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SUMMARY: Increasing efficiency and adhering to a schedule are prominent issues faced by many construction 

projects. Identifying areas where productivity is low would automatically be a helpful tool for managers. This 

research aims to analyze and compare the efficiency and accuracy of different computer-vision based activity 

recognition algorithms that are used on construction sites. The authors then propose a method which involves the 

use of YOLOv3 to perform activity recognition on construction sites and compare the accuracy of our method to 

existing algorithms. The algorithms for comparison are selected on the basis that: (1) they incorporate various 

state-of-the-art activity recognition techniques, such as bounding-box predictions and skeleton-models; and (2) 

they are relatively recent implementations. The authors trained the model using a data-base consisting of 4 

activities with frames from 20 videos for each. The dataset was created by extracting frames from the videos and 

labelling the activities that are taking place in each video. The authors then use the aforementioned activity 

classification method to propose a smart schedule monitoring system that automatically updates start and finish 

times of individual activity conducted in a construction project based on the activities that are detected. This 

computer-vision based approach to provide automatic and real-time updates to the construction schedule is 

expected to improve worker productivity and shorten construction project timelines. 
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1 INTRODUCTION 

One of the biggest challenges faced by construction projects is staying on schedule. Construction projects are often 

behind schedule. A study in Nepal found that the mean actual duration to complete about 50% of the construction 

projects was 24.7 months, whereas the planned average duration was 15.2 months for 75% of the projects (Mishra 

and Bhandari 2018). These types of delays cause a project to be severely behind schedule and lead to high costs 

and negative economic impacts. There are many aspects of a project that can cause these delays, such as unrealistic 

contract durations, the contractor’s financial problems, poor labour productivity, project size, the delay of material 

delivery to site, design changes, and weather, among others (Mpofu et al. 2017; Abbasi et al. 2020; Agyekum-

Mensah and Knight 2017; Durdyev et al. 2017; Alwi and Hampson 2003). In terms of a successful project, 

although there are many factors from human aspect that could contribute to a project, such as trades’ skill, and 

distribution of labor, one of the largest contribution comes from the human aspect is labour productivity of the 

construction workers on the site (Mpofu et al. 2017). Not only that, this labour cost could account for 33-50% of 

total project costs (Gouett et al. 2011). Therefore this is the area this research focuses upon. Being able to improve 

productivity and efficiency in this area can help construction projects save a lot of time and money. Worker 

productivity is difficult to track, measure and record, but that is the first step towards finding ways to improve it. 

The authors argue that firstly there needs to be a way to identify where productivity is low, and only then can we 

start finding ways to improve it. More specifically, people need to know where on a construction site the delays 

start to build up. Many construction sites currently rely on the foreman to collect information regarding the 

progress on the site and what tasks are being done (Yang et al. 2016). This adds additional duties for them and 

takes time away from them doing more critical tasks, such as quality control and safety inspections. This is where 

technology can kick in. With the advancement in computer vision technologies and the wide availability of 

implementations, we can find a better way to track worker activities. 

The goal of this project is to build a smart scheduling system for real-time activity tracking of construction site 

progress. The authors aim to design and implement a program that uses computer vision to detect activities taking 

place on the construction site to update the schedule and timeline of progress automatically. Construction sites 

right now often lack implementations of modern technology (Blanco et al. 2017). With the rise of 4D Building 
Information Modelling (BIM), the authors wanted to test cutting-edge computer vision methods in providing 

valuable information for real-time schedule monitoring. 

The paper is organized as follows. Firstly, the authors review the state-of-the-art methods in literature to perform 

recognition of activities performed by workers on a construction site and explain the methodology behind them 

and their performance measures on relevant datasets. Secondly, the authors give an in-depth overview of the 

proposed activity recognition solution including the algorithm, the training and testing procedures, and an 

explanation of the solution’s performance measures. This section also talks about the dataset assembled for the 

purpose of training and testing and how the results of activity recognition compare to other methods used for 

similar purposes. Thirdly, the authors explain the details of the proposed smart scheduling system and how it 

incorporates the aforementioned activity recognition method to update project timelines in real-time. 

