

www.itcon.org - Journal of Information Technology in Construction - ISSN 1874 - 4753

ITcon Vol. 24 (2019), Nath et al., pg. 511

SINGLE- AND MULTI-LABEL CLASSIFICATION OF CONSTRUCTION

OBJECTS USING DEEP TRANSFER LEARNING METHODS

SPECIAL ISSUE: Virtual, Augmented and Mixed: New Realities in Construction

PUBLISHED: December 2019 at https://www.itcon.org/2019/28

EDITORS: McMeel D. & Gonzalez V. A.

DOI: 10.36680/j.itcon.2019.028

Nipun D. Nath, Ph.D. Student,

Texas A&M University;

nipundebnath@tamu.edu and http://people.tamu.edu/~nipundebnath/

Theodora Chaspari, Assistant Professor,

Texas A&M University;

chaspari@tamu.edu and https://chaspari.engr.tamu.edu/

Amir H. Behzadan, Associate Professor,

Texas A&M University;

abehzadan@tamu.edu and http://people.tamu.edu/~abehzadan/

SUMMARY: Digital images are extensively used to increase the accuracy and timeliness of progress reports,

safety training, requests for information (RFIs), productivity monitoring, and claims and litigation. While these

images can be sorted using date and time tags, the task of searching an image dataset for specific visual content

is not trivial. In pattern recognition, generating metadata tags describing image contents (objects, scenes) or

appearance (colors, context) is referred to as multi-label image annotation. Given the large number and diversity

of construction images, it is desirable to generate image tags automatically. Previous work has applied pattern

matching to synthetic images or images obtained from constrained settings. In this paper, we present deep learning

(particularly, transfer learning) algorithms to annotate construction imagery from unconstrained real-world

settings with high fidelity. We propose convolutional neural network (CNN)-based algorithms which take RGB

values as input and output the labels of detected objects. Particularly, we have investigated two categories of

classification tasks: single-label classification, i.e., a single class (among multiple predefined classes) is assigned

to an image, and multi-label classification, i.e., a set of (one or more) classes is assigned to an image. For both

cases, the VGG-16 model, pre-trained on the ImageNet dataset, is trained on construction images retrieved with

web mining techniques and labeled by human annotators. Testing the trained model on previously unseen photos

yields an accuracy of ~90% for single-label classification and ~85% for multi-label classification, indicating the

high sensitivity and specificity of the designed methodology in reliably identifying the contents of construction

imagery.

KEYWORDS: Deep learning, transfer learning, convolutional neural networks, construction photos, web mining,

multi-class classification, multi-label classification.

REFERENCE: Nipun D. Nath, Theodora Chaspari, Amir H. Behzadan (2019). Single- and multi-label

classification of construction objects using deep transfer learning methods. Journal of Information Technology in

Construction (ITcon), Special issue: óVirtual, Augmented and Mixed: New Realities in Constructionô, Vol. 24,

pg. 511-526, DOI: 10.36680/j.itcon.2019.028

COPYRIGHT: © 2019 The author(s). This is an open access article distributed under the terms of the Creative

Commons Attribution 4.0 International (https://creativecommons.org/licenses/by/4.0/),

which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly cited.

https://doi.org/10.36680/j.itcon.2019.028
mailto:nipundebnath@tamu.edu
http://people.tamu.edu/~nipundebnath/
mailto:chaspari@tamu.edu
https://chaspari.engr.tamu.edu/
mailto:abehzadan@tamu.edu
http://people.tamu.edu/~abehzadan/
https://doi.org/10.36680/j.itcon.2019.028

ITcon Vol. 24 (2019), Nath et al., pg. 512

1. INTRODUCTION

Construction site imagery is valuable for creating progress reports, requests for information (RFIs), safety training,

productivity monitoring, and claims and litigation. In the advent of digital cameras and more recently, drones,

digital images can be readily captured from jobsites and used to increase the accuracy and timeliness of decision-

making in construction. However, captured images, despite being abundant, rarely contain rich metadata other

than date, time, and (in some cases) location information. Therefore, retrieving desired information or specific

visual content from a particularly large image collection may turn into a non-trivial, resource-intensive task that

can only be completed manually. A potential remedy to this problem is to create a semantic structure for the image

collection, for instance by using metadata tags describing content (e.g., objects, scenes) and appearance (e.g., color,

context). However, given the large number and diversity of construction site images, manual tagging is time-

consuming and effortful, rendering the automatic generation of metadata an appealing solution.

