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SUMMARY: Augmented Reality (AR) has been shown to enable several construction tasks and supplement the 

use of Building Information Modeling (BIM) on construction sites. However, little effort has been made to evaluate 

the effect of specific task attributes and model-related factors on the accuracy and performance of current 

generation AR devices. To address this knowledge gap, the authors identified a commonly used AR device and 

conducted an experiment related to electrical construction point layout tasks. Furthermore, the effects of several 

task attributes and content variations were explored. The results suggest that the AR device can display  content 

with a locational accuracy of five centimeters from intended design, equally distributed along the X-axis and Y-

axis on the design plane. The location of the content is more accurate the closer it is to the paper marker used to 

locate content in space. Additionally, increased amounts of content shown and variations in types of content 

displayed significantly affect the accuracy of the points along the Y-axis (elevation). This paper provides an 

empirical understanding of certain capabilities and limitations of current AR devices using industry practitioners. 

The research enables practitioners to better plan for the use of AR in different construction and engineering tasks, 

and guide future research to develop use cases around the strengths of the technology.  
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1. INTRODUCTION 

According to estimates, adoption of Building Information Modeling (BIM) has reached 82% among contractors 

(Jonathan Woetzel, Srodhar and Mischke, 2017). Augmented Reality (AR) is one emerging technology that is 

increasingly researched for its ability to leverage the 3D models generated using BIM, supplementing its use both 

in design offices and on construction sites (Park et al., 2013). For example, AR has been used to enable the 

assembly of prefabricated electrical conduit (Chalhoub and Ayer, 2018), enhance urban planning (Cirulis and 

Brigmanis, 2013), and enable better indoor navigation using natural markers for maintenance purposes (Koch et 

al., 2014).  

While previous research highlights the opportunity to use AR in industry, most current AR research is still in the 

proof of concept stage. Use cases for the technology are being explored by researchers, where most hardware and 

software has long been in the prototype stages (Feiner et al., 1997; Wang et al., 2014). Subsequently, the effects 

of variations in the target tasks, such as increased task complexity, on the performance of AR have not yet been 

empirically identified.  

This research studies the use of AR to enable point layout tasks for electrical construction tasks. Previous research 

demonstrates that AR can be used to communicate design information that had traditionally been illustrated 

through paper plans for electrical layout tasks (J. Chalhoub, SK. Ayer, “Augmented Reality for Construction 

Layout Tasks”, submitted, Arizona State University, Tempe, Arizona). While this paper does not present new 

software or hardware related to AR in construction, it investigates how AR performance is affected by changes in 

design concept factors related to the construction layout task itself. This research leverages existing AR hardware 

and software to highlight the strengths and weaknesses of current generation AR devices, enabling researchers to 

investigate more suitable use cases for the technology that meet the needs of current practitioners. Furthermore, 

developers may use the findings to address some of the current shortcomings of AR, and engineers would be better 

equipped when planning whether to use AR for a given task, depending on its specific requirements. This research 

answers the following research question: How do task variables affect the performance of practitioners using AR 

from accuracy, time, and mental workload perspectives? 

2. BACKGROUND 

2.1 Augmented Reality 

Augmented Reality (AR) is a visualization technology that integrates 3D virtual content and real environment in 

the same field of view in real time (Azuma, 1997). Milgram and Kishino proposed a “reality spectrum”, ranging 

from a fully real environment to a fully virtual environment (Milgram and Kishino, 1994). Mixed Reality (MR) is 

any merging of the real and virtual worlds in a single view, and AR is a subset of MR where the environment is 

predominantly real with some virtual content (Milgram and Kishino, 1994). 

In recent years, due to technological advancements, AR research in the civil engineering and construction industry 

grew significantly. During design and planning stages, AR was used to facilitate discussion and enhance 

communication concerning BIM content (Lin et al., 2015), and to provide contextually aware information on sites 

(Bae, Golparvar-Fard and White, 2013). In construction, AR has been used to enable pipe and conduit assembly 

(Hou, Wang and Truijens, 2015; Chalhoub and Ayer, 2018) and to provide chronological instructions from 

automatically generated assembly sequences (Makris et al., 2013). AR was also used to enable non-skilled labor 

to build complex free-form surfaces (Fazel and Izadi, 2018) and to deliver personalized safety information to 

workers on site (Kim, Kim and Kim, 2017). Post-construction, AR was used for displacement inspection in 

tunneling systems (Zhou, Luo and Yang, 2017). In education, AR was shown to contribute to student learning for 

structural analysis purposes by better visualizing content from different angles (Turkan et al., 2017). Generally, 

AR research and implementation is gaining traction throughout the different industry sectors.  

