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SUMMARY: In recent years, infrastructure restoration has been backlogged with complex factors that have 

captured the attention of municipal and federal authorities in North America and Europe. The subjective nature of 

evaluating bridge conditions and bridge deterioration is one of the main factors that influences bridge maintenance, 

repair, and replacement (MR&R) decisions. This study presents a stochastic fuzzy logic decision support integrated 

with a bridge information management system (BrIMS) to forecast bridge deteriorations and prioritize 

maintenance, repair, and replacement (MR&R) decisions at the conceptual design stage. The proposed system 

considers numerous factors that influence the prioritization of bridge MR&R decision making including complex 

time-dependent gamma shock models. A parametric analysis is conducted in order to quantify the degree of 

accuracy of the system. Implementation of the system platform demonstrated the viability of integrating BrIMS 

with fuzzy-logic deterioration forecast techniques at the conceptual stage of bridge design. The proposed system 

is validated through a case study and found to be in agreement with actual bridge deterioration results with a 

percentage difference of approximately 10 - 15 %. Besides that, the integrated platform may be utilized as a 

forecasting tool that is capable of predicting and prioritizing MR&R decisions to components for diverse bridge 

design alternatives. 
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1. INTRODUCTION 

Typically, forecasting bridge infrastructure deterioration from distinct condition assessments and statistics is a 

challenging task. Due to the highly complex and erratic nature of infrastructure data, deterministic bridge 

deterioration models are quite often not applicable. Temporal reliability analysis “hazard functions,” such as 

Markov chains, Bayesian networks, and gamma models, have been developed for bridge and storm sewer systems. 

Predicting bridge deterioration conditions is the main constituent of infrastructure asset management techniques. 

Furthermore, a decision support system based on fuzzy-logic theory that assists asset managers in making 

appropriate MR&R decisions is vital (Wang et al., 2015).  Bridge performance indicators should be based on 

bridge beneficiaries’ perceptions of technical parameters. Integrating these indicators with stochastic time-

dependent modeling of bridge deteriorations is important for planning and prioritizing MR&R activities. These 

activities may include inspection, sampling, preventative and maintenance operations. Based on the 

aforementioned, a time-dependent prediction of the overall bridge deteriorations necessitates the development of 

a thorough, reliable, and user-friendly fuzzy-logic decision support system.  

1.1 Problem Definition 

Nowadays, most bridge information management methodologies are strictly based on life cycle analyses offset by 

available funds and budget constraints. Repair costs, in many situations, have proven to exceed annual or semi-

annual preventive maintenance costs (Liang et al., 2002). Most bridge stakeholders are reluctant to pay for 

preventive maintenance, which appears to be of no benefit or which bridge asset managers have found from 

experience to be unsuccessful in preventing a bridge structure from deteriorating. 

In an attempt to overcome this shortcoming, this study is intended to demonstrate the viability of stretching bridge 

information models to capture the conceptual design of a bridge while applying sensitivity analyses to identify the 

most sensitive elements and subsequently to forecast bridge elemental deteriorations. Furthermore, it is assumed 

that integrating a fuzzy logic decision support system with BrIMS and deterioration forecast for bridges is possible 

only if its objectives are kept simple, focused, and organized. Therefore, basic straightforward bridge information 

management (BrIMS) processes have been researched, recalled, and analyzed. According to Bentley bridge 

solutions, the eight processes of BrIMS are: (1) bridge type selection; (2) 3D CAD model; (3) technical analysis; 

(4) planning for construction; (5) production; (6) phases of construction; (7) maintenance; and (8) remediation 

(Peters, 2009). Extending research published by Wang and Elhag (2008) and Cheng and Hoang (2012) that 

proposed the integration of BrIMS with fuzzy systems to prioritize MR&R solutions for deteriorating bridges, 

authors of this study introduce the idea of a fuzzy-logic decision support framework integrated with gamma shock 

modelling for forecasting bridge deteriorations. The main advantage of such integration underlies the benefit of 

capturing economical preventative maintenance routes and making strategic MR&R decisions at the conceptual 

design stage.  

Whilst several attempts have been made at modeling the deterioration of bridge infrastructures, practical 

developments were recorded recently, where researchers employed the gamma stochastic process effectively to 

temporal deteriorations and subsequently implemented into MR&R decision support systems. Furthermore, earlier 

research work had not considered the integration of decision support systems with gamma shock models at the 

conceptual design stage. In contrast, researchers had focused more on improvement factors for enhancing bridge 

maintenance and information management techniques. 

In this study, the following processes; i) bridge type selection; ii) 3D CAD model; iii)  technical analysis; and iv) 

maintenance and remediation are selected for the development and integration of gamma shock models BrIMS at 

the conceptual design stage. The proposed system integrates quality functions for maintenance, repair, and 

replacement (MR&R) alternatives with a Gaussian probabilistic matrix factorization. The resulting system 

produces competitive priority ratings that eliminate ambiguities in bridge life cycle evaluation. Hence, the 

proposed integrated information management system becomes a new approach to informing downstream processes 

of bridge projects at the conceptual design stage. 

 



 

 

 
ITcon Vol. 23 (2018), Jung et al., pg. 94 

1.2 Research Objectives 

The integrated approach presented herein may be utilized to plan the maintenance and to monitor the deterioration 

of bridges and then to prioritize the maintenance, repair, and replacement alternatives; (i.e., inspection, sampling, 

preventative, and maintenance operations). This integration technique is a rational approach that justifies most 

“ineffective” spending by bridge stakeholders, since it considerably reduces subjectivity in quantifying bridge 

deterioration. Moreover, the integration not only contributes to the reliability of a particular bridge element but 

also to the reliability of the collected data and the probability of occurrence of deterioration benchmarks such as 

corrosion and elemental degradations. 

The main objective of this study, then, is to develop fuzzy logic decision support system using complex quality 

functions and a gamma stochastic deterioration model that is based on the integration of probabilistic models in 

an attempt to improve the effectiveness of bridge information management systems. Towards that goal, a wider 

insight into the integration of a decision support system can assist bridge asset managers in proposing a strategic 

solution to deteriorating bridge infrastructures.  

1.3 Literature Review 

Highway and transportation authorities have often relied upon deterministic deterioration curves for predicting 

bridge maintenance programs. In past years, bridge infrastructure management systems have been modeled using 

traditional Markov chain models. In the past three decades, inconsistent MR&R decisions for bridges and road 

infrastructures have necessitated the evolution of further investigative studies in the modeling of bridge 

deteriorations in parallel with developing reliable decision support solutions (Lounis, 2000). 