2 RESEARCH BACKGROUND  

Methods involving activity recognition, and the tracking of workers and construction equipment have been gaining 

a lot of popularity in recent years in the construction industry. This rise, both in popularity and usage has coincided 

with the exponentially growing advances in real-time localization and/or identification technologies including 

Global Positioning System (GPS) and Radio Frequency Identification (RFID) (Gong et al. 2011) as well as 

technologies that involve the use of computer vision and Convolutional Neural Networks (CNN) (Luo et al. 2018a). 

Most of the real-time localization and/or identification techniques involve the use of different types of sensors. 

Some of the commonly used techniques include the usage of smartphones as a means of recognizing the activities 

performed by the construction workers (Akhavian and Behzadan 2016; Akhavian et al. 2015). Other types of 

sensors used for the purpose of activity classification include accelerometers (Joshua and Varghese 2011), 

wearable devices (Kao et al. 2009; Akhavian and Behzadan 2015a; Akhavian and Behzadan 2018) and audio signal 

processors (Cheng et al. 2016). The data collected from these sensors is often used as training data for machine 

learning classifiers (Akhavian and Behzadan 2015b) which are in turn used to classify activities in order to improve 

worker productivity and safety standards of a construction site (Joshua and Varghese 2011). With rapid 

developments in the field of computer vision and machine learning, aided by the increasing resolutions of cameras 

and larger database and storage capacities (Luo et al. 2018a), techniques of classification that involve the use of 

these concepts have become increasingly common. 
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2.1 Current activity classifiers used for construction sites 

2.1.1 Bag-of-video-feature-words and Bayesian network models 

The Bag-of-Video-Feature-Words (BoF) method (Gong et al. 2011) has been one of the most successful methods 

proposed for the purpose of activity classification on construction sites (Yang et al. 2016). This method consists 

of two main stages: the learning stage and the recognition stage. The learning stage of the method involves 

modeling image sequences using an operator proposed by Laptev (Laptev 2005), conducting feature detection and 

representation, and performing vector quantization using k-means clustering for generating a Codebook. This stage 

also involves learning the model using two different approaches, namely, Naïve Bayesian classifier and 

probabilistic Latent Semantic Analysis (pLSA). The recognition stage involves applying the learned action model 

to classify test data into activities performed by workers. This method was tested on two video datasets, a dataset 

of backhoe actions (3 activities, 150 videos) and a dataset of worker actions (5 activities, 300 videos). The method 

managed to achieve an average accuracy of activity classification in the range of 73.6%-79% and was able to 

perform activity recognition on a new video in about 0.6s. Another caveat of this feature was that it was able to 

overcome commonly faced problems in activity recognition such as occlusion, newly presented angles and 

changing video resolutions. However, this method does not cover scenarios in which multiple actions are being 

performed in the video clips. 

2.1.2 Dense trajectories 

The Dense Trajectories model is built on the Bag-of-Video-Feature-Words model. One of the major differences 

between the two methods is that the dense trajectories method uses dense trajectories method (Wang et al. 2011) 

to model videos as compared to the spatial-temporal features used in the Bag-of-Video-Feature-Words model. 

Three types of descriptors which include Histograms of Oriented Gradients (HOG) (Dalal and Triggs 2005), 

Histogram of Optical Flow (HOF) (Laptev et al. 2008) and Motion Boundary Histograms (MBH) (Dalal et al. 

2006) are computed along these dense trajectories. The features extracted along the dense trajectories are 

subsequently mapped to a codebook, similar to the Bag-of-Video-Feature-Words model. The codebook is 

generated via the means of k-means clustering algorithm. Lastly, activity classification occurs with the help of a 

non-linear Support Vector Machines (SVM). The dataset used for the training of the model consists of 11 activities 

and a total of 1,176 video clips. The dataset consists of both fine-grained and course-grained actions. Based on 

training and experimental results, the average per class accuracy for each descriptor HoG, HoF, MBH is 40%, 

49%, 56% respectively, and it is 44% on average for all the descriptors combined. 