However, current research efforts are still mainly focused on finding potential use cases of the technology and 

have not thoroughly studied the effects of variations within the task on the performance of the proposed AR 

solutions. This research contributes to the body of knowledge by exploring this research gap using a construction 

layout task in electrical subcontracting.  
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2.2 Cognitive Workload and NASA-TLX 

High cognitive workload has long been associated with lower productivity, increased error rate, and slower task 

completion (Swain and Guttmann, 1983). The NASA Task Load Index (NASA-TLX) is a survey that quantifies 

the perceived cognitive workload required from a user (Hart and Staveland, 1988). Although the survey is 

subjective in nature, NASA-TLX has been used more than a thousand times, and is widely accepted as a 

measurement of the cognitive workload in users (Hart, 2006). In civil engineering research, the NASA-TLX survey 

has been used to measure the cognitive workload required for masonry construction and to evaluate different 

design communication methods (Mitropoulos and Memarian, 2013) and quantify the differences in cognitive 

workload when using different information delivery methods (G. B Dadi et al., 2014). The survey has also been 

used to study cognitive workload of AR solutions in the AEC industries (Dunston, 2009; Wang and Dunston, 

2011; G. B. Dadi et al., 2014). Table 1 summarizes the questions asked in the NASA-TLX survey. 

Table 1. NASA-TLX subcategories and descriptions 

Subcategory Description 

Mental Demand How mentally demanding was the task? 

Physical Demand How physically demanding was the task? 

Temporal Demand How hurried or rushed was the pace of the task? 

Performance How successful were you in accomplishing what you were asked to do?  

Effort How hard did you have to work to accomplish your level of performance? 

Frustration How insecure, discouraged, irritated, stressed, and annoyed were you?  

2.3 Human-Computer Interaction 

The Human-Computer Interaction (HCI) community has long studied user behavior when interacting with virtual 

content in both AR and Virtual Reality (VR). Research suggests that, when given different types of data visualized 

in 3D using AR, participants tended to use the technology to create a suitable bird’s eye view to primarily 

understand the content, and then prioritized spatial interactions compared to using computer input to manipulate 

the content (Büschel et al., 2017). In fact, research suggests that there is tangible performance benefit of using 

static interaction with content, compared to active interactions (Herman and Stachon, 2016). Specifically, 

participants with low spatial abilities benefit best form natural interaction with content, such as walking, since 

walking is a natural human action (Simpson, Zhao and Klippel, 2017; Lages and Bowman, 2018). From a 

presentation point of view, recent research suggests that it is important to show participants only task related 

information and limit interaction with content to increase performance (Gardony et al., 2018). These findings were 

taken into consideration when designing the AR environment for this experiment, where only task-related content 

was shown and no computer-based interactions were possible.  

2.4 Point Layout and Current Practices 

Point layout is a construction activity where an individual locates a point on the construction site that is rel evant 

to a given task. For example, in electrical construction, point layout may refer to the task of identifying where 

certain electrical devices will be installed in a room. A mark is typically left where the electrical device should be 

installed, and an installation crew would later follow to build the targeted element at the location of the mark. The 

same process is used for mechanical installations, plumbing and other construction activities.  This process was 

chosen for this research because it is a commonly used, adaptive task that has multiple distinct levels of complexity 

stemming from various task specific attributes, as explained thereafter in section 3.1.  

Currently, point layout is solely dependent on the spatial capabilities of site workers and managers to map 2D 

plans onto their 3D surroundings (Kwon, Park and Lim, 2014). The practitioners typically receive sets of plans, 

where the points are identified through a set of distance measurements to other known points in the space. On BIM 

projects, the plans are produced by generating 2D projections from the 3D model. Figure 1 shows a typical shop 

drawing for electrical devices layout.  



 

 

 
ITcon Vol. 24 (2019), Chalhoub & Ayer, pg. 98 

 
FIG. 1: Standard electrical conduit layout plan. 

2.5 Task classification 

For most of the twentieth century, research focusing on construction task classification studied the potential for 

automating those tasks. Porter divided a task into a physical component and an information component (Porter, 

1980). Proctor further divides a task into the chronological succession of a perception task, cognitive task and 

motor task (Van Zandt and Proctor, 2008). Everett theorized that machines are better at physically intensive tasks 

that require little information exchange and understanding (Everett and Slocum, 1994). Researchers also 

categorized tasks based on automation potential: Warszawski identified ten “basic activities” that can be performed 

by robots (Warszawski, 1990); Tucker identified 17 distinct automatable areas (Tucker, 1988); and Kangari created 

a “robotics feasibility” score by assessing 33 processes in a task (Kangari and Halpin, 1989). Everett proposed a 

nine-level hierarchical system for classifying all tasks (Everett, 1990). Specifically, construction field operations 

follow a seven-level hierarchical system, where “project” is the highest level, and “cell”, referring to the fiber 

muscle and nerve stimulated to complete a given action, is the lowest (Everett, 1991).  