In pattern recognition, generating metadata tags is referred to as multi-label image annotation. Recent studies have

made significant progress in annotating images, i.e., recognizing objects from digital images (Krizhevsky et al.,

2012, Simonyan and Zisserman, 2014). However, the majority of such studies aimed at recognizing everyday

objects and animals, particularly because of the large number of publicly available datasets. On the contrary, there

is only a few publicly available datasets containing construction site images. Previous studies have designed and

tested methodologies for recognizing construction equipment, e.g., excavators (Zou and Kim, 2007), and materials

(Brilakis and Soibelman, 2008) in digital images. These methodologies follow an extensively careful design of

features, while only a few studies utilized deep learning-based automatic feature extraction methods using real-

world data (Ding et al., 2018, Kolar et al., 2018, Siddula et al., 2016).

Deep learning methods have achieved significantly promising results in image recognition for large-scale datasets

(e.g., with more than 10,000 images). In regards to smaller-scale datasets, however, deep neural networks exhibit

several limitations, since the small amount of data cannot be used to adequately learn the large number of weights

in the network. For this reason, deep transfer learning approaches have been proposed, which rely on a model pre-

trained based on a large-scale dataset from a similar domain to the one of interest, but not necessarily with the

same labels to the target task. The weights of the neural network are further retrained based on a new (generally,
smaller) dataset (Oquab et al., 2014). Despite potential differences with respect to the image input space and the

final class labels, this approach, generally, yields a better result (Oquab et al., 2014), since the network can learn

more reliably the basic structure of the data. Therefore, in this paper, the authors present a deep transfer learning-

based methodology for annotating construction imagery from unconstrained real-world settings with high fidelity.

Notably, for single-label classification, a convolutional neural network (CNN) is proposed which takes RGB

values of an image as input and classifies the image into one of the three categories: building, equipment, or worker.

Moreover, for multi-label classification, another CNN-based algorithm is presented that can identify multiple

objects of interests (e.g., building, equipment, worker) in the image. The proposed models are trained using

construction images that are automatically retrieved using web mining techniques. Finally, the CNN models are

tested on unseen images through a validation framework.

2. LITERATURE REVIEW

In computer vision, image classification is defined as the problem of assigning a single class (single-label

classification) or multiple classes (multi-label classification) to an entire image. With the increase in quantity and

quality of photos and videos taken from construction sites, more attention is being drawn to streamlining the

process of automatically extracting content from digital imagery through image classification and object detection.

For example, Zou and Kim (2007) utilized HSV (hue, saturation, and value) color space of images to identify

excavators in construction photos. In particular, they used the threshold of saturation as a feature to distinguish a

relatively colorful excavator object from the dark soil or white snow background. Brilakis et al. (2005), and

Brilakis and Soibelman (2008) proposed a method to detect shapes in an image and identify corresponding material

types (e.g., steel or concrete) within the texture of the detected shape region. Wu et al. (2009) employed Canny

edge detection and watershed transformation methods to detect the edges of an object (e.g., columns in an image),

and applied object reconstruction to locate and quantify objects (e.g., number of columns). Kim et al. (2016) used

scene-parsing and label transfer to match a target image with a number of labeled images, find candidate images

that match more closely, and transfer labels from candidate images to the target image.