2.1.3 Two-stream ConvNets 

The two-stream ConvNets method utilizes Temporal Segment Networks (TSN) (Wang et al. 2016) to perform 

activity recognition on construction sites (Luo et al. 2018b). The method consists of four steps. The first step 

involves tracking the workers and drawing bounding boxes around them. MDNet (Hong et al. 2015). A single 

object tracking algorithm (SOT) is used to track workers in order to create temporally and spatially cropped videos. 

A unit of activity is deemed to be 3 seconds long. The second step focuses on extracting the spatial and temporal 

stream segments. Temporal streams are obtained using FlowNet 2.0 (Ilg et al. 2017) which estimates optical flow. 

The third step is to classify the activities with the assistance of two-stream ConvNets such as TSNs. The last step 

involves fusing the recognition results from spatial and temporal streams to obtain activity estimates. The dataset 

used for training and testing purposes consist of 16 activities in total and 1,055 clips. In terms of the average 

accuracy, the method outperforms the Bag-of-Video-Feature-Words and Dense Trajectories methods, resulting in 

an 80.5% accuracy (average of 80.8%, 79.6%, and 81.2% for three splits). The average computation time for 

activity classification is given in Table 1. 

Table 1. Average computation time for two-stream ConvNet method 

Object tracking with MDNet 2.53 frames/s 

Stream creation with FlowNet 2.0 11.30s per activity unit 

Activity recognition with the spatial ConvNet 0.87s per activity unit 

Activity recognition with the temporal ConvNet 0.79s per activity unit 
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2.1.4 Three-stream CNN Model 

The three-stream CNN model expands upon the idea of a two-stream approach with the addition of a third stream. 

The three streams are: (1) RGB stream which is used to understand spatial streams and used to identify specific 

background or instruments related to the activities; (2) Optical flow stream which captures temporal worker motion 

information from video clips; and (3) Gray streams which are used to examine edge information of moving objects 

and enable them to be separated into the spatial and temporal sections. The dataset used for training and testing 

purposes consists of 3 activities. The classification precision values for the three activities are 91%, 92%, and 

100%, respectively. The average accuracy of classification using this method is about 85%. 

3 METHODOLOGY  

In this section, the authors talk about the activity classifier that is developed using YOLOv3 and how we designed 

a dataset in order to test this activity classifier. Furthermore, the authors train the methodology on our dataset and 

compare the test results to activity classifiers that use comparably-sized datasets. The purpose of this section is to 

gauge whether the proposed method can: (1) accurately identify the correct construction activity being performed; 

(2) provide activity classification in real-time; and (3) outperform existing activity classifiers trained on datasets 

pertaining to construction activities. 

3.1 You only look once (YOLOv3) 

You only look once (YOLO) is a state-of-the-art, real-time object detection system (Redmon and Farhadi 2018). 

YOLOv3 (Ver. 3) consists of two parts: (1) Darknet-53, a 53-layer network for performing feature extraction; and 

(2) 53 additional layers stacked onto Darknet-53 for the purpose of detection. 

YOLO works by splitting up the image into a grid. Within each region of the grid, the CNN predicts the probability 

of the bounding box for each of the classes. One reason why the authors wanted to use YOLO as opposed to other 

object detection methods is because that it is very fast and efficient. As its name suggests, the algorithm only needs 

to look at the image once to make a prediction. Although this comes at a slight cost in accuracy and precision, that 

is not as critical in our context because very accurate bounding boxes around detection results are not essential. 

Speed is more important for our application to detect real-time images from a surveillance camera, which mostly 

has frame rates of around 30 frames per second (FPS), which can be handled by YOLO. 