Recently, some classification efforts have shifted towards the potential of using AR for construction tasks. Unlike 

robotics and automation, AR was found to be a better fit for information intensive tasks (Wang and Dunston, 2006; 

Dunston, 2008). Dunston and Wang adapted Everett’s hierarchical classification into a five level system, and 

concluded that the lowest two levels, “composite” and “primitive” tasks are the most appropriate for AR 

implementation (Dunston and Wang, 2011). Shin and Dunston studied a comprehensive list of construction tasks 

and theoretically assigned potential AR use cases, including the use of AR for layout tasks (Shin and Dunston, 

2008). Because of recent advancements in simulation technologies, more robust, data driven classification systems 

have arisen. Some research has used smartphone sensors to identify and recognize construction tasks that often 

produce distinct data signatures (Akhavian and Behzadan, 2016) and utilized machine learning algorithms to better 
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recognize and classify tasks through the collected data (Akhavian and Behzadan, 2018). Different software and 

coding solutions, such as Dynamic Time Warping techniques, are used to increase the accuracy of the recognition 

and classification processes (Kim et al., 2018).  

Although some research suggests that complexity does not hinder performance when using AR for assembly tasks 

(Radkowski, Herrema and Oliver, 2015), “mental workload” was mentioned as a limitation for the potential of 

using AR for a given task (Dunston and Wang, 2011). Furthermore, although prior research theoretically proposes 

that layout tasks could benefit from AR implementation, little work has been done to assess how task attributes 

variables may affect the AR implementation. This paper fills this knowledge gap.  

3. USE-CASE 

The researchers collaborated with a large electrical subcontractor in the Southwest region of the United States. All 

models were created by the partner company’s design team and all the participants were then current prac titioners 

in different roles within the company. The experiment took place in an emptied conference room at the company’s 

regional headquarters, representing a safe environment where participants can work and be effectively monitored.  

3.1 Model Variations and Preparations 

To test electrical construction layout tasks with AR, several electrical device layout designs were created based on 

the selected conference room location. The conference room had non-orthogonal walls, making it especially 

challenging for electrical device layout processes. Figure 1 shows a plan view of the room. Three walls were used 

for layout in this case, with the devices shown in the figure, and the other portion of the room was used by the 

researchers to monitor participants and run the experiment.  

Although many factors may technically affect the performance of the AR device, the researchers were interested 

in testing the same variations that currently affect point layout task performance when using paper plans. Several 

project managers and BIM modelers from the partner company were interviewed, and based on the input provided, 

three possible variations became apparent: (1) variation in elevation of the devices compared to all devices at the 

same elevation, (2) low device density compared to high device density in a room and (3) laying out different types 

of devices (i.e. switches and receptacles) compared to laying out only one type of device.  

Four different designs were generated, and the different variables were strategically introduced to allow pairwise 

comparisons to isolate their effects. Table 2 summarizes the four designs and their various characteristics. All 

designs were originally created by the partner company using Revit, but the researchers received the models in a 

3D AutoCad format.  

Table 2. Summary of room designs and factors in each design 

Design Elevation of Devices Number of Devices Variety of Devices 

1 Same elevation 5 Different Devices 

2 Different Elevations 5 Different Devices 

3 Different Elevations 10 Different Devices 

4 Different Elevations 5 Same Device 

The models received included all 3D geometric content, but did not include any embedded information from the 

original BIM, such as the cost of each element. The room walls, flooring, ceiling, ceiling light fixtures, doors and 

windows, in addition to the electrical devices to be laid out, were all in the model. Figure 2 shows an isometric 

view of the received model. The model size varied between 252 Kb and 556 kb, depending on the number of  

electrical devices in each model. 

For the point layout task, only the electrical devices were required to be viewed by the participants through AR, 

since all other elements physically exist in the space. For example, showing the walls would simply overlay the 

virtual walls directly on top of the existing walls, which may be disorienting and would further load the AR device. 

