible and adaptable knowledge of 

how this problem can be addressed in various authentic CE project contexts (i.e., cognitive flexibility theory, Spiro 

et al. (2003)). This flexibility in cognitive schemas is understood as a mechanism that facilitates the transfer of 

learning and complex problem solving when learners encounter similar complexities and problems in novel 

situations. In other words, each case in our learning intervention represented an important aspect of the main 

schema of a complex authentic CE problem. 

 

FIG 4: Excerpt of the design of the wall section from working problem: Architectural and structural sections of 

spread-footing and the wall design.  

 

FIG. 5: Analogous case to the case of the problem (analogous objects between the design and the UAV image: a 

spread-footing of another project). 

3.3 Instrumentation: Authentic Assessments of Problem-Solving Ability 

Because the task measured problem-solving ability in unique CE contexts, the authentic assessment (Montgomery, 

2002) measured CE learners’ proficiency in the skill of identifying relevant spatial and temporal information—or, 

the ability to recognize how physical resources related to one another (space) and the logic for their construction 

during the CE process (time). For example, because key features were missing from the observed geometrical 

representation, the assessment measured the students’ level of proficiency in identifying and associating existing 

design components to one another, including linking them into a logic of a construction process. As it often 

happens in real life, the engineering design representations either lack critical features in their geometry or features 
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of the design components are difficult to find, as they are disparately located within design documents (set of 2D 

drawings), thereby making the task for learners to recognize all objects in the design difficult. This results in a 

demand for significant effort, on the part of the learner, to identify objects and their associated type of construction 

materials used into the construction process. Thus, the students needed to use spatial and temporal information to 

successfully arrive at the solutions. Table 3 shows a summary of the authentic assessment criteria used in the 

rubrics. 

TABLE 3: Assessments, level of achievement, and assessment metrics.  

CE Course 

Authentic 

Problems for 

Topics of the 

Course Content 

Case 
Problem-solving 

Skill  

Level of Achievement 

(with Spatial-temporal 

Ability) 

Assessment 

Metrics 

Construction 

Methods and 

Cost Estimating 

(1) Foundations 

Estimation of small 

commercial 

building 

Quantity estimation 

for the foundation 

wall and spread 

footing of one wall 

of one side of the 

building 

Spatial and temporal 

ability: the ability to 

associate spatial and 

temporal 

information 

Ability to recognize the 

number of components 

involved in estimating a 

foundation section 

Identification of 

components 

 

Quantification of 

the components 

(2) Estimation of 

materials in roof 

construction for 

small commercial 

building 

Quantity estimation 

for the roof section 

inside the parapet 

walls 

The authors designed a problem-solving rubric for the experiment in collaboration with the course instructor (see 

Table 4). Two criteria were used in the rubric (see Table 4). The first criterion was the recognition of the of 

construction materials required to estimate the scope of the work (e.g., for problem 1, they were: excavated soil, 

forms, keyway, rebar, concrete, backfill; for problem 2, they were: 5/8’’ gypsum, air barrier bitumen, 2.5’’ 

polyisocyanurate insulation, ¼’’ slope tapered insulation, ½’’ cover board, EPDM membrane). A structure based 

on levels was used to analyze this criterion—the number of correctly identified construction materials defined each 

level—i.e., recognition level. There were four levels within the structure for this criterion: (1) at least 4 out of 6 

possible material types; (2) at least 3 out of 6 possible material types; (3) at least 2 out of 6 possible material types; 

and (4) at least 1 out of 6 possible material types. The number of types of construction materials was recognized 

as an indicator of the learners’ ability to retrieve from memory cognitive schemas as conceptualizations of the 

observed patterns of shapes—i.e., learner’s ability to identify the observed elements from the engineering design. 

