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SUMMARY: Digital images are extensively used to increase the accuracy and timeliness of progress reports,
safety trainingrequests for informationRFIs), productivity monitoring, and claims and litigation. While these
images can be sorted using datndtime tags, the task of searching an image dataset for specific visual content
is not trivial. In pattern recognition, generating metadata tags describingyéntantents (objects, scenes) or
appearance (colors, context) is referred to as raliel image annotation. Givehelarge numbemland diversity

of construction imagg it is desirable to generate image tags automatically. Previous work has appliechpatte
matching to synthetic images or images obtained from constrained settings. In this paper, we present deep learning
(particularly, transfer learning) algorithsito annotate construction imagery from unconstrained -veaild
settings with high fidelity. ¥ propose convolutional neural network (CNd¥sed algorithmsvhich take RGB
values as input and outpthe labels of detected objects. Particularly, we have investigated two categories of
classificationtasks singlelabel classificationi.e.,a single class (among multiple predefined céss$s assigned

to animage and multilabel classification, i.e., a set of (one or more) classes is assigned to an Foadpmth
casestheVGG-16 modelpre-trained on the ImageNet datasetfrained onconstruction images retrieved with

web mining techniques and labeled by human annotalesting the trained model on previously unseen photos
yields an accuracy 6f90%for singlelabel classification and ~85% for mulabel classificationindicating the

high sensitivity and specificity of the designed methodology in reliably identifying the contents of construction
imagery.

KEYWORDS:Deep learning, transfer learning, convolutional neural networks, construction photos, web mining,
multi-class classificatin, multilabel classification.
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1. INTRODUCTION

Construction site imagerg valuable for creating progress reports, recqafestinformation (RF$), safety training,
productivity monitoring, and claims and litigation. In thdventof digital cameras anthore recently drones,

digital images can be readily captured frimsitesand used to increasiee accuracy and timeliness décision

making inconstruction However,capturedimages despite being abundant, rarely contain rich metadata other
thandate time, and (in some casé@docation information Therefore, retrievinglesired information or specific

visual content from garticulaty large imae collectionmay turn intoa nontrivial, resourcentensivetaskthat

can only be completed manually potential remedy to this problem is to create a semantic structure fordge
collection,for instanceby usingmetadata tags describing content (e.g., objects, scenes) and appearance (e.g., color,
context). However, givethe large numbeilnd diversityof constructionsite images, manual tagging is time
consuming and effortful, rendering the automatic generafiometadata an appealing solution.

In pattern recognition, generating metadata tags is referred to agabaltimage annotation. Recent studies have
made significant progress in annotatintpges, i.e., recognizing objects from digital imagégsizhevsky et al.,
2012, Simonyan and Zissermar§12) However, themajority of suchstudies aimed at recognizing everyday
objectsandanimals, particularly becausetbk largenumber of publicly available datasets. thacontrary, there

is only a fewpublicly available datasstontairing construdion site imagesPreviousstudieshavedesigned and
tested methodologies for recognizing construction equipment, e.g., excgatoend Kim2007) and materials
(Brilakis and Soibelman, 2008) digital imagesThese methodologies follow an extensively careful design of
featureswhile only a few studies utilized dedgarningbased automatic feature extraction methods using real
world data(Ding et al., 2018, Kolar et aR018, Siddula et al., 2016)

Deep learning methods have achieved significantly promising results in image recognitogeecaledataset

(e.g., with more than 10,000 images)regards to smallescale datasets, however, dewural networkexhibit

several limitations, since the small amount of data cannot be used to adequately learn the large number of weights
in the network. For this reasateeptransfer learningpproaches habeen proposeavhichrely ona model pre
trainedbased ora largescaledatasefrom a similar domain to the one of interest, but not necessaitifythe
samelabelsto the target task. The weights of the neural network are fugh@inedbased oranew (generally,

smaller) datasdOquab et al., 2014Pespite potential differences with respect to the image input space and the
final class labels, this approach, generallglds abetterresult(Oquab et al., 2014¥ince the network can learn

more reliably the basic structure of the datherefore, in this papehe authors preseatdeep transfer learning

based methodologir annotaihg construction imagery from unconstrained realld settings with high fidelity.

