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SUMMARY: Demand-driven heating, ventilation, and air conditioning (HVAC) operations have become very 

attractive in energy-efficient smart buildings. Demand-oriented HVAC control largely relies on accurate detection 

of building occupancy levels and locations. So far, existing building occupancy detection methods have their 

disadvantages, and cannot fully meet the expected performance. To address this challenge, this paper proposes a 

visual recognition method based on convolutional neural networks (CNN), which can intelligently interpret visual 

contents of surveillance cameras to identify the number of occupants and their locations in buildings. The proposed 

study can detect the quantity, distance, and angle of indoor human users, which is essential for controlling air-

conditioners to adjust the direction and speed of air blow. Compared with the state of the art, the proposed method 

successfully fulfills the function of building occupant counting, which cannot be realized when using PIR, sound, 

and carbon dioxide sensors. Our method also achieves higher accuracy in detecting moving or stationary human 

bodies and can filter out false detections (such as animal pets or moving curtains) that are existed in previous 

solutions. The proposed idea has been implemented and collaboratively tested with air conditioners in an office 

environment. The experimental results verify the validity and benefits of our proposed idea.  
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1. INTRODUCTION 

According to the U.S. Energy Information Administration (EIA, 2019), building energy consumption accounts for 

20% of global energy usage, and a large part of electricity in buildings is used for heating, ventilation, and air 

conditioning (HVAC). The size of HVAC systems usually meets the full-load heating or cooling requirements, 

which correspond to the maximum occupancy level of buildings. In traditional buildings, regardless of the actual 

building occupancy level, HVAC systems are controlled and operated according to the thermostatic settings or 

handheld remote settings. When building occupants are moving, failure to change HVAC settings in time can 

result in wasted energy. Therefore, researchers expect future smart buildings to be able to detect indoor occupancy 

levels and real-time occupant locations in thermal zones of buildings, thereby providing demand-based HVAC 

service levels (Erickson et al., 2009; Agarwal et al., 2010; Yang et al., 2012; Ekwevugbe et al., 2013; Lu, 2018). 

Typical thermal zones of buildings can be floors, rooms, or even dining table or sofa areas. In order to take into 

account the impact of the number of occupants and activities, the researchers of Lim et al. (2016) presented an 

online HVAC-aware occupancy scheduling scheme. Their experimental study showed that HVAC operation can 

save up to 12% of energy. Also, researchers in (Jain and Madamopoulos, 2016) proposed an accurate occupant 

distribution mapping framework for efficient HVAC operation. 

Existing building occupancy detection involves various microscale sensors, including passive infrared sensors, 

acoustic sensors, CO2 sensors, carbon dioxide sensors, camera-based motion sensors, and so on. Passive infrared 

(PIR) sensors are widely used to control bathroom and hallway lighting. When a warm object (human or animal) 

passes by, PIR sensors detect the change in radiated infrared energy, and then turn on/off lighting. However, PIR 

sensors cannot detect stationary persons or animals, such as sitting on a toilet or sleeping on a bed. Besides, even 

though PIR sensors can detect the presence of occupants, they are unable to count the number of occupants. 

Therefore, even if PIR sensors retain good privacy protection, they cannot be used to detect the building occupancy 

level and distribution for demand-driven HVAC control (Raykov et al., 2016). In 2019, the researchers of (Huang 

et al., 2019) presented a prototype of active infrared-based occupancy counting systems, which is easy to use and 

has a higher counting accuracy. Yet, the disadvantage of this method is that it is unable to detect stationary persons.  