The second criterion was accuracy of the estimated quantities of recognized material types. The learners’ ability 

to estimate quantities informs on their understanding of the required amounts of materials to construct the observed 

engineering design. Based on the expert’s (instructor’s) input with respect to the level of difficulty of the designs 

in the problem, an upper and lower range of 25% from the experts’ solution was defined as an acceptable answer 

(i.e., if the learner’s answer was no more than 25% higher or no less than 25% lower than the instructor’s solution, 

the learner’s answer was considered acceptable). Since there were 6 possible material types, there were 6 possible 

acceptable or not acceptable answers for each type of construction material. For the analysis of the accuracy 

criterion, a structure that was based on levels was used (see Table 4). 

TABLE 4: Rubric. 

Case 

(Criteria) 
Correct Partially Correct 

Minimally 

Incorrect 

Partially 

Incorrect 
Incorrect 

Level of Recognition  

(Recognized type of 

construction materials) 

At least 4 out of 6 

(> = 66.66 %) 

 3 out of 6 

(50 %) 

2 out of 6 

 (33.33%) 

1 out of 6 

 (16.66%) 
0% 

Level of Accuracy  

(Acceptable answers of 

estimated quantities for 

each type of construction 

materials) 

At least 4 out of 6 

(>=66.66%) 

At least 3 out of 6 

(50%) 

At least 3 out of 6 

(33.33%) 

At least 1out 

of 6 

(16.66%) 

0% 
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The number of acceptable quantities defined each level—i.e., accuracy level. There were four possible levels: (1) 

at least 4 out of 6; (2) at least 3 out of 6; (3) at least 2 out of 6, and (4) at least 1 out of 6 of acceptable answers for 

the estimated quantities of each type of construction materials. These criteria represent the two major steps to 

estimate the scope of work and to solve problems related to CE cost estimating—problems where learners have to 

effectively integrate spatio-temporal information in order to provide a solution.  

3.4 Instrumentation: Course Interest Survey 

Course Interest Survey (Keller, 2010) was used to explore the potential effects of UAV-supported instruction on 

student motivation. As a situational instrument, the CIS is not intended to measure students' generalized levels of 

motivation toward learning. This instrument helped determine how motivated students were or expected to be by 

a particular activity or course. The CIS was administered to all participants twice once in the pre-test format and 

once in the post-test format. The pre-test occurred two weeks before the unit on estimating façade scaffolding, and 

then two weeks after the conclusion of this unit, participants responded to the post-test. The CIS consists of 34 

items that measure each of the four components of the ARCS model of learner motivation: attention, relevance, 

confidence, and satisfaction (Keller, 1987). The following is an example of an item on the construct of relevance: 

“The things I am learning in this course will be useful to me”. Participants rated statements using a Likert scale 

ranging from Not True (1) to Very True (5). A total motivation score was calculated from these ratings and a score 

for each of the ARCS components. Cronbach’s reliability estimates were calculated for responses to the pre-CIS: 

attention (α = .78), relevance (α = .73), confidence (α =. 64), satisfaction (α = .81), and total score (α = .90); as 

well as for the post-CIS: attention (α = .79), relevance (α = .74), confidence (α = .62), satisfaction (α = .77), and 

total score (α = .91) (α coefficient of reliability ranges from 0 to 1). Cronbach’s reliability informed the internal 

consistency of the given test items—measuring the strength of the consistency as a measure of a concept. Results 

demonstrated that scale has reasonably strong α coefficients, ranging from the recommended neighborhood of 0.65 

to 0.90 (less than 0.5 is not acceptable and higher than 0.95 indicates redundancy issues (Cortina, 1993)), meaning 

that the items indeed tap into the underlying constructs of attention, relevance, confidence, and satisfaction. 

4. DATA ANALYSIS AND RESULTS 

4.1 Learning Outcomes 

Results showed that participants have lower recognition of the type of construction materials when they used a 

given portion of the 2D drawings (i.e., traditional learning materials) to solve the problems (M = 40.78, SD = 28, 

N = 94 on a 1-100 scale) as compared to those who use both the technology intervention and given portion of the 

2D drawings (M =54.17, SD = 29.63, N = 32). In this summary, M is the mean and SD is the standard deviation. 