Notally, for singlelabel classificationa convolutional neural network (CNN) is proposed whigkes RGB
values of an image as input asldssifies the image into one of the three categdrigkling, equipmentorworker.

Moreover, for multilabel classificationanother CNNbased algorithm is presentétat canidentify multiple

objecs of interests (e.g.building, equipmentworker) in the image.The proposed models areained using
construction images that are automatically retrieved using web mining techriiuadly, the CNN modalare
tested on unseamagesthrough a validation framework

2. LITERATURE REVIEW

In computer visionjmage classificatioris defined asthe problem ofassigning a single class (sindédbel
classification) or multiple classes (mtlkibel classification) to an entire imad#ith the increase in quantity and
quality of photos and videos taken fraranstructionsites, more attention is being drawn to atnéining the
process of automatically extracting content from digital imagery thrisogbe classification anabject detection.

For exampleZou and Kim (2007 utilized HSV (hue, saturation, and value) color space of images to identify
excavators in construction photos. In particular, they tisedhresholdf saturation as a feature to distinguish a
relatively colorful excavatr object from the dark soil or white snow backgrouBdlakis et al. (2005)and
Brilakis and Soibelman (2008yoposed a method to detect shapes in an image and identify corresponding material
types (e.g., steel or concrete) within the texturéthe detected shape regidifu et al. (2009employed Canny

edge detection and washed transformation methods to detectatigesof an object (e.g., columns in an image),

and applied object reconstruction to locate and quantify objects (e.g., number of coKimreg)al. (2016)used
sceneparsing and label transfer to match a target image with a number of labeled images, find candidate images
that match more closely, and transfer labels from candidate images to théntagget

Recent work has also utilized machine learning (ML) algorithms to automate the process of object recognition in
construction site imagery. For exampBhi and Caldas (2011lisednaive Bayes (NB), and neural network (NN)
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classifiers to detect workers, loaders, and backhses.et al. (2014used a votingbased ensemble classifier
combining several base classifiers such as support vector mg@iind), NN, NB, decision tree, logistic
regression, and-kearest neighbor (KNN), to identify construction materials (e.g., concrete, steel, and wood) in
an imageDimitrov and Golparvafard (2014)andHan and GolparvaFard (2015used oners-all multi-class

SVM to classify major construction materials (around 20 types).

The majority of the aforementioned methodologies, however, requires the extrabizmuorafted image features
thatareparticularly relevant to the given clasg&®lar et al., 2018)However, for contentich imagery such as
construction photos that contain a large number of highly diverse objects or cover a large visual field under a
variety of environmental conditions (e.g., lighting, landscape, etc.), automatic feature extratiods such as
CNN andhistogramof oriented gradients (HOG) are more advantageous because of their abilityleaself
features from a given dataq&olar et al., 2018)While HOG poorly performs when higtimensional features

are simultaneously considered for image classifica@ii\ achieveutstanding results ithis task(Kolar et al.,
2018)by overcoming the challenge of enormous computational power demanded by traditiofhaiQNN et al.,

1998) A good example of CNN can be foundlirCun et al. (1998hich involves recognizing handwritten
digits in animage Other recent studies include but are not limited to classifying 1.2 million images (ImageNet
dataset) into 1,000 different classes (various everyday olgjledenimals such as French fries, printer, umbrella,
dog) (Krizhevsky et al., 2012, Simonyan and Zisserman, 2014)

Within the construction domain, there are several stwdieseCNN has been usedr visual analysis of images

and videos, mostly for construction safety. For exanifidar et al. (2018lsed CNN to detect safety guardrails

in site photosSiddula et al. (2016)ombined the Gaussian mixture model (GMM) with CNN to detect objects of
interest in images taken from roof construction sigiag et al. (2018)ntegraed the long shotterm memory