3.2 Data collection 

In order to test the performance of the activity classifier and also assure that the subsequent results would help in 

designing the smart scheduling system, a dataset was collected and prepared. The primary criterion was to include 
a range of different activities that demonstrate the variety of steps that take on a construction site to complete a 

construction operation. Excavation was selected as a representative activity in the initial preparation stage. 

Screeding was selected as a representative activity in creating the base of the building. And brick laying was 

selected as a representative activity to construct the main exterior structure. In addition, carpentry work was 

selected as a representative activity that goes on around the site. All except excavating are human activities. To 

create the dataset, the authors first searched for videos on YouTube that included each of our activities. The 

summary of videos accumulated for the purpose of training and testing the classifier are shown in Table 2. 

Table 2. Summary of proposed dataset  

Activity Number of clips Mean 

clip length (s) 

Standard 

deviation (s) 

Excavating 20 10.8 5.5 

Screeding 20 9.5 3.4 

Bricklaying 20 8.9 3.7 

Carpentry 20 8.1 3.5 

The proposed data on average has 20 videos for each activity, with a mean clip length of 9.3s and standard 

deviation of 4.1s. One of other criteria was to have a dataset that was comparable to datasets used in previously 

proposed activity classifiers trained specifically to perform activity recognition on construction sites. Table 3 

shows a comparison of our dataset versus the ones used in other activity classifiers for construction activities. 
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Table 3.  Comparison of proposed dataset and existing datasets 

Method Number of 

activities 

Number of clips Average clips 

per activity 

Average length 

of clip (s) 

Gong et al.  (2011) (Dataset II) 5 300 60 5 

Yang et al. (2016) 11 1176 107 6.8 

Luo et al. (2018a) 3 654 218 8.8 

Luo et al. (2018b) 16 1055 66 3 

Ours 4 80 20 9.3 

3.3 Dataset 

The dataset we built consists of 4 classes: Excavating, Concrete Screeding, Brick Laying, and Carpentry (Figure 

1). Once the videos are collected, every 3rd frame from each of these videos are extracted. Because for most of 

our videos, there was only a significant change in movement after every 3rd frame because of the frame rate and 

type of activity. Getting all the frames of a 7 second video would give us around 7×30 = 210 frames. There would 

be too many redundant frames and this would lead to unnecessary extra cost to annotate and label. By taking every 

3rd frame, we get around 7 × 30 / 3 = 70 frames for each video. The authors then labeled the class and annotated 

the bounding boxes for each of these frames. Once the annotated frames for each activity are developed, we used 

an 80-20 split to get the training and testing sets. For each activity, 80% of the frames are used for training, and 

the remaining 20% are used for testing in YOLO. Lastly, a TXT file with the paths to each of images was created, 

so that YOLO learns where to look for each image, and its corresponding annotations. 

  

Figure 1. Example activities in prepared dataset 
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3.4 Developing our YOLOv3 classifier 

The first step in developing the classifier involved the splitting of the dataset into training and testing sets for 

which we used an 80-20 split. Each training video was passed through a script that splits the video into frames. 

For the purpose of the dataset preparation, the authors selected every 3rd frame and discarded the other two. Each 

frame was individually labelled and a TXT file of the same name as the frame was created for each corresponding 

frame, including the class and the bounding box coordinates. In order to perform training on the dataset, few 

changes needed to be made to the YOLOv3 configuration file (yolov3.cfg) and the text files that are used for 

training, including: 

• Number of filters = (Number of classes + 5) * 3 

• train.txt, a TXT file containing the file paths of the training frames 

• test.txt, a TXT file containing the file paths of the testing frames 

• obj.names, a file containing a list of all the classes 

• obj.data, a file containing number of classes and the file paths of train.txt and test.txt files 

Along with the modified configurations, the following information is also required: 

• Pre-trained convolutional weights 

• A configuration file containing the layers present in YOLOv3 

A flowchart of the training procedure is given in Figure 2 

 