Recent work has also utilized machine learning (ML) algorithms to automate the process of object recognition in

construction site imagery. For example, Chi and Caldas (2011) used naïve Bayes (NB), and neural network (NN)

ITcon Vol. 24 (2019), Nath et al., pg. 513

classifiers to detect workers, loaders, and backhoes. Son et al. (2014) used a voting-based ensemble classifier

combining several base classifiers such as support vector machine (SVM), NN, NB, decision tree, logistic

regression, and k-nearest neighbor (KNN), to identify construction materials (e.g., concrete, steel, and wood) in

an image. Dimitrov and Golparvar-Fard (2014), and Han and Golparvar-Fard (2015) used one-vs-all multi-class

SVM to classify major construction materials (around 20 types).

The majority of the aforementioned methodologies, however, requires the extraction of handcrafted image features

that are particularly relevant to the given classes (Kolar et al., 2018). However, for content-rich imagery such as

construction photos that contain a large number of highly diverse objects or cover a large visual field under a

variety of environmental conditions (e.g., lighting, landscape, etc.), automatic feature extraction methods such as

CNN and histogram of oriented gradients (HOG) are more advantageous because of their ability to self-learn

features from a given dataset (Kolar et al., 2018). While HOG poorly performs when high-dimensional features

are simultaneously considered for image classification, CNN achieves outstanding results in this task (Kolar et al.,

2018) by overcoming the challenge of enormous computational power demanded by traditional NN (LeCun et al.,

1998). A good example of CNN can be found in LeCun et al. (1998) which involves recognizing handwritten

digits in an image. Other recent studies include but are not limited to classifying 1.2 million images (ImageNet

dataset) into 1,000 different classes (various everyday objects and animals such as French fries, printer, umbrella,

dog) (Krizhevsky et al., 2012, Simonyan and Zisserman, 2014).

Within the construction domain, there are several studies where CNN has been used for visual analysis of images

and videos, mostly for construction safety. For example, Kolar et al. (2018) used CNN to detect safety guardrails

in site photos. Siddula et al. (2016) combined the Gaussian mixture model (GMM) with CNN to detect objects of

interest in images taken from roof construction sites. Ding et al. (2018) integrated the long short-term memory

(LSTM) model with CNN to recognize unsafe behaviors of construction workers (e.g., climbing a ladder) in video

frames. More recently, Luo et al. (2018) proposed a method that uses Region-based CNN (R-CNN) to detect 22

classes of construction-related objects and predict construction activities based on the spatial relevance between

the detected objects. However, a majority of these object detection (i.e., classifying and localizing objects)
algorithms are computationally intensive and require heavy processing power to perform analyses on high volumes

of visual data. Moreover, the amount of collected visual data from construction sites is increasing as more

contractors rely on reality capture technologies with mobile connectivity such as smartphones, tablet computer,

and camera-equipped drones (Ham and Kamari, 2019). For example, a study by Han and Golparvar-Fard (2017)

reported that more than 400,000 images were collected during the lifecycle of a 750,000-sf commercial

construction project. Therefore, there is a dire need for fast and automated image filtering methods to use data

transmission and storage capacities more efficiently. A recent example of existing studies in this direction by Ham

and Kamari (2019) uses pixel-by-pixel semantic image segmentation (i.e., assigning a class to each pixel) to train

a model to detect construction-related objects. However, manually annotating a large volume of images at pixel-

level is a tedious task, requiring substantial amount of time, cost, and human resources and, therefore, might daunt

the usability of this method in real practice (Wei et al., 2016). In contrast, image-level annotation is a more practical

approach as it requires assigning single or multiple classes to the entire image and, thus, reduces the time and effort

to perform manual labeling (Wei et al., 2016). Therefore, considering the advantages of deep learning and image-

level annotation, and informed by the need for faster algorithms to process and filter large volumes of visual data

for rapid onsite documentation, this research aims at developing a CNN-based methodology to annotate

construction site imagery with predefined labels (e.g., building, equipment, and worker). Compared to R-CNN

algorithms, the proposed model can be applied in real-time on low-powered mobile devices, i.e., smartphones or

drones.