In the past few years, researchers have attempted to use acoustic sensors along with signal processing algorithms 

to estimate indoor room occupancy levels (Kelly et al., 2014; Huang et al., 2016). However, limited research has 

been conducted to reduce the interference of background sounds, such as dog barking or TV/music playback. To 

deal with this challenge, several signal processing algorithms have been proposed to measure ambient acoustic 

level and cancel out background noise in buildings (Huang, 2018). Similar to PIR sensors, acoustic sensors cannot 

detect silent people, and it is also difficult to use acoustic sensors to precisely distinguish the number of people in 

a thermal zone and their indoor locations. Researchers have investigated using CO2 sensors to infer the number of 

building occupants (Nassif, 2012). It is known that indoor CO2 levels depend on many factors, such as room size, 

the type and setting of HVAC equipment, the number of building occupants, and the opening status of 

doors/windows. Since the number of occupants is one of these factors, there is no explicit relationship between the 

number of occupants and CO2 levels. Besides, the awareness of indoor CO2 levels does not reveal the distance and 

direction between building occupants and air conditioners (Sun et al., 2011). In addition, because the carbon 

footprint of pets is comparable to humans, indoor CO2 levels are also largely affected by the presence and activities 

of dogs and cats. According to the 2015-2016 APPA National PET Owners Survey (NPOS, 2015), 65% of 

households in the United States have pets, which is equivalent to 79.7 million households. The United States has 

54.4 and 42.9 million families with dogs and cats, respectively. Some homeowners are more likely to have multiple 

pets. 

Emerging camera-based motion sensors (such as Google Nest) have reduced false alarms to some extent by 

analyzing motion patterns. These pattern features help determine differences between objects, such as swaying 

trees and suddenly opened doors. However, false alarms are present, and stationary persons cannot be detected. 

From the above discussion and Table 1, it is obvious that these existing indoor occupancy detection and counting 

methods cannot fully meet the rigid requirements of next-generation smart air conditioners (Labeodan et al., 2015). 

To address these challenges, it is interesting to collaborate on the design of smart building systems and information 

technology for energy savings in buildings (Ortega et al., 2015; Huang et al., 2017). In this work, we explore the 

design of next-generation CNN-based visual recognition air conditioner. With the help of artificial intelligence 

technology and surveillance cameras, our equipped air conditioners can adjust their operation based on the 

perceived user movements, patterns, and surrounding environments. This smart air conditioner can accurately 
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detect spaces that are currently occupied by human users, and then provide cooling services to these occupied areas 

only with the appropriate breeze strength and direction, rather than the entire thermal space.  

 

Table 1: Comparison of Existing Building Occupancy Detection and Counting Methods 

Detection Mechanisms Advantages Disadvantages 

Passive infrared (PIR) 
Low-cost; 

privacy protection 

Unable to detect stationary building occupants;  

Unable to count the number of occupants; 

Unable to distinguish other moving objects 

Sound level 
Low-cost; 

privacy protection 

Limited accuracy; 

Subject to nearby noise interference; 

Unable to detect silent people 

CO2 level Privacy protection 
Limited accuracy of occupancy counting; 

Unable to distinguish animal interferences 

Camera-based motion Improved accuracy 
Poor privacy protection; 

Unable to detect stationary people 

Active infrared 
High accuracy; 

Low-cost; 
False alerts when people stay in infrared pathways; 

 

Regarding the contribution of the body of knowledge, this paper makes the following contributions: (1) based on 

rapid advances of convolutional neural networks, we utilize a deep-learning visual recognition technique to 

perform occupancy detection. In addition to accurately sensing the number of persons in the sight of surveillance 

cameras, this technique can also obtain the distance and direction of each person in the range, regardless the person 

is moving or stationary, making sounds or keeping silent. The proposed technique is non-intrusive and highly 

accurate for room occupancy counting and localization towards energy-efficient buildings. Furthermore, this 

method can filter out false alarms caused by animal interference. (2) In order to implement and test the proposed 
idea, we have realized it in a standalone computing system (i.e., Rockchip RK3399 hardware platform) and tested 

its performance in an office environment. The experimental results validate our proposed idea. The high detection 

accuracy of 98% validates the trained YOLO neural network architecture. The average estimation errors for 

distances and angles are 17% and 10%, respectively. These results indicate that the use of the YOLO neural 

network in the Rockchip RK3399 computing platform is an appropriate choice for building occupancy detection 

and positioning applications. This method successfully fulfills the function of building occupant counting, which 

cannot be realized when using PIR, sound, and carbon dioxide sensors. 