Figure 2. Processing of training process to obtain weights file 
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3.5 YOLO results and comparison 

The training and object detection algorithms were run on a Google Colab Notebook with the following 

specifications: 

• OS: Ubuntu 18.04.3 LTS (64 bit) 

• CPU: Intel(R) Xeon(R) @ 2.20GHz 

• CPU RAM: 12GB 

• GPU: Nvidia Tesla K80 

• GPU RAM: 12GB GDDR5 

The authors ran training for up to 11000 iterations with each iteration taking 13-18 seconds. The results from the 

iterations are shown in Table 4. Using the testing set, the detection time was 63.0 seconds for 564 images in the 

testing set. It demonstrates a detection rate of 29/564 = 51ms per image. This results in a frame rate of 19FPS. 

This would be usable with surveillance cameras that usually operate at 30FPS. As discussed before, the authors 

don’t need to view every frame of the video feed. Taking into account the additional computational overhead of 

our smart scheduler, this would be feasible for a construction site application. Figure 3 demonstrates a successful 

detection for carpentry activity (9,440 iterations). 

Table 4. Results for different iterations based on Equation (1) – (3) 

Iterations mAP Precision Recall F1 

Score 

9440 60.28 82 49 61 

8580 43.58 97 27 42 

9720 43.14 69 43 53 

9860 57.21 66 48 56 

10000 55.50 75 49 59 

10140 45.48 71 38 48 

10280 47.28 66 38 48 

10420 43.89 73 40 52 

10560 48.87 72 45 55 

10700 57.64 60 50 54 

10840 33.83 35 40 38 

10980 44.31 72 38 50 

 

Figure 3. Successful detection of carpentry activity (9440 iterations) 
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In Table 4, the authors showed results for the detection on the dataset with various metrics. However, the authors 

want to identify which metric is most meaningful for our application. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
         (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
          (2) 

𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
          (3) 

For instance, having higher number of false positives (FP) would decrease the precision. A high number of FPs 

means we are detecting objects as a certain activity, when in fact that activity is not taking place in those objects. 

To a construction manager, this would look like more work is being done on the site than what is actually taking 

place. The result is the work would seem ahead-of-schedule whereas it may not. Succeeding tasks may therefore 

be scheduled before they should be and this would cause inefficiencies. 

On the other hand, having a high number of false negatives (FNs) would decrease the recall. A FN happens when 

we don’t detect an activity that is actually taking place. Certain tasks being done on the site may not be detected 

as they should be. And this would therefore make it seem like the work is behind schedule, when in fact, the work 

may be on track. 

The balance between Precision and Recall is given by the F1 Score. In this research, the authors want to minimize 

FPs; the cost of misinformation from a FP is greater in comparison to a FN. Minimizing the FPs means looking 

for a higher precision value, while still making sure that the F1 Score is acceptable. The best result that is obtained 

on our dataset as seen in table 4 was at 9440 iterations. At this level, the authors have the highest mAP and F1 

Score, while also having the second highest precision. Additionally, this level also has the second highest recall. 

For this iteration level, Table 5 shows the results for each class. Then our results are compared to that of other 

state-of-the-art models (Table 6). These are the same papers as those shown in Table 3. 

Table 5. Results for each class at 9440 iterations 

Class Precision (%) 

Excavating 76.56 

Cement Screeding 93.75 

Brick Laying 81.54 

Carpentry 61.97 

Table 6. Comparison to other models 

Method Average Accuracy (%) 

Gong et al. (2011) 79 

Yang at al. (2016) 59 

Luo et al. (2018a) 85 

Luo et al. (2018b) 81 

Ours 78 

4 SMART SCHEDULE MONITORING 

In this section, the authors demonstrate how we use the proposed activity classifier to perform smart schedule 

monitoring of construction projects. The purpose of the section is to: (1) demonstrate the concept of smart schedule 

monitoring; (2) explain how the proposed activity classification method can aid in the process of smart schedule 

monitoring; and (3) gauge whether this method of activity monitoring is feasible to implement on construction 

sites. 