3. DEEP TRANSFER LEARNING

In the following Subsections, the primary building blocks of the developed methodology, i.e., CNN and transfer

learning, are briefly described.

3.1 Convolutional neural network (CNN)

Similar to the traditional NN, CNN consists of a series of layers (i.e., input, hidden, and output layers). However,

in CNN, the first few hidden layers are convolutional layers where convolution and pooling operations take place

(LeCun et al., 2015). Each convolution operation outputs a numerical value by applying a filter (i.e., a matrix of

weights) to a sub-region of an image (Kolar et al., 2018). A sample convolution operation involving a 3˷3 filter

is shown in FIG. 1(a). A pooling operation, on the other hand, is performed to merge semantically similar features

into one, thus reducing the size of the image (a.k.a., sub-sampling) (LeCun et al., 2015). FIG. 1(b) illustrates max-

ITcon Vol. 24 (2019), Nath et al., pg. 514

pooling, one of the most commonly used pooling operations, where a 2D image is divided into fixed-sized sub-

regions (i.e., kernels) and the maximum value in each sub-region is passed to the next layer. The remaining hidden

layers are fully-connected layers that are similar to traditional NN. Of note, while working with small training

data, to prevent overfitting, some hidden units are often randomly turned off (a.k.a., dropout) (Hinton et al., 2012).

FIG. 1: Example of (a) convolution operation performed with 3×3 filter and (b) max-pooling operation

performed with a 2×2 filter.

FIG. 2: Overall framework of the methodology.

3.2 Transfer learning

For a particular dataset, a CNN model can be trained from scratch. However, to achieve optimal results, a large

amount of training data coupled with the proper selection of optimal hyper-parameters (e.g., number of layers,

number of nodes in each layer, filter size, number of epochs, learning rate, and dropout) is required which might

take substantial amount of time for training (Kolar et al., 2018). One way to overcome this challenge is to perform

ITcon Vol. 24 (2019), Nath et al., pg. 515

transfer learning, i.e., using a CNN model (e.g., GoogleNet, AlexNet, VGG-16) that is pre-trained with a different

but related dataset (a.k.a. source dataset), and partly re-trained with the desired dataset (a.k.a. target dataset).

Particularly, transfer learning allows the model to remember high- and mid-level features (e.g., edge, shape, color)

learned from the source dataset and apply these features (with minor adjustment) to effectively distinguish the

classes in the target dataset (Oquab et al., 2014). Building upon previous studies that have found significantly

better and consistent performance using transfer learning (Oquab et al., 2014, Shin et al., 2016), in this research,

the authors have used the VGG-16 model, pre-trained on the ImageNet dataset (Simonyan and Zisserman, 2014).

The VGG-16 architecture is selected, particularly, for its wide adaptation in various domain, consistent

performance comparable to the state-of-the-art techniques (Simonyan and Zisserman, 2014), and manageable size

(i.e., only 16 layers of convolution) that allows to port the model on embedded system (e.g., smartphone, drone,

autonomous vehicles, portable smart devices) with limited computational power (Alippi et al., 2018).

4. METHODOLOGY

The overall framework of the designed methodology is shown in FIG. 2 and discussed at length in this Section.

4.1 Data preparation

The following Subsections describe the procedure to collect and prepare the image dataset, split the dataset into

training and testing subsets, and finally perform data augmentation to generate a larger dataset from a relatively

small number of images.

4.1.1 Single-label dataset (Pictor v.1.0)

To obtain sufficient training data for the classifier model, a substantial number of images that contain specific

visual contents need to be acquired. One of the most effective tools to achieve this goal is publicly available image

search engines which contain a large number of images corresponding to one or more keywords (Fergus et al.,

2005). The Google image search database is of particular interest to this research as it contains a relatively large

number of images (Deng et al., 2009), and can provide more relevant images with higher ranks (Fergus et al.,

2005). In this work, the following keywords are used to search for images in Google: ñbuilding under

constructionò, ñconstruction equipmentò, ñtruckò, ñdozerò, ñexcavatorò, ñcraneò, and ñconstruction workerò. After

images are retrieved through web-mining, a web-based labeling toolbox, namely LabelBox (Labelbox, 2019), is

used to label all images as containing one of the three possible classes of building (building under construction),

equipment (various construction equipment such as excavator, truck, bulldozer, loader, dozer, and crane), and

worker (construction worker). These images that are retrieved through web-mining along with the corresponding

single-label annotation constitute an in-house dataset called Pictor v.1.0 that is used in this research.