2. SYSTEM DESIGN OF SMART AIR CONDITIONERS 

2.1 Introduction of CNN-based Visual Recognition 

As a basic research area in the field of computer vision, object recognition tries to identify what objects exist in 

images, and report the position and orientation of these objects in the images. These objects may be human bodies, 

faces, cars, or animals, etc. In the past few years, human face and body detection have received extensive attention. 

A type of object usually has its own special features, which help to classify itself in computer vision. For example, 

the special feature of all circles is a circular shape. When looking for circles, people are seeking objects at a certain 

distance from a point (i.e., the center). Similarly, when looking for squares, people are seeking objects that are 

perpendicular at four corners and have equal side lengths. Special features for heads, arms, legs, torso, skin color, 

and arm distance can be used for human body recognition. 

Traditional machine learning methods must first define special features, and then use support vector machine 

(SVM) or other techniques to classify objects. With the recent availability of high-performance computing 

platforms (such as GPU cards) and large image databases such as ImageNet (Deng et al., 2009), it is feasible to 

run deep learning approaches to improve the accuracy of the object classification. So far, deep learning has greatly 

surpassed these traditional machine learning approaches, and deep learning can perform end-to-end object 

detection without defining special features in advance. 

The concept of neural networks was initially inspired by human brains. Then, various neural network architectures 

have been developed for many years (Sze et al., 2017; Gu et al., 2018; Zheng et al., 2020). In 1998, researchers 

introduced convolutional neural networks to classify hand-writing digit numbers. Convolutional neural network 

(CNN) is a kind of deep neural networks. Compared with traditional machine learning methods (such as SVMs), 
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CNN greatly improves the accuracy of object classification. The CNN technique has been used to automatically 

detect workers and heavy equipment on construction sites (Fang et al., 2018) and detect hardhats worn by 

construction personnel (Wu et al., 2019).   

 

Figure 1. Processing Flow of Generic Machine Learning Techniques for Room Occupancy Detection 

 
Figure 2. A general architecture of convolutional neural network 

As shown in Figure 2, CNN comprises an input layer, an output layer, and multiple hidden layers. A large number 

of parameters in these layers will be determined by training. A CNN architecture involves three main types of 

hidden layers: convolutional layers, pooling layers, and fully-connected layers. The convolutional layer is a key 

building block of CNN because it performs most computations. The function of a convolutional layer is to extract 

features from its preceding layer through the mathematical operation of convolution. In the pooling layer, features 

are down-sampled along with spatial width and height to reduce the dimension of special features. In addition to 

reducing the number of parameters and computation complexity in neural networks, pooling can improve the 

network robustness to small shifts and distortions. The fully-connected layer calculates the classification scores to 

help finalize object recognition decisions. In this way, CNN transforms input images layer by layer from the 

original pixel values to the final classification scores. If the human body scores are the highest among all types of 

objects or exceed a certain threshold, the CNN-based visual recognition algorithm will output the human bodies 

detected in the input images. In order to introduce nonlinear effects into neural networks, people usually apply a 

nonlinear activation layer after the convolution or fully-connected layers. Overall, CNN is a clever combination 

of linear and nonlinear layers. 

Training CNN is the same way as training traditional neural networks. Through backpropagation, stochastic 

gradient descent algorithms (Ruder, 2017) are adopted to adjust parameter values in all network layers. Once the 

training process is completed, the parameter values are finalized for object classification. 

2.2 CNN Model Training and YOLO Architecture 

In this study, we selected publicly available human body datasets (Dalal and Triggs, 2005; Wang et al., 2007; 

Dollar et al., 2012) as training and evaluation samples. In order to make up for the lack of human sitting and lying 

down in these datasets, we used cameras to collect about 15,000 human images in various poses in office and home 

environments.   