According to earlier studies conducted by Golabi et al. (1993) and Hawk (1999), incremental degradation of bridge 

components were designed by a static Markov chain model process in which accumulating deficiencies following 

a stress cycle were assumed to depend on original conditions and duration of the cyclic stress loading only. 

However, a study conducted by Madanat et al. (1997) confirmed that most bridge deterioration models were not 

static and proposed descriptive variables that traditional Markov models must take into account to develop more 

realistic models. Furthermore, Lounis (2000) restated the capability of Markov models in predicting the remaining 

service life of a bridge at any time based on existing deterioration conditions.  

Recent bridge information management systems have implemented Markov chains deterioration models which is 

considered a major step forward towards incorporating stochastic-natured deterioration models. Moreover, several 

bridge maintenance aspects and corresponding bridge asset visual inspection standards and procedures endorsed 

the implementation of the Markov chain model which is known to possess restrictive assumptions. Although 

traditional Markov chain models are proven practical and relatively simple to develop, they do possess limitations 

especially at comprehensive project phases and are considered not sufficient for analyzing critical structures when 

it comes to safety matters. The most important limitation, however, is the deployment of elemental condition crisp 

rating systems based on vague performance indicators mainly influenced by the scale of subjectivity involved in 

the visual inspection and not explicitly related to qualitative and quantitative parameters such as material 

properties, stress-strain conditions, and structural behavior. Proceedings and evolutions that tailored the Markov 

chain approach in bridge information management systems were provided in a study published by Frangopol et al. 

(2001). In a later study later, Lounis and Madanat (2002) presented a two-level decision support system that 

amalgamates stochastic deterioration models to enhance efficacy of bridge maintenance management systems. The 

first level management is based on Markov models that pin points perilously damaged structures and predicts 

short- and long-term deterioration and essential maintenance at a bridge-level and network- level. While the second 

level management is based on mechanistic models that target considerably deteriorated bridge structures classified 

from the first level management and assess their integrity, serviceability, and maintenance.  

In an attempt to overcome Markov chain model limitations, reliability-based deterioration models that are based 

on gamma shock models have been researched and recalled.. One study conducted by Pandey and Van Noortwijk 

(2004) investigated a gamma model for temporal structural reliability and presented a relative assessment of 

random variable deterioration models based on the first order reliability methods and temporal stochastic modeling 

based on the gamma process. In their paper, the authors employed a stochastic model to count for both sampling 

and time-dependent variances allied with a structural system deterioration process. A detailed comparison of 

lifetime probability and cumulative density functions as well as survival curves between random variable and 
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gamma process mechanisms were presented. It was concluded that the random variable model overestimates 

probability of remaining life time of a particular structure in the long-run and gamma model provides more 

reasonable estimates of life times which shall enhance the implementation of such stochastic deterioration models 

more often in structure reliability analysis. In another study, Van Noortwijk et al. (2005) examined a gamma 

process model for temporal structural reliability and presented a combined computational method comprising both 

deterioration resistance and variable load modeled as a stochastic gamma process. It is concluded that the time at 

which the deteriorating resistance falls below the fluctuation load cumulative distribution function can be 

formulated as a functional equation which could be solved numerically by applying a series of integration and 

partial derivations to simulate deterioration paths of the generalized gamma process. It was also found that the 

proposed method contributes to the ‘well-fit’ of structural monotonic aging peaks-over-threshold distributions with 

extreme value figures. Furthermore, Van Noortwijk et al. (2007) examined gamma processes and peaks-over-

threshold distributions for time-dependent reliability. In their paper, a comprehensive discussion on the evaluation 

of structural reliability was presented where a methodology that integrated two stochastic processes originating 

from a Poisson process for obtaining the temporal reliability of a particular structural component was proposed. 

Another study conducted by Edirisinghe et al. (2013) presented the application of gamma process for stochastic 

deterioration prediction of building elements derived from discrete condition data obtained from the Victorian 

local government infrastructure asset database. The focus of their study was geared to develop a complex and more 

reliable deterioration prediction system for managing their building assets. Gamma process probability and 

cumulative density functions were derived and plotted in addition to building elements predicted temporal 

deterioration. At the end, the authors concluded with the capability of the proposed gamma process deterioration 

model for forecasting deterioration of building elements with time by incorporating building condition and 

deterioration highly scattered data. Moreover, Reddy and Ramudu (2013) analyzed a numerical arithmetic-

geometric maintenance model for deteriorating system subject to a random environment. Their main goal was to 

develop a replacement model for a particular deteriorating system in a random environment while utilizing an 

arithmetic-geometric approach that maximizes long-run anticipated payoff within a cycle time. System 

replacement average cost rate versus the replacement policy were obtained and plotted where the peak of the curves 

explicitly indicates an optimal replacement policy. At the end, the authors concluded that by varying the parameters 

of the developed model, the optimal number of failure only impacts the long-run anticipated payoff cost per cycle 

time.  

In summary, there have been substantial efforts to apply a gamma model to the perseverance of bridge structures. 

Although advancements in deterioration modeling have influenced bridge MR&R solutions, arguments for its 

application to time-dependent incremental degradations of bridge elements still exist. This study presents the 

proposal of a reliability-based deterioration model based on the deployment of complex quality functions 

originating from the house of quality (HOQ) model. The proposed decision support system is based on quantitative 

and qualitative fuzzy logic scorings that take into account technical, functional, and safety parameters. Moreover, 

such systems are powerful in the manner that they are capable of analyzing single or multiple complicated bridge 

elements of a highway bridge that possess diverse failure modes. 

2. SYSTEM ARCHITECTURE 

The proposed methodology comprises an innovative bridge information management system (BrIMS) based on a 

framework that is capable of integrating bridge gamma stochastic deterioration modeling with a fuzzy-logic 

decision support system. The framework is developed by deploying complex quality functions derived from bridge 

beneficiary-driven parameters and symmetrical triangular fuzzy numbers (STFN’s) to capitulate bridge evaluation 

ambiguities. Furthermore, the proposed system possesses a unique aspect of BrIMS by incorporating diverse 

bridge MR&R solutions into a multi-criteria decision making approach (MCDM) to derive competitive priority 

ratings. A schematic view of the interrelations among the 3D computer-aided design (CAD) solutions with the 

developed bridge deterioration forecast system is illustrated in Fig. 1.  
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FIG. 1: Proposed System Architecture 

As illustrated in Fig. 1, it is important to note that the proposed integrated system is part of an integrated 

preliminary fuzzy-logic decision support system developed earlier by the authors of this study. The following two 

modules:  

 Module 1 – Conceptual Bridge Design 

 Module 4 – Deterioration Forecast 

 

are an integral part of this study whereas the highlighted items that correspond to the following three modules:  
 Module 2 – Fleet Selection  

 Module 3 – Preliminary Cost Estimation 

 Module 5 – Bridge Line of Balance 

 

are not part of this study. The proposed system is developed in an object-oriented .NET framework and undertaken 

by completing the following six main steps:  

1) Data collection of bridge-user-driven parameters. 