Learners of the treatment condition were better able to process spatial-temporal information in comparison with 

those of the control group. Implementation of the treatment condition led to a higher awareness of the type of 

construction materials required for use in the construction process of the problem, along with appropriate 

scaffolding. Results also demonstrated that participants who used traditional 2D representation learning material 

had a lower level of accuracy of the estimated quantities for each type of construction material (M = 25.29, SD = 

26.58, N = 29 on a scale of 1-100) when compared with those who used both the technology intervention and the 

given portion of the 2D drawings (M = 33.32, SD = 32.23, N = 32). Mann-Whitney U test—a nonparametric 

alternative to the independent t-test—was conducted since each group (dependent variable) showed a significant 

pattern from normal distribution after plotting histogram and obtaining results from the Shapiro-Wilk test (see 

Table 5). The Mann-Whitney U test determined whether there is a difference in the levels of recognition of 

materials between control and treatment participant design groups (treatment vs. control), see Table 5. 

The Mann-Whitney U test for the case of the level of recognition at 0.1 level of significance, there was a 

statistically significant difference in engagement scores between control and treatment groups, (U = 580.5, z = 

1.710, p = 0.087), using an exact sampling distribution for U (Dineen & Blakesley, 1973). Although there is a 

minor difference among the groups, the U test results indicate the treatment group has a higher ability to process 

spatial and temporal information than the control group. After conducting the Mann-Whitney U test for the case 

of level of accuracy at the 0.1 significance level, there was not a statistically significant difference in engagement 

scores between control and treatment groups (U = 522, z = 0.858, p = 0.391), using an exact sampling distribution 

for U (Dinneen and Blakesley, 1973). 
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TABLE 5: Summary Statistics for learning outcomes. 

Test Case Condition Results N 

Shapiro-Wilk Recognition of 

Materials 

Control (W(29) = 0.951, p = 0.193) 29 

Treatment (W(32) =0.869, p = 0.01) 32 

Level of 

Accuracy 

Control (W(29) = 0.850, p = 0.001) 29 

Treatment (W(32) =0.855, p = 0.001) 32 

Mann-Whitney U  Recognition of 

Materials  

Control and 

Treatment 
(U = 580.5, z = 1.710, p = 0.087) 61 

Level of 

Accuracy 

Control and 

Treatment 
(U = 522, z = 0.858, p = 0.391) 61 

The experiments demonstrated that the aerial images incorporated more effective affordances than traditional 

learning materials after the investigators’ observations and interpretation of results. The case of the level of 

accuracy reinforces the idea that the control and treatment group had the same abilities when performing high-

cognitive tasks—incorporating acquired CEM knowledge for problem-solving operations to calculate the correct 

quantitative units on identified materials. The core component to realize the case of the level of accuracy demands 

retrieval of CEM knowledge of methods to perform quantification of already identified materials either from 

traditional or aerial images.  

4.2 Non-cognitive attribute outcomes 

Non-cognitive outcomes included personality traits with measures that addressed student motivation constructs 

based on the ARCS model of motivational design (Keller, 2010): Attention, Relevance, Confidence, and 

Satisfaction. As a result of the estimation activity, overall interest increased for both groups. Still, the increase was 

greater for the treatment group that used the UAV-supported online learning environment (see Table 6 for 

descriptive statistics). A repeated-measures ANOVA demonstrated that the treatment group exhibited a 

significantly higher improvement in overall CIS scores (F1,43= 42.70, p < .0001, 2 = .49). The partial eta squared 

value (a measure of effect size) indicates that the between-subjects factor “condition” accounted for almost half of 

the variance in the pre-test and post-test change in the score. A repeated measures ANCOVA analysis was also 

performed with Gender and Ethnicity as covariates. Still, these variables significantly interacted with the within-

subjects variable, that is, CIS score change between the pre-test and post-test. 

TABLE 6: Descriptive statistics for Course Interest Survey pre-test and post-test scores by condition. 