In order to enable CNN-based visual detection algorithms to run on resource-constrained edge devices (such as 

surveillance cameras and HVAC controllers), the human detection algorithm we developed should be optimized 

so that it has low requirements for computing resources, memory footprint, and power consumption. Besides, the 

developed algorithm is supposed to recognize multiple human bodies in real time, so HVAC equipment can adjust 

its control in time. Based on the above considerations, we chose the YOLO neural network architecture (Redmon 

et al., 2015; Redmon and Farhadi, 2018), because of its huge potential to run extremely fast on edge devices. Prior 

to the YOLO architecture, all object detection models (Ren et al., 2015) need to perform initial detection first to 

find regions of interest. Then, classification is applied only to these regions of interest. As YOLO wisely regards 
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object detection as a regression problem, it attempts to use a single neural network for detection and classification. 

Therefore, the YOLO neural network architecture can run much faster than previous methods. 

General YOLO neural network architecture is illustrated in Figure 3. Behind the convolutional layers of the YOLO 

architecture are two fully connected layers. To reduce the depth size of special features from preceding layers, 

some convolutional layers use 1×1 convolutions. As illustrated in Figure 4, the YOLO neural network architecture 

divides an input image into many grid cells. A grid cell can only detect one object and a fixed number of bounding 

boxes. Each bounding box is associated with a confidence score. To eliminate repeated detection of the same 

object, YOLO uses non-maximum suppression to remove prediction with the lowest confidence score. YOLO pre-

trains the convolutional layers in the ImageNet classification tasks, and then completes human detection training.  

 
Figure 3. The Network Layers of a YOLO Architecture (Redmon et al., 2015) 

 
Figure 4. Illustration of How the YOLO Neural Network Architecture Detects Human Bodies 

2.3 Distance and Direction Estimation from a Single Camera 

So far, human body recognition has been achieved by using the YOLO neural network architecture. The remaining 

challenge is to predict the distance and direction between an air conditioner and a human body. For a system cost 

point of view, it is best to use only one camera to achieve this function. In order to obtain distance estimates using 

a single camera, we must use perspective knowledge (Stein et al., 2003), where the size of a human body in an 

image is a hint. Due to the unknown body type (slim, fat, adult, children, male, female, etc.), the width of human 

bodies varies from 40 cm to 70 cm. As a result, the distance based on the width of human bodies is estimated to 

have an accuracy of 70%-80%. In typical air conditioning applications, this level of accuracy is acceptable to 

customers. 

Figure 5 shows a diagram of an imaging geometry including a pinhole (P) camera mounted at a height (H) parallel 

to the floor surface and an imaging plane (I) placed at a focal distance (f) from the pinhole. The distance between 

the human body and the camera is D. The position of the human foot is projected at the position Y on the image 

plane. The formula for calculating the distance (D) is: D=f×H/Y, which can be derived from the similarity of 

triangles. 

Next, let us discuss how to estimate the angular direction between the human body and the air conditioner. Figure 

6 shows a diagram of an imaging geometry to detect the angular direction. This figure consists of a pinhole (P) 

camera, whose horizontal field angle (Afov_H) is mounted parallel to the floor surface, and an imaging plane (I) 

is placed at the focal distance (f) from the pinhole. The distance between the human body and the camera is D, and 

it is projected onto the image plane at the position (X). The angle direction of the person is A = arctan(x/f).   
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Figure 5. A Diagram of the Imaging Geometry for Distance Estimation 

 

Figure 6. A Diagram of the Imaging Geometry for Angular Direction Estimation 

Therefore, information about the number of occupants, their distances and angles from the air conditioner helps 

HVAC equipment serve areas that require automatic control of the strength and direction of the breeze. 

2.4 Proper Image Camera Selection 

If human bodies in the captured images or videos are too small, it is difficult to detect them. According to our test 

results in indoor environments, our visual recognition algorithm for human detection requires the minimum 

number of pixels of a human body in images to be 80 pixels. Although the viewing angle of image cameras is 

usually kept constant, different sizes in the field of view (FOV) are obtained by focusing the lens at different 

working distances.  