2) Implementation of a decision support system that assists the user in making MR&R decisions.  

3) Development of complex quality functions to evaluate bridge users’ relative perception of  

bridge components. 

4) Deployment of a numerical model to evaluate bridge MR&R ratings.  
5) Development of a mean deterioration resistance regression fit where MR&R rankings are determined.  

6) Optimizing and prioritizing maintenance, repair, and replacement alternatives.  

At first, the user inputs importance ratings on bridge components. Following bridge user’s assessment on the 

importance of bridge components on bridge design alternatives, importance perception ratings are determined. 

Afterwards, a bridge users’ competitive matrix is developed, where the probability distribution and corresponding 

measure of entropy of bridge components is determined. Once completed, the user proceeds with inputting a set 

of improvement goals that represent the user’s required improvement in performance of bridge components. 

Following the input of goals, QFD and TOPSIS analyses are undertaken in order to develop priority rankings of 

bridge components. Afterwards, the user is guided to the HOWs scoring input form, which represents bridge users’ 

importance ratings on bridge maintenance, repair, and replacement alternatives (MR&R) based on the output of 
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QFD and TOPSIS analyses on bridge components, Following bridge user’s assessment on the importance of bridge 

components on MR&R alternatives, importance perception ratings are obtained. Afterwards, a bridge users’ 

competitive matrix is developed, where the probability distribution and corresponding measure of entropy along 

with competitive ranking of bridge components is determined. Afterwards, the user inputs the year digit and 

corresponding mean deterioration percentages such that a regression analysis along with the quality of fit 

methodology is deployed. Once completed, the developed system provide the user a recommendation statement to 

reconsider the performance of a bridge component in order to enhance its deterioration resistance capacity, which 

represents a component’s remaining service life. Fig. 2 summarizes the deterioration forecast module process 

flowchart. 

 
FIG. 2: Deterioration Forecast Module Process Flowchart 

As illustrated in Fig. 2, the developed module is implemented in an object-oriented .NET framework and 

undertaken by completing the following five main steps:  

1) Data collection of bridge type and geometric selection imported from Module 1. 

2) Implementation of a decision support system that assists the user in making MR&R decisions. 

3) Development of complex quality functions to evaluate bridge users’ relative perception of bridge 

components.  

4) Deployment of a numerical model to evaluate bridge MR&R ratings. 

5) Prioritizing maintenance, repair, and replacement (MR&R) alternatives. 

 

The flow of geometric information for diverse bridge types and resistance deterioration predictions begins at fuzzy 
logic scorings and ends at the forecasting of bridge component deterioration based on its cost recovery period. 

Throughout the process, the deployment of the technique of preference by similarity to ideal solution (TOPSIS), 

a multi-criteria analytical approach utilized for the selection of the MR&R alternative based on a specified list of 

parameters is undertaken. The MR&R are identified based on performance condition assessments of bridges in 

operational stages and grouped into three main categories as follows; Category (I) is a ‘Maintenance’ category that 

includes the maintenance of a bridge component for an expected extent ranging between 15% to 45% and 

comprising the decisions; ‘Maintenance: S1.M15’, ‘Maintenance: S2.M30’, and ‘Maintenance: S3.M45’; Category 

(II) is a ‘Repair’ category that includes the repair of a bridge component for an expected extent of deterioration 

ranging between 45% to 75% and comprising the decision; ‘Repair: S4.REPA45’, ‘Repair: S5.REPA60’, and 

‘Repair: S6.REPA75’; Category (III) is a ‘Replacement’ category that includes the replacement of a bridge 

component for an expected extent of deterioration ranging between 75% to 100% and comprising the decisions; 

‘Replacement: S7.REPL75’, ‘Replacement: S8.REPL90’, and ‘Replacement: S9.REPL100’. The MR&R 
alternatives are defined as cost representatives of a bridge component. For instance, a maintenance ‘M15’ 

alternative represents ‘15%’of a bridge component’s estimated cost.  
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2.1 Fuzzy Logic Decision Support System 

Due to the scarcity of bridge deterioration data, it is necessary to develop a fuzzy logic scoring system in order to 

assist bridge stakeholders and designers in predicting bridge deterioration at conceptual design stages. Otayek et 

al. (2012) have studied the integration of a decision support system based on a proposed machine technique as part 

of artificial intelligence and neural networks (NN). In their study, the authors recommend continuous and further 

development in decision support systems in an attempt to assist bridge designers in predicting bridge deteriorations 

at conceptual phases. On the other hand, Malekly et al. (2010) have proposed a methodology of implementing a 

quality function deployment (QFD) technique and a technique of preference by similarity to ideal solution 

(TOPSIS). Their methodology is integrated in a novel oriented approach while overcoming interoperability issues 

among the disperse databases. Furthermore, Tee et al. (1988) studied the viability of developing a numerical 

approach based on fuzzy set rules such that the degree of subjectivity involved in evaluating bridge deterioration 

was treated systematically and was incorporated into a systematic knowledge-based system. Liang et al. (2002) 

proposed grey and regression models for predicting the remaining service life of existing reinforced concrete 

bridges. In their study, the fuzzy logic concept was introduced as a methodology for evaluating the extent of 

deterioration of existing bridge structures. Zhao and Chen (2002) proposed a fuzzy logic system for bridge 

designers to help to predict bridge deteriorations based on factors incorporated at the initial design phase. Sasmal 

et al. (2006) recalled earlier studies using fuzzy logic theory and stated that those methodologies were either much 

too simple or too complex so that key support requires considerable time.  

These studies; however, overlooked key issues pertaining to membership functions and other parameters, such as 

priority vectors and mappings, which are fundamental for bridge condition assessments. Therefore, the authors of 

the present study propose an integrated system for deterioration evaluations of bridges, based on fuzzy 

mathematics integrated with an eigen-vector technique and priority ratings. In this study, the proposed system is 

anticipated to be of novelty to BrIMS integrated technologies and possess a great advantage over the diverse 

deterioration forecast algorithms, prototypes, and systems presently used in the bridge construction industry by 

including a fuzzy logic decision support system based on quality functions deployment (QFD) and the technique 

of order preference by similarity to ideal solution (TOPSIS). As a result, competitive priority ratings of bridge 

components alternatives are produced rather than completely including or excluding alternative solutions at the 

conceptual design stage. Fig. 3 illustrates a high-level process of the fuzzy logic decision support system integrated 

with the BrIMS.  