(LSTM) madel with CNN to recognizansafebehaviors of construction workers (e.g., climbing a ladder) in video
frames.More recently, Luo et al. (2018) proposed a method that uses Reaged CNN (RCNN) to detect 22
classef constructiorrelated objects and predict construction activities based on the spatial relevance between
the detected objects. However, a majority of these object detection (i.e., classifying and localizing objects)
algorithms are computationally intéws and require heavy processing power to perform analyses on high volumes
of visual data. Moreover, the amount of collected visual data from construction sites is increasing as more
contractors rely on reality capture technologies with mobile connecsivitih as smartphones, tablet computer,

and cameragquipped drones (Ham and Kamari, 2019). For example, a study by Han and Gdlpatvgt017)
reported that more than 400,000 images were collected during the lifecycle of GD0/&Ocommercial
constructbn project. Therefore, there is a dire need for fast and automated image filtering methods to use data
transmission and storage capacities more efficiently. A recent example of existing studies in this direction by Ham
and Kamari (2019) uses pixky-pixel semantic image segmentation (i.e., assigning a class to each pixel) to train

a model to detect constructivalated objects. However, manually annotating a large volume of images at pixel
level is a tedious task, requiring substantial amount of time, aadthuman resources and, therefore, might daunt

the usability of this method in real pract{g¥ei et al., 2016)In contrast, imagéevel annotation is a more practical
approach ait requires assigning single or multiple classes to the entire image and, thus, reduces the time and effort
to perform manual labelin@yVei et al., 2016)Therefore, considering¢hadvantages of deep learning and image

level annotation, and informed by the need for faster algorithms to process and filter large volumes of visual data
for rapid onsite documentation, this research aims at developing ab@bi# methodology to annotate
construction site imagery with predefined labels (e.g., building, equipment, and worker). Compar€tiid R
algorithms, the proposed model can be applied intie@ on lowpowered mobile devices, i.e., smartphones or
drones.

3. DEEP TRANSFER LEARNING

In the following Subsections, the primary building blocks of the developed methodology, i.e., CNN and transfer
learning, are briefly described.

3.1 Convolutional neural network (CNN)

Similar to the traditional NN, CNN consists of a series of layers (i.e., ingldehj and output layers). However,

in CNN, the first few hidden layers are convolutional layers where convolution and pooling operations take place
(LeCun et al., 2015)Each convolution operation outputs a numerical value by applying a filtera(ineatrix of
weights) to a sulbegion of an imagéKolar et al., 2018)A sample convolution operation involving a 3 filter

is shown inFIG. 1(a). A pooling operation, on the other hand, is performed to merge semantically similar features
into one, thus reducing the size of the image (a.k.a-saoipling)(LeCun et al., 2015FIG. 1(b)illustrates max
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pooling, one of the most canonly used pooling@perationswherea 2Dimage is divided into fixedized sub
regions (i.e., kernels) and the maximum value in eachresgibn is passed to the next layer. The remaining hidden
layers are fullyconnected layers that are similar to tramiil NN. Of note, while working with small training
data, to prevent overfitting, some hidden units are often randomly turned off (a.k.a., dfdpdat) et al., 2012)
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FIG. 1: Example of (a) convolution operation performed with 3x3 filter and (b)-pwoling operation

performed with a 2x2 filter.
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FIG. 2: Overall framework of thenethodology.

3.2 Transfer learning

For a particular dataset, a CNN model can be trained from scratch. However, to achieve optimal results, a large
amount of training data coupled with the proper selection of optimal {pgrameters (e.g., number of layers,
number of nodes in each layélter size, number of epochs, learning rate, and dropout) is required which might
take substantial amount of time for trainifiplar et al., 2018)One way to overcome this challenge is to perform
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transfer learning, i.e., using a CNN model (e.g., GoogleNet, AlexNet,-V&&hat is prearained with a different

but related datasdt.k.a. source datasegndpartly re-trained with the desired dataséa.k.a. target dataset)
Particularly, transfer learning allows the model to remember higth midlevel features (e.g., edge, shape, color)
learned from the source dataset and appdge features (with minor adjustment) to effectively distinguish the
classes in the target datag®iguab et al., 2014 Building upon previous studies that have found signifigant
better and consistent performance using transfer lea¢@iqgab et al., 2014, Shin et al., 201i8)this research,
the authors have usélte VGG 16 model,pre-trained ornthe ImageNet datas¢Bimonyan and Zisserman, 2014)
The VGG16 architecture is selectegbarticularly, for its wide adaptation in various domairconsistent
performare comparable tthe stateof-the-art techniquegSimonyan and Zisserman, 201dhd manageable size
(i.e., only 16 layers of convolution) that allows to port the model on embedded system (e.g., smartphone, drone,
autacnomous vehiclggportabé smart devicesyith limited computational powgAlippi et al., 2018)

4. METHODOLOGY
The overall framework of the designed metblmgy is shown iFIG. 2and discused at length in this Section.

4.1 Data preparation

The following Subsections describe the procedure to collect and ptbpamgage dataset, split the dataset into
training and testing subsets, and finally perform data augmentation to gemlenager dataset frora relatively
small number of images.