Therefore, all unnecessary elements were removed. Furthermore, the shapes that represent the electrical devices 

are complex on the “back side”, made up of 182 vertices, but are invisible by the user. The shape was simplified 

to only show the front plate with a cross sign on its center. The cross sign and the name of the device, which is 
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located above the face plate, were both colored in red to create a contrast to the green front plate, enhancing 

visibility through the AR headset. Other than these minor changes, the original model content was unmodified 

from what was created by the partner company. Specifically, no content was added, and the points were not moved 

by the researchers. Figure 3 shows the remaining portions of the model received.  

 
FIG. 2: Design in AutoCad as received from the partner company. 

 
FIG. 3: Design after removing unnecessary elements. 

To be viewed through the AR device, the models must be exported from the CAD format to a universal 3D format. 

FBX format was used in this research because of its broad compatibility, specifically with the game engine used 

for deployment on the AR device. The exporting method ensured that all shape, texture and color information was 

retained.  

3.2 AR Preparation 

The AR device chosen by the researchers was the Microsoft HoloLens, a self-contained computing unit. The unit 

included 12 total sensors, allowing it to scan and interpret spaces around it. It also has “2 HD 16:9 light engines, 

with 2.3 M total light points and more than 2,500 light points per radian” to display virtual content, positioned 

relevant to the scanned space (“HoloLens hardware details”).  

In order to correctly display the models on the AR device, three commercial software suites were used: (1) Unity 

Game Engine, (2) Vuforia SDK and (3) Microsoft Visual Studio.  

The Unity game engine enables game development on a variety of software and hardware, including the Microsoft 

HoloLens (“Unity - Products”). For development, Unity relies heavily on imported content using FBX and 

provides an Application Programming Interface (API) accessible through JavaScript and C#. Previous 

visualization efforts in civil engineering research have relied on Unity (Keough, 2009; Pauwels, De Meyer and 

Campenhout, 2011; Ayer, Messner and Anumba, 2013), proving its suitability for construction focused 

applications.  

The Vuforia Software Development Kit (SDK) is a package that can be installed inside Unity. Vufori a enables 

advanced computer vision, which allows a broad range of target devices to recognize everyday images and objects 

using an ordinary built-in camera. A website interface manages a “targets” database, the given set of markers 

Electrical Devices Electrical Devices 
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required to be recognized. Once a marker is recognized, the device would display the correct model relevant to the 

location of the marker in space. Finally, Microsoft Visual Studio compiles and debugs the application created, and 

then deploys it to the HoloLens. Once deployed, the application is fully contained inside the HoloLens, and does 

not require external computing power or connection to function.  

3.3 The Experiment 

The experiment took place over the span of six business days, spread evenly over two weeks. Four to six 

participants completed the experiment each day. Before starting, the participants were told they would be 

participating in an electric device room layout exercise using AR technology, but were not given any further 

information.  

Prior to starting the experiment, each participant received two copies of a consent form and a pre-session 

questionnaire. One signed copy of the consent form was collected, and the other was left with the participant. The 

pre-session questionnaire asked general questions about each participant, including age, years of experience, 

average time spent doing point layout, highest education level, prior experience using AR and VR technologies 

and the participant’s perception towards AR use on a construction site. Definitions of point layout and AR  were 

presented at the beginning of the questionnaire for the participants’ reference. 

In practice, device locations are often indicated with the use of a marker pen or spray paint. Since the experiment 

was completed in a finished conference room, sticky notes were used as a non-permanent mark of the location of 

a given point. Figure 4 shows a sample sticky note. To correctly lay out a point, the participant would have to line 

up the cross on the sticky note to the cross on shown on the device in the model. This allowed the researchers to 

quickly reset the room to an empty condition between the different exercises and participants.  

 
FIG. 4: Sample sticky note (device S3). 

Each participant laid out the room using all four designs, but the order of the designs was randomized to mitigate 

the learning effect. For each run, the content was loaded onto the AR device by the researcher, and the participant 

was assisted in wearing the device. Once the participant acknowledged that they were able to see the content, they 

were handed a set of sticky notes corresponding to the devices in the model that they are laying out. The entire 

session was video recorded from multiple angles to study the behaviors demonstrated during the activity.  

Once the layout task was complete, the participant was assisted in removing the headset, and they were handed a 

NASA-TLX questionnaire to fill. Meanwhile, the researchers measured distances from the center of sticky notes 

to the walls and floor using a laser measuring tape, quoted by the  manufacturer to be accurate to the nearest 

millimeter. The measurements create a coordinate system for each laid out point, comparable with the coordinate 

system of the points in the model, enabling a one-to-one accuracy comparison. When the measurements were taken 

and the NASA-TLX was completed, all sticky notes were removed from the walls, the next design model was 

loaded, and the process was repeated until all designs were laid out. When the last design was laid out, in addition 

to the NASA-TLX, the participant received a post-session questionnaire including questions about their comfort 

level and thoughts for other high-potential applications for the technology in electrical construction based on their 

experience.  
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3.4 Analysis Approach 

The researchers considered three metrics to assess the performance of the AR solution proposed: accuracy, time, 

and mental workload.  