As shown in Fig. 3, the proposed system includes a fuzzy logic decision support that extracts information from the 

3D BrIM tool via a DLL-invoked API method that automatically recalls the parametric enriched object-oriented 

model. For instance, the system provides the user with an option to develop an information module by utilizing 

the fuzzy logic scoring system in order to determine the bridge type based on the deployment of the QFD and 

TOPSIS processes; otherwise, the application automatically extracts data from the BrIM model and presents 

nominations and recommendations of selected bridge type based on technical and functional spans and 

geotechnical attributes. Furthermore, the system is hard-coded to extract all necessary information from the 

assigned model by exporting BrIM input databases via the Industry Foundation Classes (IFC) file format, which 

reduces loss of information during file transmission. After that, the system is objectively developed for bridges 

such that capturing of data displayed in the calling software is conducted by utilizing BrIM objects. Finally, bridge 

element attributes are recalled and organized via a DLL-invoked programming language and incorporated into the 

SQLite database server. 
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FIG. 3: Deterioration Forecast Module Process Flowchart 

2.1.1 Quality Functions 

Conceptual bridge design is found to be significantly influenced by each of the following nine main components: 

(1) approach slab ‘C1’; (2) deck slab ‘C2’; (3) expansion joint ‘C3’; (4) parapet ‘C4’; (5) girder ‘C5’; (6) bearings 

‘C6’; (7) abutment ‘C7’; (8) pier ‘C8’; and (9) foundation ‘C9’. Selection of the components is based on critical 

factors that bridge designers rely upon and bridge users’ perception on the importance of components. Hence, a 9-

point symmetrical triangular fuzzy logic numbers (STFN) ranging from one to nine, with one being very low and 

nine being very high, is adopted for assisting the decision maker in predicting bridge users perception pursuant to 

the main nine bridge components listed above. The scoring system comprises crisp and fuzzy measures when 

uncertainty arises. 

Where for instance, [0,2] indicates the range of fuzziness of the crisp score ‘1’. Similarly, [8,10] represents the 

range of fuzziness of the crisp score ‘9’. Afterwards, bridge users are identified and categorized as follows: (i) 

stakeholders/government; (ii) designers/engineers; (iii) contractors/builders; and (iv) public/residents. Also, the 

following nine common bridge types ‘alternatives’ are identified and incorporated into the database platform for 

QFD analyses: (1) beam bridges ‘W1’; (2) truss bridges ‘W2’; (3) cable-stayed bridges ‘W3’; (4) tied-arch bridges 

‘W4’; (5) arch bridges ‘W5’; (6) suspension bridges ‘W6’; (7) double-decked bridges ‘W7’; (8) movable bridges 

‘W8’; and (9) cantilever bridges ‘W9’. The adopted QFD analytical technology utilized for the selection of bridge 

type is presented in Fig. 4. 
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FIG. 4: Quality Function Deployment Process Flow  

Upon completion of user scorings on the nine bridge components, perception on relative importance ratings of the 

components is determined. In this study, Chan and Wu (2005) numerical methodology is deployed due to its 

efficiency, systematic characteristics, and ease of use in competitive analysis of bridge components selection. Crisp 

and measure forms of expected relative importance ratings are obtained in accordance with Chan and Wu (2005) 

equations (1) and (2):  
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Where; mkg  is a bridge user relative importance perception on a component in ‘crisp’ form, k  is a bridge user,  

mkg~  is a bridge user relative importance perception on a component in ‘fuzzy’ form. In other words,  is the 

average “integer” crisp scoring value of a bridge user on the relative importance of each of the components and 

 is the average “integer” fuzzy scoring value of a bridge user on the relative importance of each of the 

components. Following the determination of relative importance ratings, bridge users competitive comparison 
matrix analysis is developed as per Chan and Wu (2005) equations (3) and (4): 

  99xmkxX            (3) 
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mlk
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
        (4) 

Where; X  is the bridge users comparison matrix, mkx  is a bridge user assessment on mC , mlkx  is a bridge user 

assessment of a bridge alternative on mC , and mC  is a bridge component. Afterwards, the probability distribution 

of each mC  on bridge alternatives is calculated using Chan and Wu (2005) equation (5): 

mkg

mkg~
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mk
mk

x

x
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Where; mkp  is the probability distribution of mC  on bridge alternatives,  is a bridge user assessment on mC  

‘result obtained from equation (4)’, and mx  is the total of bridge users assessment of all bridge alternatives on 

each of mC . Following the determination of probability distribution of mC , its measure of entropy, which is a 

quantification of the expected value of a system with uncertainty in random variables, may be obtained using Chan 

and Wu (2005) equations (6) and (7): 

)ln()(
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mkm ppCE 
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Where; )( mCE  is the measure of entropy by a discrete probability distribution for , 9 is the normalization 

factor that guarantees 1),.....,,(0 21  LpppE , mkp  is the probability distribution of  for the diverse 

bridge alternatives. Higher entropy or ),.....,( 21 Lppp  implies smaller variances and lesser information in a 

probability distribution Lp . At the end, bridge alternatives’ weights on each of the nine  is calculated based 

on Chan and Wu (2005) equation (8): 


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Where; me  is the importance weight of bridge component, , and  is the measure of entropy by a 

discrete probability distribution for . This complex quality function deployment mechanism of assigning 

priorities to competing alternatives is directly related to information theory concept of entropy. Once completed, 

a set of improving goals strategy on each of the bridge components to enhance the bridge alternative deterioration 

resistance performance is defined. The performance goals on the bridge components are identified based on the 9-

point STFN scale as per Chan and Wu (2005) equation (9): 

),,,,,,,,( 987654321 iiiiiiiiii         (9) 

Where; i  is the improvement goal set. It is important to note that the improvement goals must be higher than the 

initial performance rating of a bridge component,  for a bridge alternative, mW . This implies that in case the 

initial rating of a component for a particular bridge alternative is high, the goal set must be higher to maintain its 

rating and enhance the competition amongst bridge alternatives. Otherwise, if the initial rating is lesser, then the 

improvement goal is set to improve the performance of the same and enhance its importance weight. Once 

improvement goals are set, an improvement ratio is calculated as per Chan and Wu (2005) equation (10): 

mk

m
m

x

i
r            (10) 