4.1.1 Single-label dataset Pictor v.1.0)

To obtain sufficient training data for ttedassifier model, a substantial number of images that contain specific
visual contents need to be acquired. One of the most effective tools to achieve this goal is publicly available image
search engines which contain a large number of images corresponding or more keyword$-ergus et al.,

2005) The Google image sedr database is of particular interest to this research as it contains a relatively large
number of imageg¢Deng et al., 2009)and can provide more relevant images with higher réa&sgus et al.,

2005) In this work, the following keywords are useéd search forimages in Googlefibuilding under
construction, ficonstruction equipmeatfitrucko, fidozen, fiexcavatod, ficrana, andficonstruction worker. After

images areetrievedthrough webmining, a webbased labeling toolbox, namely LabelBgabelbox, 2019)is

usedto label all images asontaining one of the three possible classfasuilding (building under construction),
equipment(various construction equipment such as excavator, truck, bulldozer, loader, dozer, and crane), and
worker (construction worker)Theseimagesthatareretrieved through weinining along withthe corresponding
singde-label annotatioronstitute an ifhouse dataset calldctor v.1.0 that is used in this research.

It must be noted that some of the retrieved images could be visually un(€latgds et al., 2005pr manipulated

(e.g., thebackgroundof construction equipment is removed). In order to obtain a clean image dataset, such
irrelevant and manipul ated i mages are | abeled as fir|
preparingthe dataseandtraining and testing thenodel From a total of 2,686 initially retrieved imagesHittor

v.1.0 dataset, D37 most relevant images aexentuallychosenFIG. 3 shows the amber of images and sample

images per class label Rictor v.1.0dataset.

Equipment

Worker LABELS EXAMPLES
res g ;

L e .7l

Building

Building

FIG. 3: Number of imageand sample imaggger class labein Pictor v.10 dataset.
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4.1.2 Multi -label dataset (Pictor v1.1)

For multilabel classificationPictor v.1.1 dataset is created Ibgvising the annotations @hages inPictor v.1.0
datasetsingLabelbox(Labelbx, 2019) An important distinction between theteo datasets is that all images
in Pictor v.1.1 dataset contain miifclasslabels includingouilding, equipmentandworker. The weighted Venn
diagrams irFIG. 4 exhibits the number of imagesf each clasé Pictor v.1.1 dataset

LABELS EXAMPLES

Building

Equipment

€
£ 2
= g
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w

Equipment

Building

Building

Building
Equipment

FIG. 4: Number of imageand sample imagg®er class labein Pictor v.11 dataset.
4.1.3 Data pre-processing and splitting

Since theVGG-16 modelonly takessquaresizedinput imags, for singlelabel classificationany rectangular

image is cropped into a group of square images that cover the entire visual fieldriditied image while being
equidistantly distributed along the longer dimension of the original image. An example is sHeM@n frwhere

a portrait rectangular image is cropped into three square images. The number of cropped images is determined
based orthe smallest integer number greater than or equal tode#ing of) the ratio between the longer and
shorter dimensions of the original image. Next, all cropped images are resized téZ®8nages using the-bi

cubic interpolation methofZhang et al., 2011)

Imagesin Pictor v1.0 dataset are cropped into a total of 4,144 sgamed images followinghe technique
previouslyexplained From these images, 3,392 images (~80%) are randomly selected for training and 752 images
(~20%) for testing. The distribution of the number of samples per class label is shBMBLE 1. As shown in

this Table 1,575 inages contain thbuilding label, 1,426 images contain tequipmentabel, and 1,143 images
contain theworkerlabel.