It must be noted that some of the retrieved images could be visually unrelated (Fergus et al., 2005), or manipulated

(e.g., the background of construction equipment is removed). In order to obtain a clean image dataset, such

irrelevant and manipulated images are labeled as ñirrelevantò during the labeling process, and disregarded when

preparing the dataset, and training and testing the model. From a total of 2,686 initially retrieved images in Pictor

v.1.0 dataset, 2,037 most relevant images are eventually chosen. FIG. 3 shows the number of images and sample

images per class label in Pictor v.1.0 dataset.

FIG. 3: Number of images and sample images per class label in Pictor v.1.0 dataset.

ITcon Vol. 24 (2019), Nath et al., pg. 516

4.1.2 Multi -label dataset (Pictor v.1.1)

For multi-label classification, Pictor v.1.1 dataset is created by revising the annotations of images in Pictor v.1.0

dataset using Labelbox (Labelbox, 2019). An important distinction between these two datasets is that all images

in Pictor v.1.1 dataset contain multi-class labels including building, equipment, and worker. The weighted Venn

diagrams in FIG. 4 exhibits the number of images of each class in Pictor v.1.1 dataset.

FIG. 4: Number of images and sample images per class label in Pictor v.1.1 dataset.

4.1.3 Data pre-processing and splitting

Since the VGG-16 model only takes square-sized input images, for single-label classification, any rectangular

image is cropped into a group of square images that cover the entire visual field of the original image while being

equidistantly distributed along the longer dimension of the original image. An example is shown in FIG. 5 where

a portrait rectangular image is cropped into three square images. The number of cropped images is determined

based on the smallest integer number greater than or equal to (i.e., ceiling of) the ratio between the longer and

shorter dimensions of the original image. Next, all cropped images are resized to 128˷128 images using the bi-

cubic interpolation method (Zhang et al., 2011).

Images in Pictor v.1.0 dataset are cropped into a total of 4,144 square-sized images following the technique

previously explained. From these images, 3,392 images (~80%) are randomly selected for training and 752 images

(~20%) for testing. The distribution of the number of samples per class label is shown in TABLE 1. As shown in

this Table, 1,575 images contain the building label, 1,426 images contain the equipment label, and 1,143 images

contain the worker label.

However, for multi-label classification, images in Pictor v.1.1 dataset are not cropped since cropping an image

may exclude all the objects of a particular class that the image is labeled with. Rather, the images are resized to

128˷ 128 images using the bi-cubic interpolation method (Zhang et al., 2011). Next, similar to single-label

classification, from the entire dataset, randomly selected ~80% samples are used for training while the remaining

samples are used for testing. TABLE 2 shows the number of images used for training and testing the multi-label

classifier model. As shown in this Table, 479 training images contain building, 841 training images contain

ITcon Vol. 24 (2019), Nath et al., pg. 517

equipment, and 539 training images contain worker. In total, 1,589 images are used for training and 398 images

are used for testing. It must be noted that since one image may contain multiple classes, the total number of images

is not necessarily the sum of the number of images for each class.

FIG. 5: Example of cropping a rectangular image into a group of square-sized images.

TABLE 1. Number of images in Pictor v.1.0 dataset used for training and testing a single-label classifier model.

 Number of images

Class Train Test Total

Building 1,284 291 1,575

Equipment 1,160 266 1,426

Worker 948 195 1,143

Total 3,392 752 4,144

TABLE 2. Number of images in Pictor v.1.1 dataset used for training and testing multi-label classifier model.