Figure 7 shows the relationship between horizontal FOV (in length), focal length, camera size, working distance 

(WD), and angular FOV (AFOV). AFOV is specified as the full angle (in degrees) related to the horizontal size 

(width) of the camera used with the lens.  

 

Figure 7. A Diagram of the Imaging Geometry for Angular FOV Calculation 
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For surveillance cameras in vision-based intelligent buildings, system designers focus on the range and distance 

that the surveillance cameras can monitor. If image cameras are installed in room corners, a horizontal FOV of 80-

90 degrees is usually required. If image cameras are installed in hallways, a wide horizontal FOV is not required, 

but it is better to use a longer working distance. As shown in Figure 7, when the horizontal dimension (h) and focal 

length (f) are known, the calculation formula of angular FOV is AFOV_H=2*arctan(h/2f)=2*arctan(Horizontal 

FOV in length/2/WD). 

As shown in Figure 8, the most common aspect ratio for cameras is 4:3 (width: height = 4:3). The number marked 

in the middle of each yellow rectangle is the diagonal length. The number above each yellow rectangle is the type 

of image, and they are the size descriptors for the equivalent camera tube size. Table 2 lists the most commonly 

used 4:3 cameras on the market. For cameras installed in room corners, AFOV_H >= 80 degrees and AFOV_V > 50 

degrees are usually required. Since cameras become very expensive as the size increases, the economical choice 

for cameras and lens is the 1/3`` type (width=4.8 mm, height=3.6 mm) and the focal length is 2.8 mm. 

 

Figure 8. Illustration of Image Camera Size and Common Examples 

Table 2: Summary of Existing Cameras with an Aspect Ratio of 4:3 

 A focal length of 2.8 mm A focal length of 3.6 mm A focal length of 6.0 mm 

Type of 4:3 

image camera 

AFOV_D 

(degrees) 

AFOV_H 

(degrees) 

AFOV_V 

(degrees) 

AFOV_D 

(degrees) 

AFOV_H 

(degrees) 

AFOV_V 

(degrees) 

AFOV_D 

(degrees) 

AFOV_H 

(degrees) 

AFOV_V 

(degrees) 

1/4'’ 71.1 59.5 46.4 58.1 47.9 36.9 36.9 29.9 22.6 

1/3'’ 93.9 81.2 65.5 79.6 67.4 53.1 53.1 43.6 33.4 

1/2'’ 110.0 97.6 81.2 96.0 83.3 67.4 67.4 56.1 43.6 

2/3'’ 126.0 115.1 99.4 113.6 101.4 85.0 85.0 72.5 57.6 

1'’ 141.4 132.7 119.5 131.5 121.3 106.3 106.3 93.7 77.3 

Assuming that a human body of 40 cm or wider has at least 80 horizontal pixels in images, Table 3 shows the 

horizontal, vertical, and the total number of pixels required by the 4:3 cameras and the normalized computation 

time for different working distances, when the horizontal and vertical AFOVs are 80 and 50 degrees, respectively. 

For example, when the working distance is 5 meters, the required number of pixels is 1.57 million, which means 

5 times the computation time for VGA images (640 × 480). 

Table 3: Corresponding Pixel Resolutions and Normalized Processing Time  

Working distance 
Required 

horizontal pixels 

Corresponding 

vertical pixels 

Corresponding 

pixel resolutions 

Normalized processing time with 

respect to VGA images (640×480) 

3 meters 1,007 560 0.56 million 1.8 × 

4 meters 1,343 746 1 million 3.3 × 

5 meters 1,678 933 1.57 million 5 × 

Horizontal

Vertical

Image Size

Image Circle 4 mm
2.4 
mm

3.2mm

1/4' 

6 mm
3.6 
mm

4.8 mm

1/3' 

8 mm
4.8 
mm

6.4 mm

1/2' 

11 mm6.6 
mm

8.8 mm
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16 mm9.6 
mm

12.8 mm

1' 



 

 