However, for multilabel classification, images iRictor v.1.1 dataset ar@ot croppedsince cropping an image

may exclude all the objects of a particular class that the image is labeled with. Rather, the images ate resized
128 128 images using the -bubic interpolation metho@Zhang et al., 2011)Next, similar to singlabel
classification, from the entire dataset, randomly selected ~80% samples are used for training while thgremainin
samples are used for testing. TABLE 2 shows the number of images used for training and testing-téeeiulti
classifier model. As shown in this Table, 479 training images contain building, 841 training images contain
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equipment, and 539 training imageantain worker. In total, 1,589 images are used for training and 398 images
are used for testing. It must be noted that since one image may contain multiple classes, the total number of images
is not necessarily the sum of the number of images for eagh cla

ACTUAL IMAGE CROPPED IMAGES
Rectangle Square

Y=3xX
T T AT T
B == = =

FIG. 5: Example of cropping a rectangular image into a group of squs&ed images.

TABLE1. Number of images in Pictor vQldatasetused for training and testingsinglelabel classifier model

Number of images

Class Train Test Total

Building 1,284 291 1,575
Equipment 1,160 266 1,426

Worker 948 195 1,143

Total 3,392 752 4,144

TABLE2. Number of images in Pictor v.1.1 dataset used for training and temstittglabel classifier model.

Number of images

Class Train  Test Total
Building 479 139 618
Equipment 841 204 1,045
Worker 539 127 666
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4.1.4 Data augmentation

Data augmentation is an effective technique to prevent classifier modeb¥eniitting by providing randomly
distorted training images to the model and thus, allowing the model to learn generakf@see and Wang,

2017) In this study, during each epoch of training, training images are distorted by randomiyg sitalimage

by +20% andorizontallyflipping theimagerandomly 50% of the timé&example of an actual image and randomly
generated augmented images are showrl@ 6. As shown in tis Figure, data augmentation generatese

training images with diffemt orientation (e.g., bucket of the excavator facing left and right) and levefs (e.g.,

the bucket appearing closer in some images, and farther in other images). It allows the model to learn to recognize
the objects regardless of their orientation dislance with respect to the camera.

ACTUAL IMAGE AUGMENTED IMAGES

FIG. 6: Example oflata augmentatiorusing random scaling and horizontal flipping

4.2 Model training

The technical detailef the CNN architecture, activation and loss functions, andtai@ing and fineuning the
model using transfer learning are described in the following Subsections.

4.2.1 Architecture of the CNN

The designed CNNor both singldabel and multiabel classificationgconsists of one input layer (i.e., 12828
RGBimages), 18 VGE6 layers, 2 fullyconnectedayers and one output layer (e.g., labels or tags) as shown in
FIG. 7. The VGG16 layers are comprised of a series of convolutional andpgnakng layers with @otal number

of 14,714,688 prérained weights. In the convolutional layers, convolution is performed usshg3filter with
astrideof 1 pixel that preserves the size of the image. However, in the pooling layerpowlag is performed

using a2_ 2 filter with astrideof 2 pixels thateduceghe size of thémageby half in each direction. The outputs

of the last VGGL16 layer are connected tdlattenedlayer consisting of 8,192 nodes, which is fudlgnnected to

the next layer of 256 nodes (thember of nodes in the layer is selected based on empirical observations). In this
layer, a dropout operation is performed with 50% probability, i.e., during each iteration of the training session,
50% of the nodes are randomly excluded from weight upglafiagether, the two fullgonnected layers contain
2,097,408 (i.e.8192 256) weights. e last hiddeslayer is connected to the output layer which yields a vector
representhed a9 (Mamhai et gl.02005)In this encoding, each element of the vector represents
one class and can have a value of either 1 (i.e., the inpgieinelongs to that class) or O (i.e., the input image
does not belong to that class).
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FIG. 7: Architecture of the VG@6 CNN model

4.2.2 Activation functions

The rectified linear unit (ReLU) nelmear activation function is applied tioe output of each hidden convolutional
or fully-connected layer to accelerate convergdifgehevsky et al., 2012While the activation functions are
the same at each hidden layer of sidgleel and multiabel classifier modethey aradifferent at the output layer.
Forthesinglelabel classifier modesoftmax activation funiton (Murphy, 2012)YEquation 1) is used at the output
layer, whereas fothe multi-label classifier modekigmoidactivation functionFriedman et al., 200{Equation
2) is used.
Q
nOi £OI"A @ B O (Equation 1)
, Q
nOE i Qg A — i
OEci REA o 4 (Equation2)
Here, &g is the output value ofth node in the output layand » is the vector output of the output latee.,
» amBa
4.2.3 Loss functions