 Number of images

Class Train Test Total

Building 479 139 618

Equipment 841 204 1,045

Worker 539 127 666

ITcon Vol. 24 (2019), Nath et al., pg. 518

4.1.4 Data augmentation

Data augmentation is an effective technique to prevent classifier model from overfitting by providing randomly

distorted training images to the model and thus, allowing the model to learn general features (Perez and Wang,

2017). In this study, during each epoch of training, training images are distorted by randomly scaling the image

by ±20% and horizontally flipping the image randomly 50% of the time. Example of an actual image and randomly

generated augmented images are shown in FIG. 6. As shown in this Figure, data augmentation generates more

training images with different orientation (e.g., bucket of the excavator facing left and right) and zoom-levels (e.g.,

the bucket appearing closer in some images, and farther in other images). It allows the model to learn to recognize

the objects regardless of their orientation and distance with respect to the camera.

FIG. 6: Example of data augmentation using random scaling and horizontal flipping.

4.2 Model training

The technical details of the CNN architecture, activation and loss functions, and pre-training and fine-tuning the

model using transfer learning are described in the following Subsections.

4.2.1 Architecture of the CNN

The designed CNN, for both single-label and multi-label classification, consists of one input layer (i.e., 128˷128

RGB images), 18 VGG-16 layers, 2 fully-connected layers, and one output layer (e.g., labels or tags) as shown in

FIG. 7. The VGG-16 layers are comprised of a series of convolutional and max-pooling layers with a total number

of 14,714,688 pre-trained weights. In the convolutional layers, convolution is performed using a 3˷3 filter with

a stride of 1 pixel that preserves the size of the image. However, in the pooling layers, max-pooling is performed

using a 2˷2 filter with a stride of 2 pixels that reduces the size of the image by half in each direction. The outputs

of the last VGG-16 layer are connected to a flattened layer consisting of 8,192 nodes, which is fully-connected to

the next layer of 256 nodes (the number of nodes in the layer is selected based on empirical observations). In this

layer, a dropout operation is performed with 50% probability, i.e., during each iteration of the training session,

50% of the nodes are randomly excluded from weight updating. Together, the two fully-connected layers contain

2,097,408 (i.e., 8192˷ 256) weights. The last hidden-layer is connected to the output layer which yields a vector

represented as ñone-hot encodingò (Marinai et al., 2005). In this encoding, each element of the vector represents

one class and can have a value of either 1 (i.e., the input image belongs to that class) or 0 (i.e., the input image

does not belong to that class).

ITcon Vol. 24 (2019), Nath et al., pg. 519

FIG. 7: Architecture of the VGG-16 CNN model.

4.2.2 Activation functions

The rectified linear unit (ReLU) non-linear activation function is applied to the output of each hidden convolutional

or fully -connected layer to accelerate convergence (Krizhevsky et al., 2012). While the activation functions are

the same at each hidden layer of single-label and multi-label classifier model, they are different at the output layer.

For the single-label classifier model, softmax activation function (Murphy, 2012) (Equation 1) is used at the output

layer, whereas for the multi-label classifier model, sigmoid activation function (Friedman et al., 2001) (Equation

2) is used.

„ÓÏÆÔÍÁØ◑
Ὡ

В Ὡ
 (Equation 1)

„ÓÉÇÍÏÉÄᾀ
Ὡ

Ὡ ρ
 (Equation 2)

Here, ᾀὭ is the output value of Ὥth node in the output layer and ◑ is the vector output of the output later, i.e.,

◑ ᾀȟȣᾀ .

4.2.3 Loss functions

For single-label classification, multi-class cross-entropy (Friedman et al., 2001) is used as loss function. The loss

function is defined by Equation 3. On the other hand, for multi-label classification, the loss function is defined as

the sum of binary cross-entropy (Buja et al., 2005) over all classes as shown in Equation 4.