3.4.1 Accuracy 

The main purpose of the layout task is to layout the points accurately where they were designed. Specifically, in 

electrical construction, depending on the type of the project and contract, accuracy tolerances can be as low as 

1/8th of an inch (0.003 meter) from intended placement. Each designed and laid out point were assigned a set of 

coordinates, that represent the distance from a wall on the X-axis and the distance from the floor on the Y-axis. 

Separate differences between the designed and actual point placements along each axis were calculated. The 

overall distance (hypotenuse) from the targeted point can be computed using the X and Y values. 

3.4.2 Time 

The researchers used the videos recorded of the activity to accurately determine the start and end time of each task. 

The start time was determined as the moment the participant declared he or she can see the content through the 

AR device, and the end time was determined when he or she declared they were done with the layout task. All 

times presented in this paper are in seconds.  

During some tasks, the participants had technical difficulties viewing the content. Specifically, the content wo uld 

either shake significantly because of poor spatial tracking, or the application would close, and the content would 

no longer be viewable. In these instances, the participant had to take off the headset, and the researcher had to reset 

it. The task times presented in this paper include both times with and without technical difficulties. It is reasonable 

to expect those times to be reduced as practitioners become more accustomed to using and fixing the device when 

needed and as the technology matures, but both datasets are included to increase the granularity of reported 

findings.   

3.4.3 NASA-TLX 

The collected NASA-TLX questionnaires were digitized and stored in spreadsheet files. Each entry had the 

responses of the user, the model design it corresponds to, and the order in which that design was laid out for each 

user. The responses were analyzed using paired statistical analysis to adjust for personal bias from the responders. 

Additionally, the responses were also analyzed linearly to investigate whether using the AR tool would change the 

perceived cognitive workload. 

4. RESULTS & DISCUSSION 

This paper aims to quantify the effect of the varying task attributes on the performance of the participants when 

using AR for electrical device layout tasks. In the experiment, each participant laid out four different layouts with 

different factors included in each design. The experiment allows the pairwise comparison of designs to isolate the 

effect of each task attribute. Table 3 below summarizes the factors included in each design, isolating the effect of 

each task attribute: comparing designs 1 and 2 isolates the effect of device elevation, comparing designs 2 and 3 

isolates the effect of number of devices in a room, and comparing designs 3 and 4 isolates the effect of device 

diversity in a single space.  

Table 3. Summary of effect studied and relevant designs 

Effect Isolated Design 1 Design 2 Design 3 Design 4 

Elevation Difference  X X X 

Number of devices   X  

Diversity of Devices X X X  

4.1 Accuracy 

The accuracy was studied along the X-axis and Y-axis separately. Table 4 summarizes the overall accuracy along 

the X-axis and Y-axis in both data sets. All measurements shown are in meters.  
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Table 4. Overall accuracy in each design for the X-axis and Y-axis 

 Design 1 Design 2 Design 3 Design 4 

X-Axis 0.0302 0.0369 0.0357 0.0311 

Y-Axis 0.0253 0.0268 0.0344 0.0271 

In order to utilize suitable comparative statistical tests, the Shapiro-Wilk test of normality test was used on all 

datasets tested. The Shapiro-Wilk test of normality is one statistical test that determines whether the population of 

a dataset follows a normal distribution: the null hypothesis assumes the population is normal, and if the returned 

p-value is less than 0.05, the null hypothesis is rejected, and the population is considered not normally distributed. 

Table 5 below summarizes the p-value for the Shapiro-Wilk test of normality run on each of the cases above. Most 

of the data was not normally distributed, except for the Y-axis accuracy for designs 2 and 3.  

Table 5. Summary of the Shapiro-Wilk test on the datasets 

 Design 1 Design 2 Design 3 Design 4 

X-Axis 4.744e-6 2.105e-9 8.937e-5 6.736e-5 

Y-Axis 2.948e-5 0.1404* 0.8986* 1.152e-8 

* indicates non-significant values; data is normally distributed 

4.1.1 Task Variations effects 

Along the X-axis, none of the task variations had any effects on accuracy. Along the Y-axis, the increased number 

of devices affected the accuracy. As discussed above, designs 2 and 3 are compared to isolate the effect of increased 

number of devices and their accuracies along the Y-axis are normally distributed (Shapiro-Wilk test p-value = 

0.1404 and 0.8986, respectively). A paired t-test can be used, and Table 6 presents the results of the paired t-test. 