For singlelabel classification, mukclass crosntropy(Friedman et al., 20013 usedas loss functionThe loss
function is definedy Equation3. On the other hand, for mulabel classification, the loss function is defined as
thesum of binary crosentropy(Buja et al., 2005pverall clasgsas shown in Equatiof

061 icA A% AT o (Equation3)

Oi 61164 4 Orl T &5 p wp I T & np (Equationd)

Here, 0 is the total number of samples, is the total number of classesy; and .5 are the groundruth
label and predicted label, respectively, for tlile sample andiih class and « and ==are matrices
containing all the grounttuth and predicted labels, respectively, i€., &; and== 1 for Q
pltiB G, and® pltfB U . To note, the ground truth labelsy) are presented as binary number where
one (l)indicates thathe sample belwgs to the corresponding claggile zero (O)meanst does not
belong to that class.
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4.2.4 Pre-training, re-training, and fine-tuning

Forbothsinglelabeland multilabelclassificatiors, the VGG 16 is pretrained orapublicly availabledataseti(e.,
sourcedata) namelymageNet datas¢Bimonyan and Zisserman, 2018)ext,the training phase is performed in
two steps. First, all weights of the VGI® layers are frozen from updating, and only wesghts of the fully
connected layers are updated using the training datdsgststep allows the CNN model to learn to classify the
new set of classes without forgetting the filters learned from thérgireed datasetin this step, weights are
optimized using the RMSprop optimization algoritiifieleman and Hinton, 2012Next, the training dataset is

fed to the model again and weight values of the last three convolutional layers and tworinicted layers are
updated using the stochastic gradient descent (SGD) alga(ftbttou, 2010with a slowlearning rate (hyper
parameters, e.g., learning rate =s18nd momentum = 0.9, are empirically selected). This step is referred to as

Afitrueni ngd and all ows

dragically changing their weights.

4.3 Model testing

t he

pto thev iew dasatef.e., famged dataywithdutay e r s

To test the performance of therodel,unseentestingdataarefed tothe trained modelThe performance of the
classifiermodel in singldabeland multilabelclassification taskis evaluated usingell-establishedneasuresf
accuracy, precision, and recall, as shown in Equétitinough?.

NNNNNNN 40 4.

I AAOO /jr/‘bu4 20 & (Equationb)
... ..4Q .

0 OAAE Q&I (Equation6)

2 AAA {4_% (Equation?)

Here, TP, TN, FP, and FN referttae positive(correctly classified ttheclass) true negativécorrectly classified
to other class)false positivgincorrectly classified to the classind false negativ@ncorrectly classified to other
class) respectivelyExamples of TP, TN, FP, and FN for thkilding class in singleand multilabel classification

are shown imABLE 3.

TABLE3. Examples of TP, TN, FP, and FN for fiiteuildingd class.

Type Singlelabel classification Multi -label classification
™ The image is correctly Iab Actual image contains building (may contain other classes
well). The model correctly
Actual i mage is not | abeadte Actualimage does notcontain building (but may contain ot
TN . o . h .
|l abel it as Abuildingo. classes). The model does n
Actual image is | abel ed as Actualimagedoes notcontain building (may contain other
FP ; ;
The model incorrectly |l abe classes). The model incorr
EN Actual i mage i so Theanmeelircairecilys Actual image contains building (m&ontain other classes as
|l abels it as either Aequip well). The model does not

5. RESULTS AND DISCUSSION

The designeNN is applied tdPictor v.1.0(singlelabel) andPictor v.1.1(multi-label) datasets arttie results

are demonstrated in tfiellowing Subsections.

5.1 Singlelabel classification results

The CNN mode(VGG-16) takes an RGB image as input, generates intermediate features through a series of
convolution and maypooling operations, passes the features to the-@alhnected layer, andutputs the
probabilities of the image beloimg) to each class. The intermediate features for a ralydeelected image labeled
asbuilding are shown irFIG. 8 The figure shows that the model finds background sky and edges of the building
usefulfeatures to detect the building with high probability.