 
ITcon Vol. 25 (2020), Huang & Hao, pg. 368 

3. EXPERIMENTS AND DISCUSSION 

3.1 System Implementation  

We have implemented and optimized the proposed visual-based human detection algorithm on several hardware 

computing platforms in Table 4. For example, Rockchip RK3399 SoC is a popular choice for home multimedia 

and face authentication. This platform has dual 2.0 GHz CPU clusters. One cluster contains two Cortex-A72 high-

performance cores and the other cluster contains four Cortex-A53 cores. Rockchip RK3399 can also be embedded 

with Mali-T860 MP4 GPUs for computing acceleration. In this study, we have implemented a pure CPU version 

with multithreading and Arm NEON optimization, and a GPU version with OpenCL 1.2 for parallel computing. 

For server platforms, we have implemented the proposed algorithm on Intel Xeon CPUs, and tested the CPU 

version with OpenCL 1.2 on NVidia GeForce GTX 1080Ti, which is popular for affordable server platforms.  

Table 4: Hardware Computing Platforms for Running our CNN Architectures 

Option of Hardware Computing Platforms Operating System 
Speed (FPS) assuming the 

1080p image/video input 

Rockchip RK3399 (pure CPU) 32bit Debian 0.6 

Rockchip RK3399 (with Mali T860 GPU) 32bit Debian 5 

Intel Xeon W-2133 CPU @ 3.60 GHz 64bit Ubuntu 3.5 

Intel Xeon W-2133 CPU @ 3.60GHz with NVidia GeForce GTX 1080Ti  64bit Ubuntu 195 

 

Assuming 1080p image/video inputs, the performance is listed in Table 4. For example, it shows that Rockchip 

RK3399 (GPU version) can process 5 frames per second (FPS), which is equivalent to 0.2 seconds per frame. For 

edge-side processing (that is, using a SoC to process video streams), HVAC equipment adjusts the frequency of 

power inverters quickly and controls the speed and strength of the breeze. The PCB board in Figure 9 shows our 

Rockchip RK3399 platform, which contains several key components: USB port, memory, CPU, Wi-Fi, HDMI 

port. We can see that a camera is placed on top of the air conditioner to simulate the actual installation height and 

detect the presence and location of building occupants. For large buildings with many air conditioners, it is 

appropriate to use a server platform to handle all camera video streams. As shown in Table 4, the Intel W-2133 

CPU @ 3.60GHz with NVidia GeForce GTX 1080Ti server can process 195 frames per second. The total power 

consumption including the air conditioning panel and display is only 20 watts. 

 

Figure 9. Rockchip RK3399 Hardware Computing Platform and its Joint Operation with an Air Conditioner 

3.2 Experimental Results 

Figure 10 shows the human body recognition by a surveillance camera in an office environment. For accuracy 

measurement, we test the implemented system (i.e., Rockchip RK3399 platform) in an indoor office environment. 

The width of the office is greater than 6 meters, and the lighting intensity is greater than 80 lux.  

As shown in Figure 11, we draw 5 arcs at radii of 1, 2, 3, 4, and 5 meters from the camera position, respectively. 

Four lines were drawn on the floor, marking 40 degrees to the right, 20 degrees to the right, the center, 20 degrees 

to the left, and 40 degrees to the left, respectively. One to eight testers stand or sit on one or more of the 25 points 

in Figure 11. These testers faced the camera in different ways (front, back, left, and right sides of the human body 

facing the camera). Then, we compare the results of the visual human body detection system with ground truth. 
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The test results show that the system we proposed can achieve an accuracy of 98% when counting the number of 

human bodies. Such high detection accuracy successfully validates the trained YOLO neural network architecture. 

This indicates that the use of the YOLO neural network in the Rockchip RK3399 computing platform is an 

appropriate choice for building occupancy detection and positioning applications. This method successfully fulfills 

the function of building occupant counting, which cannot be realized when using PIR, sound, and carbon dioxide 

sensors. 