ὒÓÉÎÇÌÅÌͅÁÂÅÌ◐ȟ▬ ώȟÌÏÇ ὴȟ (Equation 3)

ὒÍÕÌÔÉÌͅÁÂÅÌ◐ȟ▬ ώȟÌÏÇ ὴȟ ρ ώȟ ÌÏÇ ρ ὴȟ (Equation 4)

Here, ὔ is the total number of samples, ὔ is the total number of classes, ώ
Ὥȟὧ

 and ὴ
Ὥȟὧ

 are the ground-truth

label and predicted label, respectively, for the Ὥth sample and ὧth class, and ◐ and ▬ are matrices

containing all the ground-truth and predicted labels, respectively, i.e., ◐ ώȟ and ▬ ὴȟ for Ὥ

ρȟςȟȣὔ, and ὧ ρȟςȟȣὔ. To note, the ground truth labels (ώ
Ὥȟὧ

) are presented as binary number where

one (1) indicates that the sample belongs to the corresponding class, while zero (0) means it does not

belong to that class.

ITcon Vol. 24 (2019), Nath et al., pg. 520

4.2.4 Pre-training, re -training, and fine-tuning

For both single-label and multi-label classifications, the VGG-16 is pre-trained on a publicly available dataset (i.e.,

source data) namely ImageNet dataset (Simonyan and Zisserman, 2014). Next, the training phase is performed in

two steps. First, all weights of the VGG-16 layers are frozen from updating, and only the weights of the fully-

connected layers are updated using the training dataset. This step allows the CNN model to learn to classify the

new set of classes without forgetting the filters learned from the pre-trained dataset. In this step, weights are

optimized using the RMSprop optimization algorithm (Tieleman and Hinton, 2012). Next, the training dataset is

fed to the model again and weight values of the last three convolutional layers and two fully-connected layers are

updated using the stochastic gradient descent (SGD) algorithm (Bottou, 2010) with a slow-learning rate (hyper-

parameters, e.g., learning rate = 10-4, and momentum = 0.9, are empirically selected). This step is referred to as

ñfine-tuningò and allows the previously frozen layers to adapt to the new dataset (i.e., target data) without

drastically changing their weights.

4.3 Model testing

To test the performance of the model, unseen testing data are fed to the trained model. The performance of the

classifier model in single-label and multi-label classification tasks is evaluated using well-established measures of

accuracy, precision, and recall, as shown in Equation 5 through 7.

!ÃÃÕÒÁÃÙ
40 4.

40 4. &0 &.
 (Equation 5)

0ÒÅÃÉÓÉÏÎ
40

40 &0
 (Equation 6)

2ÅÃÁÌÌ
40

40 &.
 (Equation 7)

Here, TP, TN, FP, and FN refer to true positive (correctly classified to the class), true negative (correctly classified

to other class), false positive (incorrectly classified to the class), and false negative (incorrectly classified to other

class), respectively. Examples of TP, TN, FP, and FN for the building class in single- and multi-label classification

are shown in TABLE 3.

TABLE 3. Examples of TP, TN, FP, and FN for the ñbuildingò class.

Type Single-label classification Multi -label classification

TP The image is correctly labeled as ñbuildingò.
Actual image contains building (may contain other classes as

well). The model correctly labels it as ñbuildingò.

TN
Actual image is not labeled as ñbuilding. The model does not

label it as ñbuildingò.

Actual image does not contain building (but may contain other

classes). The model does not label it as ñbuildingò.

FP
Actual image is labeled as either ñequipmentò or ñworkerò.

The model incorrectly labels it as ñbuildingò.

Actual image does not contain building (may contain other

classes). The model incorrectly labels it as ñbuildingò.

FN
Actual image is labeled as ñbuildingò. The model incorrectly

labels it as either ñequipmentò or ñworkerò.

Actual image contains building (may contain other classes as

well). The model does not label it as ñbuildingò.

5. RESULTS AND DISCUSSION

The designed CNN is applied to Pictor v.1.0 (single-label) and Pictor v.1.1 (multi-label) datasets and the results

are demonstrated in the following Subsections.