 Condition Mean Std. Deviation N 

CIS Total Pre-test Scores Control 75.23 20.61 22 

Treatment 77.43. 23.99 23 

Total 76.36 22.18 45 

CIS Total Post-tests Scores Control 75.73 16.24 22 

Treatment 97.39 14.95 23 

Total 86.80 18.91 45 

Regarding the individual CIS subconstructs, scores increased to a greater degree for the treatment group for each 

individual variable: Attention (F1,43 = 8.61, p = .005, 2
 = .17), Relevance (F1,43 = 48.46, p < .0001, 2= .53), 

Confidence (F1,43 = 29.10, p < .0001, 2= .40), and Satisfaction (F1,43 = 27.07, p < .0001, 2= .38). The large partial 

eta-squared values indicate that the difference in condition accounted for a large percent in the change in the score 

between the pre-test and the post-test. 

5. DISCUSSION 

This paper reports on the impact and effects of using aerial images and videos from UAV as the main intervention 

to understand spatial and temporal information. The presented exploratory quasi-experimental study provided 

evidence of the promise of UAV-supported instruction in CE curricula. Experiments revealed how to influence 

students’ abilities to process complex information and develop important knowledge related to CE spatial-temporal 

configurations. The study explored the effects of how the CE students learn when using the intervention, thereby 

opening opportunities to enhance the design of learning-material using UAV technology. 
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Results showed how UAV technology-enabled learners to expand their repertoires of actionable possibilities for 

contextual awareness of construction tasks to solve CE problems. The investigation revealed that the UAV 

visualizations provide a unique technological affordance for learning and knowledge-building scaffolds for CE 

education. The mediating power of UAV visualizations enhanced learners’ spatial and temporal information 

processing ability as used when solving CE problems. The effects were on improved abilities to effectively apply, 

analyze, and synthesize any form of design representation or construction resource to situations and physical 

contexts— in other words, the UAV mediation brings robust benefit to their spatial-temporal cognitive ability 

development as used in CE activities. Without such visualizations, the users’ awareness of project complexities 

would have proved more challenging. Users had a high degree of control over the aerial visualizations by changing 

the coverage areas of the construction site. This is possible as the recorded visualizations cover all areas of the 

construction site following pre-established UAV paths— a defining reference for the UAV camera orientation, 

position, and elevation position for the recorded visualizations. The flight path enables observations of target 

objects and the objects’ details (e.g., type of construction materials) that might be found in designs of the problems.  

The UAV visualizations, however, have technology factors that impact their quality and, thereby, their 

effectiveness as an intervention. For example, UAV visualizations over the construction area have arbitrary 

orientations and angle views with reference to points on the ground in the image, and UAV footage coverage areas 

depend on pre-established UAV paths that define UAV camera orientation, position, and elevation. These factors 

make it challenging to efficiently locate objects or areas of interest on the images. The elevations (i.e., height above 

ground level (AGL)) create issues when the distribution of objects of interest within the image area is dense and 

major scale variations exist. Still, the advantages of using UAV images supersedes their limitations. The UAV’s 

affordance to present a large set of cases effectively facilitates observations of multiple areas and framing multiple 

cases—i.e., the UAV demonstrates several situations and contexts in job site environments.  

Cognitive outcomes (RQ1). The quasi-experimental design focused on how the main intervention impacts 

pedagogical tasks in processing spatial and temporal information. The design included the following quantitative 

aspects: (1) the effect of using UAV real-world aerial visualizations as a training method has on users’ spatial-

temporal skills and problem-solving; (2) the effect that the intervention has on users’ knowledge acquisition and 

achievement of learning objectives specific to CE training.  

The authors framed the problems from a CE course as representative cases. Cases refer to previous experiences of 

a situation or problem to indicate situations and conditions where the design elements were used. The cases 

addressed the learners’ challenges on the perception of spatial-temporal information related to the subject of the 

CE course. The design allowed the researchers to assess the level of effort to process spatial and temporal 

information required in each case. The cases represent the complexity of an authentic problem. Learners adapt 

previous experiences to the complexities of the new situation presented in each problem Field (Kolodner, 1993), 

enabling them to understand situations and conditions. Adapting previous experiences to a new experience is 

possible using analogical reasoning. Learners associated other experiences to understand new observations in the 

problem— by encountering similar features in the problem.  