The paired t-test compares the performance of the same set of users under two different circumstances, and if the 

returned p-value is less than 0.05, the performances are considered statistically different. When there are only 5 

devices in a room, device placement is 0.00762 meter (22%) more accurate along the Y-axis compared to when a 

room has 10 devices, and the difference is significant at the 95% confidence level (p-value = 0.01121). In practice, 

laying out smaller batches of point at a time might maximize the accuracy of the laid-out point along the Y-axis. 

Table 6. Summary of the paired t-test on Y-axis accuracy 

Testing 
Y-axis accuracy (Meter) Difference 

(Meter) 
t-value p-value 

Design 2 Design 3 

Number of Devices 0.0268 0.0344 0.00762 2.7225 0.01121 

4.1.2 Distance from paper marker 

The application developed for this experiment utilized a marker-based approach to accurately place the digital 

content on site, using the process described in detail in (Chalhoub, Alsafouri and Ayer, 2018). When using marker-

based AR, the device stabilizes the content based on the location of the marker. However, as the user gets farther 

from the marker, the fidelity of the placement of the digital content may also change. The relation between the 

distance of the point from the marker and the overall point accuracy is studied.  

A linear regression approach was used to explain the relation between the distance from the marker and the 

accuracy of the point placed. First, the distance to the marker was used to explain the variation in accuracy; 

however, when the model was further analyzed, a power transformation was deemed to be required on the 

regressor. The model presented in this paper uses the distance to the marker squared as the predictor to explain 

variation in accuracy. Figure 5 shows a graph of the scatter plot of each point placed, where the Y-axis represents 

the overall accuracy of the point placed and the X-axis represents the distance from the marker squared, and the 

regression line passing through them. All distances are in meters.  
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FIG. 5: Plot of accuracy of points vs the squared distance from the marker to the device. 

During the experiments, some participants mentioned tha t the model had significantly shifted from its original 

location, and he or she either used the new points’ locations or tried to place the points by memory in relation to 

other point. These cases have created several outliers that are clear in Figure 5. However, due to the high number 

of observations, the data was not adjusted in any way and the outliers did not affect the accuracy findings 

significantly. Table 7 summarizes the regression and Table 8 presents the corresponding ANOVA table.  

Table 7. Summary of the linear regression 

 Coefficient Standard Error t-value p-value 

Intercept 0. 018162 0.0021517 8.441 <2.2e-16 

Distance to Marker ^2 0.005508 0.0002823 19.508 <2.2e-16 

A positive coefficient of the square of the distance to the marker indicates that the distance between the placed 

point and its intended location increases as the distance from the marker increases, and the relation is significant 

(p-value <2.2e-16). The Pearson correlation factor between the predictor and variable is 0.5849, and R-square is 

0.3421. The regression is significant: The F-value is 380.56 with a corresponding p-value < 0.05.  

Table 8. ANOVA associated with the linear regression 

 
Degrees of 

Freedom 

Sum of 

Squares 

Mean Sum of 

Squares 
F-value p-value 

Distance to Marker ^2 1 6.2085 6.2085 380.56 <2.2e-16 

Residuals 732 11.9419 0.0163  

While the regression would not be necessarily appropriate to predict the exact placement errors of points in future 

layout jobs when using AR, given the high sample size (734 points), decreased accuracy levels at distant locations 

from the marker should be expected to follow a parabolic curve in future implementations of this type and 

generation of technology. 

4.1.3 Effects of repetition 

The accuracy of point placement on either axis did not change as the participant went through the four exercises. 

Table 9 shows the mean accuracy along each axis for the different runs (in meters), and the significance of the 

paired Mann-Whitney comparison of each run and the one that precedes it. On average, accuracy ranged between 

0.024 and 0.0358 meter, and all p-values are higher than 0.05, indicating no significance at the 95% confidence 

level. This indicates that the maximum possible accuracy using current technology is effectively achievable from 

the first use of AR by a participant, reducing required training time. 
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Table 9. Cumulative paired Mann-Whitney test on the consecutive layout runs concerning accuracy on X-axis 

and Y-axis 

Run 

X-Axis Y-Axis 

Accuracy 
Cumulative 

V-value 

Cumulative 

significance 
Accuracy 

Cumulative  

V-value 

Cumulative 

significance 

1 0.0344 N/A N/A 0.0268 N/A N/A 

2 0.0304 318 0.1757 0.0310 190 0.2639 

3 0.0334 281 0.3285 0.0311 172 0.2206 

4 0.0358 161 0.9789 0.0244 144 0.6338 

4.2 Time: 

The effect of varying task attributes on time to complete the layout of the devices was computed. Because some 

designs have different numbers of devices, the overall time was divided by the number of devices in each run, and 

the times presented thereafter are times per device in seconds. Table 10 summarizes the Shapiro-Wilk test of 

normality findings. Since the data is not normally distributed, the paired Mann-Whitney test was used. The paired 

Mann-Whitney test is similar to the paired t-test: it compares the performance of the same group under two 

different circumstances, and if the returned p-value is less than 0.05, there is a statistically significant difference. 