Where; mr  is the improvement ratio, mi is the improvement goal set, and  is a bridge user assessment on  

‘result obtained from equation (4)’. The competitive rating for a bridge component, , in ‘crisp’ form is obtained 

as per Chan and Wu (2005) equation (11): 
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Where; mf  is the competitive rating,  is the improvement goal set, mg  is a bridge user relative importance 

perception on a component in ‘crisp’ form, and  is the importance weight.  The final importance rating for a 

bridge component, , in ‘fuzzy’ form is obtained as per Chan and Wu (2005) equation (12): 

mmmm egif *~*
~

          (12) 

Where; mf
~

 is the competitive rating in ‘fuzzy’ form,  is the improvement goal set, mg~  is a bridge user relative 

importance perception on a component in ‘fuzzy’ form, and  is the importance weight. Once completed, 

technical measures to expected maintenance, repair, and replacement (MR&R) decisions to the deterioration of 

bridge components are grouped into three main categories as illustrated in Table 1. 

 

TABLE 1: Maintenance, Repair, and Replacement Decisions Versus Extent of Deterioration (%) 

 Extent of Deterioration Category Category Category 

(%) I II III 

15 √ - -  

30 √ - -  

45 √ √ -  

60 - √ -  

75 - √ √ 

90 - - √ 

100 - - √ 

 

As illustrated in Table 1, category (I) is a ‘Maintenance’ category that comprises maintenance of bridge component 

for an expected extent ranging between 15% to 45% and comprising the decisions; ‘Maintenance: S1.M15’, 

‘Maintenance: S2.M30’, and ‘Maintenance: S3.M45’; category (II) is a ‘Repair’ category that comprises repair of 

bridge component for an expected extent of deterioration ranging between 45% to 75% and comprising the 

decision; ‘Repair: S4.REPA45’, ‘Repair: S5.REPA60’, and ‘Repair: S6.REPA75’; category (III) is a ‘Replacement’ 

category that comprises replacement of bridge component for an expected extent of deterioration ranging between 

75% to 100% and comprising the decisions; ‘Replacement: S7.REPL75’, ‘Replacement: S8.REPL90’, and 

‘Replacement: S9.REPL100’. It is important to note that the proposed categories and extent of deterioration is for 

illustrative purposes and can be customized dependent upon the bridge location and the regional weather forecast. 

Similar to the determination of competitive comparison matrix analysis on bridge components, user comparison 

matrix analysis on technical measures for expected deterioration in ‘crisp’ and ‘fuzzy’ forms respectively are 

determined as per Chan and Wu (2005) equations (13) and (14):   

  910xmnrR            (13) 

  910
~~

xmnrR            (14) 

Where; R  is the comparison matrix on technical measures, mnr  is a bridge user technical measure assessment on 

 in ‘crisp’ form, mnr~  is a bridge user technical measure assessment on  in ‘fuzzy’ form, and  is a bridge 

component. Hence, the technical rating for a measure, mnt , on a bridge component,  in ‘crisp’ form is obtained 

as per Chan and Wu (2005) equation (15): 
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Where; mnt  is the technical rating on a measure in ‘crisp’ form,  is the competitive rating ‘result obtained from 

equation 11’ in ‘crisp’ form, and  is a bridge user technical measure assessment on  in ‘crisp’ form. The 

technical rating for a measure, , on a bridge component,  in ‘fuzzy form is obtained as per Chan and Wu 

(2005) equation (16): 

10....,2,1;~*
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9

1




nwhererft
m

mnmmn      (16) 

Where; mnt
~

 is the technical rating on a measure in ‘fuzzy’ form, mf
~

 is the competitive rating ‘result obtained 

from equation 12’ in ‘fuzzy’ form, and mnr~  is a bridge user technical measure assessment on  in ‘fuzzy’ form.  

Afterwards, the probability distribution of each  on bridge deterioration technical measures is calculated using 

Chan and Wu (2005) equation (17): 
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Where; mnp  is the probability distribution of  on technical measure, mnx  is a bridge user assessment on  

‘result obtained from equation (4)’, and  is the total of bridge users assessment of all technical measure on each 

of . Following the determination of probability distribution of , its measure of entropy, which is a 

quantification of the expected value of a system with uncertainty in random variables, may be obtained using Chan 

and Wu (2005) equations (18) and (19): 
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Where;  is the measure of entropy by a discrete probability distribution for , 10 is the normalization 

factor that guarantees , mnp  is the probability distribution of  for the diverse 

technical measures. Higher entropy or  implies smaller variances and lesser information in a 

probability distribution . At the end, bridge technical measure weights on each of the nine  is calculated 

based on Chan and Wu (2005) equation (20): 
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Where; te  is the importance weight of technical measure, and  is the measure of entropy by a discrete 

probability distribution for . 

2.2 Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) 

Upon determination of technical measure weights, a multi-criteria decision making approach, TOPSIS, is 

undertaken. This approach takes into account the following criteria: (i) qualitative benefit; (ii) quantitative benefit; 

and (iii) cost criteria. As part of TOPSIS analysis, the following two most contradicting alternatives are surmised: 

(a) ideal alternative in which the maximum gain from each of the criteria values is taken; and (b) negative ideal 

alternative in which the maximum loss from each of the criteria values is taken. Towards the end, TOPSIS opts in 
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for the alternative that converges to the ideal solution and opts out from the negative ideal alternative. Prior to 

undertaking the multi-criteria decision making approach, a TOPSIS matrix is created based on equation (21): 

 ijxX            (21) 

Where; X  is the bridge users comparison matrix; and ijx is an “m x n” matrix; where, ‘m’ represents the technical 

measures and ‘n’ represents the bridge components that display the score of bridge user ‘ i ’on bridge component 

‘ j ’. TOPSIS analysis comprises the following consecutive five steps: (i) normalized decision matrix; (ii) 

weighted normalized decision matrix; (iii) ideal and negative ideal solutions; (iv) bridge components separation 

measures; and (v) relative closeness to ideal solution as shown in Fig. 5.  