The performance of theinglelabel classifiermodel on Pictor v10 dataset is summarized in Takle Also,
classification rates are demonstrated in the confusion matfbGof9. Table4 shows thatlhclasses are predicted
with ~90% accuracy. Also, the average accuracy, precision, and recall (both weighted and unweighted) are all
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>90%. However, the precision of recognizing buildings (i.e., 89.1%) is slightly lower than the other two labels, an
indication that it is less likely that an image recognized as building by the model actually contains building(s).
Similarly, the recall of recognizing a worker (i.e., 88.7%) is relatively lower than the other two classes, i.e., the

model has relatively higheendency to misclassify an image containing worker as one containing building or

equipment. To establish a baseline for the results, a paraMgdtigationis conductedn which a CNN modeis

built following a similar architecturéo CifarNet (Shin et al.,
dataset as

learning).

Actual Image
128x128x3

Input
128x128x3

Convolution
128x128x64

Max-pooling
64x64x64

Convolution
64x64x128

Max-pooling
32x32x128

Convolution
32x32x256

Max-pooling
16x16%x256
Convolution
16x16x512
Max-pooling
8x8x512
Convolution
8x8x512
Max-pooling
4x4x512
Output
3x1x1

described earlier i
of ~83%, which is ~8% lower than what was ultimately achieved utiagretrained model (i.e.,

©

Sudic

NN EENEEEH
R 2] | AN e PR EY

Building
99.9% probability

O Equipment
0.0% probability

o

Worker
0.0% probability

2016and trained from scratch using an identical
n t hi Fablplpyieldsan.acciirdcy s

transfer

FIG. 8: Visualization of intermediate features providedthy singlelabel classifier modeior an example of a

building image.

TABLEA4. Performance metrics of the trained CNN modelsioglelabel classification.

Designed Model Baseline Modeb
Class Accuracy Precision Recall Accuracy Precision Recall
Building 95.2% 89.1% 95.2% 95.5% 78.3% 95.5%
Equipment 89.5% 92.6% 89.5% 77.4% 87.7% 77.4%
Worker 88.7% 94.0% 88.7% 73.8% 88.9% 73.8%
Unweighted Average 91.1% 91.9% 91.1% 82.3% 85.0% 82.3%
Weighted Average 91.2% 91.3% 91.2% 83.2% 84.1% 83.2%

aVGG-16 finetuned on target data, with two fulbonnected layers.
b CifarNet trained from scratch on target data.

(CMOM
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Prediction

Building Equipment Worker

Building 9 5
E
E Equipment 22 6
Worker 12 10

FIG. 9: Confusion matrix of the labels predicted by #irgglelabel classifiermodel.

The underlyingreasons behind the misclassifications can be better understoo&@mO0.In this Figure, the
confusion matrix is shown with a few randomly selected sampégyés. First, it can be seen that most of the
misclassified images contain multiple visual cues. Particularly, some that are detelsteldiag also contain
equipment or worker (or both) in the foreground, obscuring the building in the background. Hdheweodel
detects the object in the background that occupies major proportion of the field of vision, rather than the
equi pment/ worker in the foreground, not complying wit
images agquipmenbrworker. This justifies the reason behind lower precision in detecting buildings in the image
dataset. On the other hand, construction workers are omnipresent and constantigrinmuoonstructionsites
especially in the vicinity of buildings or equipmegpor both). Therefore, some of the images labeled@ker

may also contain building and/or equipment. Moreover, the visual footprint of a wtitk@o(tion of the image
occupied by a worker) is relatively much smaller than buildings or equipmentrigcly, dozer). Thus, the model,
havinga higher tendency to detect objects with larger visual footprints, may inadvertently mislabel such images
asbuilding or equipmentreducinghe recall of detecting workers.

FIG. 10: Visualization of the confused labéfssinglelabel classification

Despite these issues, the performance of the designed CNN model is still very comparable withdfi¢hstate
art methodologies. For exampléolar et al.(2018p s CNN mod el detects safety gual
accuracy (precision = 94.9%, recall = 76.1%). Siddula €2@1.6> sombined GMM+CNN model detects objects
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