However, unlike the paired t-test, the Mann-Whitney does not require normality of the datasets, and so it was used 

when the samples where not normally distributed.  

Table 10. Summary of Shapiro-Wilk test on time datasets 

Case Design W-value P-value 

 

With Technical 

Difficulties 

Design 1 0.66201 2.463e-7 

Design 2 0.70821 2.765e-6 

Design 3 0.55525 2.165e-8 

Design 4 0.59086 7.981e-8 

 

Without Technical 

Difficulties 

Design 1 0.65501 1.971e-7 

Design 2 0.68395 1.248e-6 

Design 3 0.54612 1.706e-8 

Design 4 0.54228 2.217e-8 

When the devices were designed at different elevations and when the devices designed were themselves different, 

there was a significant difference in the time required to layout each time. The findings are described below. 

Notably, the layout time per device did not significantly vary when more devices were in the room (p-value = 

0.1414).  

4.2.1 Effect of Elevation Difference 

Time to complete designs ‘1’ and ‘2’ were compared to quantify the effect of difference in devices’ elevation on 

the layout times using AR. Table 11 summarizes the findings of the test for both times with and without technical 

difficulties. 

In both cases, the participants were on average 8 seconds faster per device laid out when all devices were at the 

same elevation, compared to when they were at different elevations, and the difference is significant at the 95% 

confidence level (p-values < 0.05). In effect, splitting a design into separate layouts where all devices are at the 

same height may reduce the time to finish the overall task faster.  
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Table 11. Summary of Mann-Whitney paired test on effect of elevation difference 

Cases Mean of Design 1 

(seconds) 

Mean of Design 2 

(seconds) 
Difference V-value P-value 

With Technical 

Difficulties 
23.54 32.17 8.63 52 0.0003598 

Without Technical 

Difficulties 
23.37 31.49 8.12 53 0.0003907 

4.2.2 Effect in variability of devices 

Time to complete designs ‘2’ and ‘4’ were compared to quantify the effect of variability of types of devices used 

on the layout times using AR. Table 12 summarizes the findings.  

Table 12. Summary of Mann-Whitney paired test on effect of device diversity 

Database Mean of Design 4 

(seconds) 

Mean of Design 2 

(seconds) 
Difference V-value p-value 

With technical 

difficulty 
24.88 32.17 7.29 103 0.02346 

Without technical 

difficulty 
23.61 31.49 7.88 96 0.0153 

In both cases, the participants were around 7 seconds faster per device when all the devices in the layout are the 

same, compared to when different devices are in each room. The difference is significant at the 95% confidence 

level (p-values < 0.05). Similar to the case of elevation difference, splitting a design into separate layouts where 

all devices are the same type may enable faster productivity in laying out the points.  

4.2.3 Effect of Repetition 

As previously mentioned, each participant laid out four separate room designs. It is possible that the participants 

got more comfortable with the AR device and layout task after the first use and may perform better in the second 

or third runs. Table 13 summarizes the performances of the participants and the comparisons between the first and 

second, second and third, and third and fourth runs using the paired Mann-Whitney test for the datasets with and 

without technical difficulties. 

Table 13. Cumulative paired Mann-Whitney test on the consecutive layout runs concerning time per device 

 

Cases 
Run 

Mean Layout Time 

per Device (seconds) 
Cumulative V-value 

Cumulative Comparison 

significance 

Case 1: With 

Technical 

Difficulties 

1 33.57 NA NA 

2 26.48 415 0.000644 

3 25.12 309 0.1191 

4 24.33 146 0.6668 

Case 2: 

Without 

Technical 

Difficulties 

1 32.55 NA NA 

2 25.96 418 0.0004954 

3 23.95 331 0.04265 

4 24.29 121 0.2699 

Table 13 summarizes the findings of the cumulative Mann-Whitney test on both datasets. Generally, the 

participants tend to perform better in each subsequent layout task compared to the one that proceeds it. When 

considering the dataset with technical difficulties, the performance gains are significant at the 95% confidence 

level only between the first and second runs (p-value = 0.000644). When considering the dataset without technical 
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difficulties, the performance gains are significant in both the second (p-value = 0.0004954) and third (p-value = 

0.04265) runs. Generally, the results indicate that the performances of the participants tend to be enhanced as the 

participants get more familiar with using the technology.  