 

 
FIG. 5: TOPSIS Process Flow  

In this study, Hwang et al. (1993) numerical methodology is deployed based on its direct applicability to ranking 

bridge MR&R priorities and proven reliability. Generating the normalized decision matrix is intended to convert 

various parametric dimensions into non-dimensional parameters to allow for contrasting among criteria using 

Hwang et al. (1993) equation (22): 
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Where; ijr is the normalized scoring value of bridge users on bridge components. Afterwards, the development of 

a weighted decision matrix is obtained by multiplying the importance weights determined from equations (8) and 

(20) by its corresponding column of the normalized decision matrix obtained from equation (22) through the 

deployment of Hwang et al. (1993) equation (23): 
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Where; ijv  is the weighted normalized element of the TOPSIS matrix, and iw  is the final importance weight,  

is the importance weight of technical measure, and  is the importance weight of bridge component. Afterwards, 

the ideal and negative ideal solutions are determined using Hwang et al. (1993) equations (24) and (25): 
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Where; 
*A  is the positive ideal solution; where  ijj vv max

*
  if ;Jj minimum ijv  if 

'Jj  ; 
'A  is the 

negative ideal solution where  ijj vv min
'
  if  maximum ijv  if 

'Jj  ; where J is the set of positive 

attributes or criteria; and 
'J  is the set of negative attributes or criteria. Afterwards, bridge competitors’ separation 

measures from ideal and negative ideal solutions are calculated by using Hwang et al. (1993) equations (26) and 

(27): 
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Where; 
*

iS is the separation from the positive ideal solution; 
'

iS is the separation from the negative ideal solution; 

and i  is the number of bridge competitors. Finally, relative closeness to ideal solution is calculated by using 

Hwang et al. (1993) equation (28): 
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Where;  is the relative closeness to positive ideal solution. The highest-ranked bridge component for MR&R 

priorities is the one with a corresponding  closest to the value of unity ‘1’.  

2.3 Gamma Deterioration Model 

Typically, bridge deteriorations are mainly caused by chemical and/or physical mechanisms that significantly 

affect infrastructure material characteristics and subsequent components. In this study, the deterioration of an aging 

bridge infrastructure is typically modelled as a function of its resistance capacity. The deterioration function is 

defined as per Noortwijk et al. (2007) in equation (29): 

)()( ko tRRtD           (29) 

Where )(tD  is the deterioration function, oR  is the initial resistance, and )( ktR is the resistance at time kt . The 

deterioration function is assumed to be an ascending-order process with independent deterioration time intervals. 

For instance, suppose a sequence of shock load effects occur at discrete times such that the overall bridge service 

period is divided into independent time intervals. Hence, the resistance deterioration function, )( ktR , at time kt , 

is represented as equations (30) and (31) from Wang et al. (2015): 
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Where  is the resistance deterioration function, oR  is the initial resistance; )( ktD  is the deterioration at 

time kt ; and ),(~ GaGi  denotes a gamma function with the shape parameter, , and the scale parameter,

. It is important to note that equation (30) is a descending-order process with a corresponding mean and variance 

calculated as per Wang et al. (2015) in equations (32-a), (32-b), and (32-c): 
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Where  is the mean; )( ktD  is the deterioration at time ;  is the variance,  i*  is the deterioration 

parameter;  is the scale parameter; and   is the rate of deterioration. It is important to note that the scale and 

shape parameters presented herein are assigned as deterioration parameters of random variables and are determined 

independently.  

2.4 Determination of Deterioration Function 

Typically, bridge element conditions are evaluated by conducting site inspections based on municipal and/or 

national standards. These inspections contribute significantly towards the resistance deterioration condition of 

bridge elements and reflect their existing state which may be predicted as a ratio of the existing deterioration 

resistance to its initial resistance as per Wang et al. (2015), in equation (33): 

o

k
k

R

R
tD )(           (33) 

Where  is the deterioration function at time ; kR  is the current resistance deterioration function at time 

; and  is the initial resistance. The existing resistance deterioration function , and the initial resistance 

, are typically estimated according to bridge design manuals and national code standards. Bridge deterioration 

resistance is rarely assessed due to the high costs incurred, which implies that very little or no information on 

existing bridge resistance is available. Hence, this study proposes a numerical method to estimate deterioration 

parameters based on previous data of similar bridges.  

2.4.1 Estimation of Deterioration Parameters 

In order to estimate the deterioration parameters ( ) and ( ), the shape and scale deterioration function  

presented in equation (33) will be utilized to determine the deterioration of similar existing bridges k , with a 

corresponding service life of kttt ,...., 21 . By substitution, the deterioration function is presented as per Wang et 

al. (2015) in equation (34): 

 )()(1 ii ttD   kiwhere ....,2,1;       (34) 

Where )( itD  is the deterioration at time it ;  and  are the random shape and scale and deterioration 

parameters, and   is the rate of deterioration. By taking the logarithmic for both sides of equation (34), the 

deterioration function is expressed as per Wang et al. (2015) in equation (35): 

)ln()ln())(1ln( ii ttD          (35) 

Now, the deterioration parameters  and  can be estimated graphically by utilizing a regression analysis of 

previous similar bridges’ deterioration data; where the slope  is the ratio of   ))(1ln( itD  to )ln( it  and the 

y-intercept is   . In equation (32-b), the variance does not account for the dynamic nature of the temporal 

deterioration function. Hence, an average variance formulation is presented as per Wang et al. (2015) in equation 

(36): 
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Where ̂  and ̂  are the estimated shape and scale deterioration parameters respectively; ̂  is the estimated rate 

of deterioration;  is the deterioration at time ; and )(ˆ
itD  is the estimated deterioration at time . 

3. SYSTEM IMPLEMENTATION AND VALIDATION 

 
The implementation of the decision support system is undertaken in two main steps; i) perturbation; and ii) quality 

evaluation. The algorithm is implemented as a probabilistic distribution function such that a random deterioration 

variable, D , possesses a standard Gamma distribution of a distinguished shape parameter,  , and scale parameter, 

 , defined as per Johnson et al. (1995) in equation (37):  
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Where x  is the deterioration parameter,   is the shape parameter,   is the scale parameter, and  is the gamma 

function defined as per Johnson et al. (1995) in equation (38):  
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In this study, a gamma model with shape and scale parameters greater than zero is assumed to be a continuous 

stochastic model if the following conditions are satisfied: i) probability of 0)0( D is unity; ii) )(tD comprises 

independent deterioration increments; and iii) increments follow a gamma function such that the mean and variance 

are determined as per Johnson et al. (1995) in equation (39): 

          )(tD  and   22 )(  tD              (39) 

Where   is the mean, 
2  is the variance,   is the shape parameter, and   is the scale parameter.  