When framing problems to cases, the authors considered the unique nature of construction projects and their 

contexts that characterize CE solutions. To a large extent, the solutions were based on personal experience and the 

experts’ exposure to various situations. Building cases serve as a methodology to frame in-situ scenarios with 

observed problems from personal experiences. When used as a mediating mechanism, UAV visualizations operate 

as an affordance tool to experience multiple cases of an authentic problem. The mediating mechanics enable using 

analogical reasoning that is both the end and the means to learning for problem-solving. UAV visualizations 

allowed observations of one or multiple cases with analogous complexity of the authentic problem. For example, 

when observing similarities on the aerial image with the objects of the design of the given problem, learners tended 

to remember and recall pieces of spatial and temporal information that scaffold steps for problem-solving.  

The experimentations were based on the effectiveness of estimating the scope of the work by quantification of the 

acceptable range of quantities based on the experts’ (instructors) estimates. The recognition demonstrated how 

learners could associate design components to one another (i.e., spatial information), such as how formwork and 

a keyway are associated with rebar and concrete. The experiments demonstrated that learners in the treatment 

group could process temporal information more efficiently since they more efficiently recognized the required 

components for the quantity estimation and the associated scope of the work. For example, by recognizing the type 

of construction materials, the treatment group noticed how an excavation precedes installing forms and keyways 
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and how rebar is placed before concrete and a required backfill. Learners from the treatment group were able to 

interpret spatial and temporal information more efficiently. For example, when the 2D representation of the 

building section of the authentic problem had missing information related to materials used in the construction 

process (formwork), the treatment group could identify such construction materials more efficiently than the 

control group. 

Observations of UAV outputs from a construction project’s operations enable opportunities to improve CE 

pedagogy by increasing the perception of construction project complexity. The UAV visualization added new 

affordances for scaffolding the processing of spatial and temporal information. 

Non-cognitive outcomes (RQ2). Students in the treatment group provided significantly higher ratings of 

motivation and its four ARCS subconstructs. Although the number of subjects was small, the emergence evidence 

generated by this study suggests that UAV-supported instruction helps create situational motivation, improves 

student self-efficacy for learning CE, and results in better perceptions of the relevance of learning and instruction. 

The evidence of positive outcomes on situational motivation, self-efficacy, and perceptions of the relevance of 

learning and instruction does not seem to be affected by a slightly significant difference in findings on measures 

in problem-solving among treatment and control groups. Regarding the idea that the combination of perseverance 

and passion may heighten an individual's immersion into a performance domain—or the intensity of focus that the 

learner experiences—the evidence suggests that the potential exists to promote higher performance levels.  

This exploratory quasi-experimental study provides evidence of the promise of UAV-supported instruction in CE 

curricula. In this study's particular example, students in the treatment group provided significantly higher ratings 

of motivation and its four ARCS subconstructs. Despite finding a minor difference among the treatment and control 

groups with respect to the measure of learning, the tentative evidence generated by this study suggests that UAV-

supported instruction helps create situational motivation, improves student self-efficacy for learning CE, and 

results in better perceptions of the relevance of learning and instruction. Empirical studies with larger samples and 

contexts other than construction estimation will demonstrate whether these effects persist and what specific 

instructional manipulations result in enhanced learning outcomes. 

6. CONCLUSIONS, LIMITATIONS, AND FUTURE WORK 

The traditional medium used to represent designs (e.g., 2D drawings) inadequately presents the complexity of a 

design for a construction system—this shortfall results in learners facing difficulties in interpreting, analyzing, and 

synthesizing designs. The difficulties limit project engineers, project personnel, and CE learners' abilities to 

process complex spatial and temporal information. 2D drawings are static images. Their affordances do not enable 

CE learners to effectively develop experiences in the association of spatial and temporal information, thereby 

limiting an individual’s understanding of the construction process.  