5.1 Single-label classification results

The CNN model (VGG-16) takes an RGB image as input, generates intermediate features through a series of

convolution and max-pooling operations, passes the features to the fully-connected layer, and outputs the

probabilities of the image belonging to each class. The intermediate features for a randomly selected image labeled

as building are shown in FIG. 8. The figure shows that the model finds background sky and edges of the building

useful features to detect the building with high probability.

The performance of the single-label classifier model on Pictor v1.0 dataset is summarized in Table 4. Also,

classification rates are demonstrated in the confusion matrix of FIG. 9. Table 4 shows that all classes are predicted

with ~90% accuracy. Also, the average accuracy, precision, and recall (both weighted and unweighted) are all

ITcon Vol. 24 (2019), Nath et al., pg. 521

>90%. However, the precision of recognizing buildings (i.e., 89.1%) is slightly lower than the other two labels, an

indication that it is less likely that an image recognized as building by the model actually contains building(s).

Similarly, the recall of recognizing a worker (i.e., 88.7%) is relatively lower than the other two classes, i.e., the

model has relatively higher tendency to misclassify an image containing worker as one containing building or

equipment. To establish a baseline for the results, a parallel investigation is conducted in which a CNN model is

built following a similar architecture to CifarNet (Shin et al., 2016) and trained from scratch using an identical

dataset as described earlier in this paper. This model (referred to as ñbaseline modelò in Table 4) yields an accuracy

of ~83%, which is ~8% lower than what was ultimately achieved using the pre-trained model (i.e., transfer

learning).

FIG. 8: Visualization of intermediate features provided by the single-label classifier model for an example of a

building image.

TABLE 4. Performance metrics of the trained CNN model for single-label classification.

 Designed Model a Baseline Model b

Class Accuracy Precision Recall Accuracy Precision Recall

Building 95.2% 89.1% 95.2% 95.5% 78.3% 95.5%

Equipment 89.5% 92.6% 89.5% 77.4% 87.7% 77.4%

Worker 88.7% 94.0% 88.7% 73.8% 88.9% 73.8%

Unweighted Average 91.1% 91.9% 91.1% 82.3% 85.0% 82.3%

Weighted Average 91.2% 91.3% 91.2% 83.2% 84.1% 83.2%

a VGG-16 fine-tuned on target data, with two fully-connected layers.

b CifarNet trained from scratch on target data.

ITcon Vol. 24 (2019), Nath et al., pg. 522

FIG. 9: Confusion matrix of the labels predicted by the single-label classifier model.

The underlying reasons behind the misclassifications can be better understood from FIG. 10. In this Figure, the

confusion matrix is shown with a few randomly selected sample images. First, it can be seen that most of the

misclassified images contain multiple visual cues. Particularly, some that are detected as building also contain

equipment or worker (or both) in the foreground, obscuring the building in the background. However, the model

detects the object in the background that occupies major proportion of the field of vision, rather than the

equipment/worker in the foreground, not complying with the labelersô subjective judgment who had labeled those

images as equipment or worker. This justifies the reason behind lower precision in detecting buildings in the image

dataset. On the other hand, construction workers are omnipresent and constantly in motion in construction sites

especially in the vicinity of buildings or equipment (or both). Therefore, some of the images labeled as worker

may also contain building and/or equipment. Moreover, the visual footprint of a worker (the portion of the image

occupied by a worker) is relatively much smaller than buildings or equipment (e.g., truck, dozer). Thus, the model,

having a higher tendency to detect objects with larger visual footprints, may inadvertently mislabel such images

as building or equipment, reducing the recall of detecting workers.

FIG. 10: Visualization of the confused labels in single-label classification.

Despite these issues, the performance of the designed CNN model is still very comparable with the state-of-the-

art methodologies. For example, Kolar et al. (2018)ôs CNN model detects safety guardrails in images with 86%

accuracy (precision = 94.9%, recall = 76.1%). Siddula et al. (2016)ôs combined GMM+CNN model detects objects