4.1 Distribution into project phases 

The construction activities for the activity classifier were chosen keeping in mind that a construction project 

involves different phases and activities following certain precedence relationships. The four activities chosen for 
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the dataset were Excavating, Carpentry, Bricklaying and Cement screeding, respectively. For the purpose of the 

schedule monitoring system, the authors distributed the activities into three phases as shown in Table 7. 

Table 7. Distribution of activities into construction phases 

Phase 1 Phase 2 Phase 3 

Excavating Carpentry 

Bricklaying 

Screeding 

Once the phases of the construction project were defined, the next step was to represent this information in the 

form of a Gantt Chart (Maylor 2001). As shown in Figure 4, the construction project is divided into 3 phases. Each 

task has a certain time period assigned to it. The number below each period of task completion represents the 

number of workers assigned to the task. This information is provided by the project manager at the beginning of 

the construction project. 

 

Figure 4. Example of Gantt Chart showing different phases of project 

4.2 Merging the two concepts 

Now that: (1) the tasks are represented in terms of a timeline; and (2) the tasks being performed on the site can be 

identified using the proposed activity classifier, the next step in the process is to combine the two concepts. Firstly, 

the video feed from the camera placed on the construction site is passed to the activity classifier. The activity 

classifier then determines what activity is being performed in the clip and how many workers are performing the 

task. Once we know the task being performed, this information along with the original project timeline is fed into 

the smart schedule monitoring system to update the start and finish times of the project automatically and 

accordingly adjust the schedule of the project. A flowchart of this process is carried out as shown in Figure 5. 

 

Figure 5. Flowchart of Smart Schedule Monitoring 
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Figure 6 shows an example in which start and finish times are updated based on what activity is detected on the 

video camera feed. The current state in the timeline is represented by the dashed line. In this scenario Phase I 

(Excavating) and Phase II (Carpentry) were detected to be on time and updated on the Gantt Chart, represented by 

the green markings below the activity bars. However, on the current time stamp, the activity detected is bricklaying 

(Phase II), not screeding (Phase III) as expected. Based on this detection, the timeline is now updated to reflect a 

new finish time for bricklaying as shown by the extended task line for the bricklaying activity. The scheduler also 

updates the start time for the task of screeding. The number of workers detected is also one, and this is reflected 

on the project timeline thus helping the project manager to reallocate resources accordingly. 

 

Figure 6. Example of updating start and finish times 

5 DISCUSSION 

The application that was developed in this paper is very versatile in that many additional features and 

improvements can be added to it. With a basic setup and understanding of the current model, there are many 

changes that can be made to further increase the potential of such an application. A goal of many software 

development is to be configurable to each user’s needs. Currently, our implementation is very fixed in terms of 

the classes that it can detect and ways in which it can be used.  

5.1 Activity classifier 

As shown in Table 3, our dataset is still smaller than most other datasets. Although our average clip length is 

longer in comparison to others’, it has fewer number of clips. This means that there isn’t much variety in the video 

clips and that could reduce the amount of learning that YOLO can do from these images. The longer length of our 

clips doesn’t necessarily help, because the activity taking place is just being repeated more often, resulting in very 

similar frames. Having more video clips, and hence, more frames would help improve the results.  

Building our dataset based on YouTube videos proved challenging itself. It was even harder to find videos in 

which multiple activities were taking place. Therefore, our dataset didn’t contain images where multiple activities 

are labeled in the same frame. This limits the learning that YOLO can do. The situation where more than one 

activity occurs has not been tested due to the lack of available images of that sort. 

5.2 Smart scheduler 

The smart Scheduler is fully usable on it’s own. However, most major construction projects rely on a centralized 

Building Information Modelling (BIM) systems. These are 4D visualization applications that are used to show the 

progress of a construction site in 3D over time. 