 

Figure 10. Human Body Recognition using Our Proposed Design through a Surveillance Camera 

 

Figure 11. Illustration of the Five Arcs from the Camera Location in our Test Environment 

Regarding distance and direction estimation, Table 5 lists the actual distance and angle values of these 25 points 

in Figure 11.  

Table 5: Real Distance and Angle Values of 25 Points in Figure 11 

Point Real distance (meter) Real angle (degree) Point Real distance (meter) Real angle (degree) 

#1 1 50 #14 3 110 

#2 1 70 #15 3 130 

#3 1 90 #16 4 50 

#4 1 110 #17 4 70 

#5 1 130 #18 4 90 

#6 2 50 #19 4 110 

#7 2 70 #20 4 130 

#8 2 90 #21 5 50 

#9 2 110 #22 5 70 

#10 2 130 #23 5 90 

#11 3 50 #24 5 110 

#12 3 70 #25 5 130 

#13 3 90    
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Experiments are conducted to test the estimated distance and angle values, when testers have different directions 

towards the camera. The estimation results are summarized in Table 6, where the average estimation errors of 

distance and angle are 17% and 10%, respectively. In addition, we plot the relative errors of distance and angle 

estimates in Figure 12. We can see that when the distance between the human body and camera is shorter, a higher 

distance estimation accuracy can be found. For example, when the distance does not exceed 3 meters, the relative 

error is less than 10% regardless of the face direction. On the other hand, it is found in Figure 12 that at a distance 

of 3-4 meters, the relative error of angle estimation is very small (<5%). 

Table 6: Estimated Distance and Angle Values of 25 Points in Figure 11 

Point 
Face toward 

the camera 
Estimated 

distance (meter) 

Estimated 

angle (degree) 
Point 

Face toward 

the camera 
Estimated 

distance (meter) 

Estimated 

angle (degree) 

#1 

front 1.2 54 

#14 

front 2.7 112 

back 1.1 53 back 2.7 112 

left/right side 1.2 52 left/right side 3.6 108 

#2 

front 0.9 80 

#15 

front 1.8 124 

back 0.8 80 back 1.8 124 

left/right side 0.8 84 left/right side 2.4 130 

#3 

front 0.9 92 

#16 

front 4.4 64 

back 0.8 89 back 4.8 71 

left/right side 0.8 80 left/right side 5.2 74 

#4 

front 0.9 111 

#17 

front 4.8 79 

back 1.0 114 back 4.8 79 

left/right side 1.2 112 left/right side 4.8 80 

#5 

front 0.8 120 

#18 

front 4.8 92 

back 0.9 119 back 4.8 92 

left/right side 0.8 118 left/right side 5.2 94 

#6 

front 1.6 56 

#19 

front 4.4 109 

back 1.8 60 back 4.4 107 

left/right side 1.8 65 left/right side 4.4 107 

#7 

front 2.0 74 

#20 

front 3.2 124 

back 2.0 74 back 3.6 124 

left/right side 1.8 73 left/right side 4.0 124 

#8 

front 2.3 93 

#21 

front 7.5 64 

back 2.2 95 back 7.0 71 

left/right side 2.2 94 left/right side 7.0 74 

#9 

front 1.5 109 

#22 

front 9.0 80 

back 1.4 110 back 9.0 80 

left/right side 1.4 110 left/right side 9.5 78 

#10 

front 1.9 114 

#23 

front 7.5 91 

back 1.9 110 back 7.5 91 

left/right side 2.1 117 left/right side 9.5 91 

#11 

front 2.7 64 

#24 

front 5.5 108 

back 2.7 71 back 9.5 108 

left/right side 2.7 64 left/right side 9.5 108 

#12 

front 3.0 77 

#25 

front 5 122 

back 3.0 79 back 5 122 

left/right side 3.9 78 left/right side 6.0 124 

#13 

front 3.0 92     

back 3.0 92     

left/right side 2.7 89     
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Figure 12. Relative Errors versus Distance Based on the Data in Table 6 

3.3 Comparison 

Table 7 summarizes the existing building occupancy detection methods in this work and literature. These existing 

approaches include passive infrared (PIR) sensors, sound sensors, CO2 sensors, and camera-based motion sensors. 