3.1 Quality of Fit 

Although regression analysis is capable of modeling a data scatter, significant variance may be noticed in the 

manner it represents the actual data value.  Testing the quality of fit of a regression analysis trend line is typically 

conducted by either of the two following procedures: 1) heuristic, where manual inspection is conducted in parallel 

with an error minimization procedure; or 2) non-heuristic procedure, where hypothetical procedures such as the 

Chi-square test are deployed. In order to ease the use of regression analysis, the manual inspection of trend line 

fitting with an error minimization procedure is adopted since such fittings are automatically generated with 

advanced modeling software available in the market. The procedure is based on adjusting the fitted trend line to 

minimize the error. The sum (E) of the squares of differences between the actual and proposed trend line fit is then 

minimized to obtain the magnitude of adjustment factor that results in the best fit with the actual data scatter. The 

error minimization procedure is identified as per equation (40): 
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Where minE  is the minimized error, ni ...1  is the number of actual data scatters, iactd ,  is the actual data value 

at the thi  location, 
iprod ,  is the proposed data value at the thi  location, and a  is a scaling factor to be applied to 
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the proposed trend line. It is noted that the bracketed terms in equation (20) have been normalized with respect to 

the average of actual data, iactd ,  as per equation (41): 
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Towards the end, it is important to note that the proposed trend line fit contributes towards an accurate estimation 

of the shape and scale deterioration parameters such that error tolerances are respected.  

3.1.1 Probabilistic Matrix Factorization 

As part of enhancing dataset quality, collaborative filtering algorithms to determine interrelationships amongst 

deterioration parameters are investigated. The matrix factorization approach is found to be the most effective 

amongst the examined techniques due to its latent feature in determining the underlying correlations amongst 

independent variables. In this study, a probabilistic matrix factorization technique is deployed to predict 

deterioration datasets of existing bridges while overcoming biased and over-fitted values. The model-based 

approach is undertaken by the following four main processes: (1) singular value matrix decomposition (SVMD); 

(2) data normalization; (3) factorization; and (4) regularization. Firstly, the matrix decomposition process is 

deployed to predict resistance deterioration values, )]([ tg , of a bridge component as per Takács et al. (2008), 

in equation (42): 
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Where ijr̂  is the predicted resistance deterioration; 
T

ip is the bridge preference factor vector; jq  is the resistance 

deterioration factor vector; ikp is the bridge preference factor matrix; and kjq is the resistance deterioration factor 

matrix such that the dot product of ikp and kjq approximates the ijr̂ . Afterwards, a gradient descent technique 

is deployed in order to determine the bridge preference and resistance deterioration factor vectors
T

ip  and jq  

respectively. The error between the predicted and actual resistance deterioration value to obtain a local minima of 

each ‘bridge-resistance deterioration’ pair is determined as per Takács et al. (2008) as in equation (43): 
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Where; ije2
 is the squared error difference; ijr  is the actual resistance deterioration; ijr̂  is the predicted resistance 

deterioration; ikp is the bridge preference factor matrix; and kjq is the resistance deterioration factor matrix. It 

is important to note that the squared error of the predicted and actual resistance deterioration data is implemented 

in order to account for over- or under-estimated values.  

3.1.2 Error Minimization 

In order to minimize the error value, a modification to ikp and kjq matrices is required to determine the value of 

the gradient at its present state. Hence, a differentiation of equation (43) with respect to ikp is deployed as per 

Takács et al. (2008) in equation (44): 
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Where ije2
 is the squared error difference; ije is the error difference; ijr  is the actual resistance deterioration; ijr̂  

is the predicted resistance deterioration; ikp is the bridge preference factor matrix; and kjq is the resistance 
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deterioration factor matrix. Upon determination of the gradient descent value, the differentiation of equation (23) 

is rearranged as per Takács et al. (2008) in equation (45): 
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Where ikp' is the differentiated bridge preference factor matrix; kjq'  is the differentiated resistance deterioration 

factor matrix; ije2
 is the squared error difference;   is the gradient descent rate factor; ije  is the error difference; 

ikp is the bridge preference factor matrix; and kjq is the resistance deterioration factor matrix. It is important to 

note that the   factor in equation (45) is the tolerance value that defines the rate of gradient descent approaching 

the minimum. In order to avoid excessive oscillations and bypassing the local minima, a modification factor  , 

with a value of 0.0002 is assumed. In this study, the error minimization procedure is proposed for the bridge-

resistance deterioration pairs. For instance, let N  be a finite ordered set of training data in the form of ( kjq ,

ikp , ijr̂ ), the error, ije , for each iterative dataset will be minimized when the connotations amongst the attributes 

is learnt. Afterwards, the error minimization process is concluded when the iteratively determined error converges 
to its minimum as per Takács et al. (2008) in equation (46): 
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Where E  is the minimized error value; kjq is the resistance deterioration factor; ikp is the bridge preference 

factor matrix;  ijr̂  is the predicted resistance deterioration; and ijr  is the actual resistance deterioration.   

3.1.3 Regularization 

In order to avoid dataset over-fitting, a regularization process is implemented by incorporating a parameter factor 

 , to regularize the magnitudes of the bridge-deterioration resistance factor vectors. Also, a regularization 

parameter   with a value of 0.02 is assumed in order to avoid large number approximations and achieve a better 

approximation of the bridge deterioration resistance capacity. The squared-error difference between the predicted 

and actual resistance deterioration value to obtain a local minima of each ‘bridge-resistance deterioration’ pair is 

rearranged as per Takács et al. (2008) in equation (47): 
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Where ije2
 is the squared error difference; ijr  is the actual resistance deterioration; and ijr̂  is the predicted 

resistance deterioration; ikp is the bridge preference factor matrix; and kjq is the resistance deterioration factor 

matrix. Upon determination of the squared error difference, the differentiation of the equation (43) is rearranged 

as per Takács et al. (2008) in equation (48): 
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Where ikp'  is the differentiated bridge preference factor matrix; kjq'  is the differentiated resistance deterioration 

factor matrix; ije2
 is the squared error difference;   is the gradient descent rate factor;   is the regularization 

parameter; ije  is the error difference; ikp is the bridge preference factor matrix; and kjq is the resistance 

deterioration factor matrix. 

3.2 System Validation 

To validate the workability of the proposed system, a case study of a bridge in Ottawa, Canada composed of a 

concrete box-girder with a total span of 200 ft. supported with a central interior bent at 100 ft. is developed in 

CSiBridge as illustrated in Fig. 6. The challenge underlying the system validation is to provide priority ranking to 

MR&R decisions for the diverse bridge components. 