It allows project managers to understand how progress is expected to occur on the site and is referred to throughout 

the construction project. Being able to integrate the scheduler with it would be a very useful goal. It would allow 

automatic updates to the BIM system’s progress tracking. It would also allow real-time tracking of the progress 

which previously has been a challenge. A manager would no longer need to manually update progress in order to 

see progress as it would be updated automatically in real-time. 

Additionally, a further level of complexity can be added to the scheduler which allows to track what is being done 

by each worker specifically. This allows them to be reassigned based on their performance and skills in certain 

activities. For instance, if a worker is able to complete a specific task faster and ahead of the planned schedule, 
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they would be considered efficient at that task. The scheduler can then make recommendations on which personnel 

should work on which tasks. 

6 LIMITATIONS 

As discussed above, the authors ran training for up to 11000 iterations on the dataset. As shown in Table 4, the 

result of more training was inconclusive in terms of increasing accuracy. Training for much longer, over 25000 

iterations may give us a better view.  

Additionally, our dataset consists of un-occluded images for training and testing and so we haven’t done testing 

with occluded images to see how our model reacts in that scenario. However, even if the authors had occluded 

images, YOLO itself isn’t very good out-of-the-box to deal with occlusion.  

The smart schedule monitoring is currently also limited to detecting classes that are predefined. These classes 

don’t automatically match the activities being trained by YOLO. YOLO takes in a file with a list of all the classes. 

This file could also be used to update the list of available activities for the schedule monitoring, in which the 

manager can choose to use.   

7 CONCLUSION 

As seen in our results section, our dataset, although with its issues, has been successful in helping us train and 

build a model that can be used for activity classification on a construction site. The authors have further enhanced 

the usage of these detections by using them to predict, track and update the progress that is being made on the 

construction site. By allowing project managers to see real-time changes to the progress being made, they can 

much more quickly and easily find ways to reallocate labor and other resources to keep projects on track. 

By creating such a system where data is collected real-time, we can help all stakeholders of the project monitor 

the progress more easily. This includes the workers themselves. They can see if at their current productivity, they 

will be able to complete the task on time. This allows workers to be more mindful and aware of their progress. It 

can also help alleviate them from having to be told to speed up their work as they have access to this information 

themselves. 

Most importantly, this solution will help identify delays as they start to develop. As soon as a delay is detected in 

the smart schedule monitoring system, managers can be notified and they will be able to see what the problem is, 

and then decide on how they can fix it. This will help prevent inefficiencies on the site as soon as they occur and 
let them be addressed immediately. That is where real-time tracking is useful and value adding. 

The implication of a reduction in construction delays can be very significant. It would lower costs for the firm 

such as by reducing labour hours needed and decreasing the tool and equipment leasing expenses. These all can 

amount to a large part of construction costs (Gouett et al. 2011). This would be an important investment for firms 

to help them reduce these costs. There would also be positive economic impact and environmental impact. 

According to the World Green Building Council (WGBC), the construction processes account for about 11% of 

global carbon emissions (Council 2019). Reducing the time spent in construction means a reduction in 

transportation of materials and less waste as well. All of these factors could lead to less pollution and a smaller 

carbon footprint. 

Most construction sites already have surveillance cameras for their security purpose, and integrating this to work 

with multiple camera video feeds would be important in building a reliable and functional system. Additionally, 

the data collected from each construction project can be used by the construction company for training and analysis, 

so that they can improve their workflow in future projects. This data-centric approach is a shift towards the right 

direction for advancing the technologies used on a construction site. 

Integrating our methodology with a BIM software tool would be a very good way for many of these goals to be 

achieved. It will give managers a much more centralized view of all their project statistics and will automatically 

make adjustments to the plan based on the real-time progress. By using software like this, project managers will 

be able to identify causes of delays. Automatic updates of the schedule based on the real-time tracking of activities 

will aid in management of resources. It will help them in planning and logistics of the project, while reducing costs. 
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