We compare several aspects of occupancy count, stationary/silent human detection, animal interference, false 

alarm, distance detection, direction detection, implementation cost, and privacy protection. PIR sensors fail to 

count the occupancy quantity. Sound sensors cannot perceive silent people in buildings. Although CO2 sensors 

and camera-based motion sensors can perform occupancy counting (even for stationary or silent persons), they are 

plagued by animal interference and high false alarms. This proposed work leads to high detection precision without 

animal interference. It supports the detection of stationary or silent persons, as well as distance and direction 

estimation. Its relatively high implementation cost is due to the use of a hardware computing platform to run the 

proposed YOLO neural network. Among all these mechanisms in Table 7, our proposed method is the most 

powerful solution, and its implementation cost is comparable to CO2 sensors or camera-based motion sensors. This 

is because the nature of the CNN-based visual recognition method requires high computation, therefore, it is 

impractical to run visual recognition tasks on hardware devices with limited resources, such as micro-controllers. 

Regarding the privacy protection of building users, PIR, sound, and carbon dioxide sensors are superior to the use 

of camera-based motion sensors or CNN-based visual recognition. As a result, privacy protection is the main 

limitation of this study. Measures need to be taken to prevent adversaries or attackers from accessing visual data 

on the local camera side. 

Table 7. Comparison with Existing Building Occupancy Detection Methods 

Occupancy Detection 

Mechanisms 

PIR 

Sensor 

Sound 

Sensor 
CO2 Sensor 

Camera-

based Motion 

Sensor 

CNN-based Visual 

Recognition (This 

Work) 
Occupancy counting Not capable Not accurate Not accurate  Limited Accurate (98%) 

Static/silent person 

detection 
Not capable Not capable Capable Capable Capable 

Animal interference 
Cause false 

alert 

Cause false 

alert 

Cause false 

alert 

Cause false 

alert 
Can filter out 

False alarms High High High High Very low 

Distance detection Not capable Not capable Not capable Capable Capable 

Direction detection Not capable Not capable Not capable Capable Capable 

Implementation Cost 
Low 

(< $10) 

Low 

(<$10) 

Medium 

(around $100) 

Medium 

(around $100) 

Medium 

($65 for Rockchip 

RK3399) 

Privacy Protection Good Good Good Poor Poor 
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4. CONCLUSION 

This paper applies the state-of-the-art convolutional neural network technology to visual recognition in intelligent 

building applications. Specifically, we equip air conditioners with neural network algorithms to create smart air 

conditioners, which can detect the number, distance, and angle of indoor human occupants. Compared with 

previous methods, the proposed approach leads to an accuracy of 98% when detecting human bodies in various 

states: moving, stationary, vocal, silent, standing, sitting, front, side, and back. The average estimation errors for 

distances and angles of our method are 17% and 10%, respectively. Note the function of building occupant 

counting is hard to realize when using PIR, sound, and carbon dioxide sensors. Moreover, this method can filter 

out false alarms caused by animal interference. As a result, depending on the number of occupants and their 

locations, air conditioners can adjust the direction and speed of air blowing to achieve occupancy-driven energy-

efficient HVAC operation.  

The primary limitation of visual recognition is privacy protection. The challenge is how to prevent adversaries or 

attackers from accessing visual data on the local camera side, while allowing air conditioners to identify the 

number and recognize the location of building occupants. In future work, we will strive to study privacy-preserving 

techniques to avoid leakage of visual privacy. One basic idea is to transform visual images captured from air-

conditioning cameras into a substitute image, which does not display sensitive human information such as faces. 

As a result, the risk of leaking sensitive visual information is reduced. In the future work, we will also develop 

new features for artificial intelligence air conditioners, including temperature control and wind speed control using 

gesture recognition, preference mode adaptation through face recognition, and house intrusion reminder, etc. 
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