The study presented herein showed that UAV visualizations (image and videos) adequately offer a context for CE 

learners by (1) capturing images from construction job site environments and integrating real-world spatial-

temporal features; and (2) enabling the contextual analysis of construction processes. The use of UAV 

visualizations provided unique technological affordances by enhancing the processing of real-world contexts. As 

shown in the experimentation, the UAV output afforded learning to spatially and temporally distributed 

information, which served as a scaffold for the development of spatial and temporal ability. This ability is critical 

in CE education. Learners capitalized on the advantages of UAV technologies, which by focusing on capturing 

images from active construction job site environments (Hou et al., 2013; Yabuki et al., 2011), enabled the learners 

to integrate real-world spatial-temporal features and participate in a contextual analysis of construction tasks and 

resources (Chen and Huang, 2013; Park and Kim, 2013).  

The intervention (UAV visualization) served as a scaffold of individuals’ development of their spatial-temporal 

cognitive abilities by facilitating the perception of spatial relations of entities (objects) (Montello, 1998) and 

dynamic processes. The experiments demonstrated an impact on the students’ abilities to process complex 

information from the treatment compared with the control group. The treatment group brought opportunities for 

the students’ development of critical knowledge related to CE spatial-temporal configurations. 

The learners’ observation of the UAV visualizations created a set of experiences that enriched their personal 

experiences and knowledge about real construction site information (e.g., in-situ organizations of a project's 

layout). Observations of the UAV visualizations facilitated the understanding of the complexity of problems from 
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the CE course content. The result provided evidence that the use of UAV aerial images and video of analogous 

physical context contributes to informative experiences related to design interpretation. 

This study has some limitations worth noting. First, the number of subjects (CE learners) that participated in the 

experiments for the selected course (Construction Methods and Cost Estimating) was not large. Although typically, 

the selected course had a good number of students during the academic semester, the study was not designed as an 

actual assessment of the CE learners’ course. The experiment activities demand a high degree of control—

requiring active supervision from graduate students and instructors in a computer lab at different class times and 

locations from regular course instruction hours The authors implemented a strategy to recruit students based on 

offering extra credit as an incentive for their participation. Despite the authors’ efforts, the strategy offered limited 

motivations for the students’ participation. The sample used in this study may have been significantly limited, 

which may have under-estimated the strength of relationships between the dependent and independent variables 

(i.e., higher level of significance). Second, all data used is from only two problems. This focus limited the 

generalizability of the findings since it was not possible to compare differences and variabilities among problems. 

Future research is encouraged to incorporate an ample repertoire of concepts and practices into cases relevant to 

CE problems to address this limitation. Third, the study did not include testing a priory exposure of subjects to 

real-world scenarios analogous to each problem. Discriminating the level of exposure (exposure allows learners 

to code experiences in memory) will help to determine more accurate levels of analysis. The level of exposure 

might influence the students’ ability to retrieve and use spatial-temporal information and might have effects on the 

dependent variables. Further research should incorporate tests for a priory experience to determine the direct and 

indirect effect on the dependent variables. Fourth, the course-interest survey took place using an online data 

collection method. However, not all students responded to the course-interest survey, reducing the authors’ ability 

to make a paired comparison to analyze the cognitive and non-cognitive outcomes. Future research should consider 

more effective motivating mechanisms to improve and seize the opportunity to compare cognitive (learning) and 

non-cognitive outcomes. 

Future research should also develop interventions with more sophisticated functionalities. For example, the 

technology should incorporate intelligent search and retrieval techniques, which would empower learners to 

facilitate finding and navigating among a library of analogy cases (i.e., a library of UAV-labelled videos and 

images for search and retrieval). These types of technology functionalities should incorporate functions that allow 

retrieving individual past solutions that are generally compatible and analogous with a new aspect of the problem 

(target case), facilitating case-based learning with technology—a transition that should be promoted to advance 

CE learning and the investigation of learning processes, thereby contributing to the critical need for developing 

spatial-temporal abilities. 
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