4.3 Cognitive workload 

When considering cognitive workload, each of the six NASA-TLX questions were compared separately. The only 

difference was between design ‘2’ and ‘3’. Specifically, participants required an average of 5.43 extra “effort” 

points to layout 10 devices compared to when laying out 5 devices, and the difference is significant (p-value = 

0.02663). Table 14 summarizes the findings of the paired Mann-Whitney test. This finding is largely intuitive, as 

more effort would likely be required to layout more devices.  

Table 14. Summary of Mann-Whitney paired test on effort factor in the NASA-TLX questionnaire 

Mean of Design 3 Mean of Design 2 Difference V-value p-value 

23.52 18.09 5.43 34.5 0.02663 

Interestingly, none of the cognitive workload factors changed significantly as the participants repeated the tasks. 

Overall, perceived cognitive workload is independent from repetition and varying task attributes presented in this 

experiment. 

4.4 Limitations 

This research explores the effects of varying task attributes on performance when using AR. The limitations of 

this work are related to the technology, the task attributes studied, and the environment where the work took place. 

First, this experiment is based on commercially available hardware and software solutions. The aim of the 

researchers was not to create a new AR device or a new software suite to display virtual content, but rather to 

measure the capabilities and limitations of what current technology can afford to any interested party. It is expected 

that new generations of hardware and software will be developed, and the accuracy may be enhanced. However, 

the human behaviors involved, especially relating to how participants dealt with more complex situations, is less 

likely to change.  

Second, not all perceivable task variations were studied. The researchers based the designs on discussions with 

stakeholders from the partner company, in order to quantify the effects of relevant factors. The factors represent 

the opinions and experience of individuals from a single company in one engineering discipline, and other 

individuals may consider other task variations, and may require separate studies to understand their effects. 

Furthermore, when AR becomes more commonly used in the industry, task variables uniquely related to AR may 

emerge and require separate exploration. 

Finally, a conference room was used for the experiment. While the researchers aimed to mimic as closely as 

possible the layout tasks required on a typical construction site, they did not want to conduct the experiment on an 

active site because of potential safety concerns. Active construction site conditions, such as varied lighting, noise, 

congestion, heat or cold, and other conditions may not only affect the AR device, but also the associated human 

behavior as well. Many of these factors already present challenges to professionals when using traditional paper 

plans, but their effect on AR remains unknown.  

5. CONCLUSION 

The work presented in this paper explores the effects of changing various task attributes on the performance of 

current generation AR hardware and software. The researchers chose an electrical device layout task to complete 

using AR, and strategically introduced three task attributes variations in four designs: (1) number of devices laid 

out, (2) difference in elevations of laid out devices, and (3) diversity of the type of devices laid out. Practitioners 

from the partner company participated in this experiment and completed all four designs in randomized orders. 

The practitioners also completed NASA-TLX after completing each design to measure their perceived cognitive 

workload. 

First, the accuracy of placement of the points was measured. There is a mild positive correlation between the 

accuracy of placement of the points and the distance from the paper marker, placed at the center of the marker 



 

 

 
ITcon Vol. 24 (2019), Chalhoub & Ayer, pg. 108 

(r=0.5849). Points were also laid out more accurately when there were fewer devices in a room compared to when 

there are many devices. Rooms with more devices also required a significantly higher effort as reported by the 

NASA-TLX.  

The layout completion time per device was computed for each case. In general, the layout process was faster when 

designs were less complex. Participants required nine seconds less per device when all devices were at the same 

elevation, and 8 seconds less when devices were all similar and not of different types. Moreover, participants 

performed significantly faster in the second run compared to the first and faster in the third compared to the second.  

The contribution of this paper is in identifying and validating the attributes of a construction layout task that make 

it advantageous or disadvantageous for using current AR devices with industry practitioners. These findings will 

allow researchers and practitioners to strategically leverage AR (or avoid its use) to support the needs of a given 

layout task, and to plan the deployment and implementation of AR in order to maximize its benefits. The findings 

also highlight the current limitation of AR technology to enable researchers to focus development to help mitigate 

the current shortcomings. As new AR technologies become more prevalent and powerful, the findings from this 

work may guide the industry in planning for how to use the new technologies to support the needs of the people 

who are tasked with using them.  
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