 

 
FIG. 6: Conceptual Bridge Design Information Model  

Prior to inputting project related data into BrIM tool, the following list summarizes main parametric design 

assumptions: 1) Abutment: skewed at 15 degrees and supported at bottom girder only; 2) Pre-stressing: 4 nos. 5 

in2 tendons with a 1,080 kips capacity each; 3) Interior bent: 3 nos. 5 ft square columns; 4) Deck: parabolic 

variation ranging from 5-10 ft in nominal depth; 5) Pile cap: 3 nos. 13’ x 13’ x 4’; and 6) Pile: 9 nos. 14” dia. steel 

pipe filled with concrete reinforced with 8 nos. of #9 reinforcement bars at each pile cap. It is important to note 

that the aforementioned assumptions are made based on normal job conditions. However, if geographical 

constraints are encountered, these factors may increase or decrease accordingly. For example, if the job terrain 

encountered is rough, substructure concrete and pile design factors will increase and subsequently significantly 

influence overall project cost. The systematic procedure of the integrated system is demonstrated in a step-by-step 

process in Figs. 7 through 12 which present snapshots of the proposed system modules. Fig. 6 presents the 

integrated deterioration gateway module. 
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FIG. 7: Deterioration System Gateway Module 

Once the user selects the desired deterioration module, the system displays a module within the activity main 

module where the user inputs importance rating on bridge components as shown in Fig. 8. 

 

 
FIG. 8: Bridge User Importance Rating on Bridge Components 

Following bridge user’s assessment on the importance of relative bridge components on bridge alternatives, 

relative importance perception ratings in crisp and fuzzy forms are obtained according to equations (1) and (2). 

Fig. 9 illustrates the rating for the Stakeholders/Government; whereas similar rating is conducted for the other 

users.  
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FIG. 9: Relative Importance Rating on Bridge Components 

A sample of the developed algorithm used to extract the Stakeholder/Government assessment and relative 

importance ratings is shown below. 

{ 

private void frmQualitFunctionDeployment_Load(object sender, EventArgs e) 

       {    //this.macTrackBar1.Height = 91; 

tblStakeholders_Measue = FC.Con.GetDataTable("Select * from 

OfdReportBeneficiaries order by [Whats]"); tblStakeholders_Measue.TableName = 

"tblStakeholders_Measue"; 

tblStakeholders_Number = tblStakeholders_Measue.Copy(); 

tblStakeholders_Number.TableName = "tblStakeholders_Number"; 

tblStakeholders_Fuzzy = tblStakeholders_Measue.Copy(); 

tblStakeholders_Fuzzy.TableName = "tblStakeholders_Fuzzy"; 

              dataGridView1.DataSource = tblStakeholders_Measue; 

public void RelativeImportance(ref DataTable tbl1, ref DataTable tbl1_1, DataTable tblNumber, 

DataTable tblFuzzy) 

       {  List<decimal> RelImp = new List<decimal>(); 

          List<decimal> RelImp1 = new List<decimal>(); 

 

          for (int i = 0; i < tblNumber.Rows.Count; i++) 

          {   DataRow dr = tbl1.NewRow(); 

              dr[0] = tblNumber.Rows[i][0]; 

              tbl1.Rows.Add(dr); 

} 

 

Afterwards, a bridge users’ competitive matrix is developed based on equations (3) and (4). Then, the probability 

distribution and corresponding measure of entropy of bridge components is determined by using equations (5) 

through (8) as shown in Fig. 10. 
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FIG. 10: Bridge Users Competitive Matrix on Bridge Components 

Once completed, the user can proceed with inputting a set of improvement goals for bridge components as 

illustrated in Fig. 11. 

 

 
FIG. 11: Improvement Goals for Bridge Components  

Following the input of goals, the user can proceed with TOPSIS operations by clicking on TOPSIS matrix to 

develop priority rankings of bridge components as shown in Figs. 12 and 13.  

 

 
FIG. 12: TOPSIS Analysis Module  
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FIG. 13: Final Ranking of Bridge Components  

As shown in Fig. 13, bridge components ‘C1.Approach Slab; ‘C5.Girder’; and ‘C4.Parapet’ possess maximum 

weights followed by ‘C8.Pier; ‘C3.Expansion Joint; ‘C9.Foundation; and ‘C2.Deck Slab; while, ‘C6.Bearings and 

‘C7.Abutment’ components possess the minimum weights. Typically, bridges are designed while taking into 

account the following main criteria: (1) Girder; (2) Pier; and (3) Foundation. However, by deploying the complex 

quality function technique, it is determined that incorporating additional bridge users, such as contractors/builders 

and public/residents, influence bridge components importance weights; and hence, explicitly implying a more 

realistic and practical decision support system. With approach slab and girder components being the most 

expensive and contribute significantly towards construction costs, it has been determined that its importance 

weight is at the highest rank. On the other hand, the bearings and abutment components are determined to possess 

the least importance weight. Typically, bridge piers and foundation have been ranked first at the bridge conceptual 

design stage since they are the major components for bridge projects. However, in this study, bridge pier and 

foundation are ranked second based on bridge users’ relative importance perception scorings. This implies that 

bridge users did not anticipate deterioration on piers to affect bridge performance as opposed to the approach slab, 

girder, and parapet components. A sample of the developed algorithm used to determine bridge components 

TOPSIS rankings is shown below. 

 
{ 

for (int i = 0; i < tblMatrix.Rows.Count; i++) 

  {   decimal Sum_P11 = 0; 

  for (int Cols = 1; Cols < tblMatrix.Columns.Count; Cols++) 

    {  if (Cols < 10) 

        {   if (Val(tblMatrix.Rows[i][Cols].ToString()) != 0) 

          {  decimal p_11 = Math.Round(Val(tblMatrix.Rows[i][Cols].ToString()) / 

Val(tblMatrix.Rows[i][10].ToString()), 4); 

p_11 = Math.Round(p_11 * (decimal)Math.Log((double)p_11), 4); 

  Sum_P11 += p_11; 

           } 

        } 

              else 

tblMatrix.Rows[i][Cols] = Math.Round((-1 * Sum_P11) / (decimal)Math.Log(9), 4);   

     } 

  } 
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   decimal sum = tblMatrix.AsEnumerable().Sum(x => x.Field<decimal>(10)); 

   foreach (DataRow dr in tblMatrix.Rows) 

   { 

      if (Val(dr[10].ToString()) != 0) 

      dr[10] = Math.Round(Val(dr[10].ToString()) / sum, 2);  //e1 

   } 

      return tblMatrix; 

} 

Following the determination of components rankings, the user is guided to the HOWs scoring input form where 

the user inputs importance rating on bridge maintenance, repair, and replacement alternatives as shown in Fig. 14. 

 

 
FIG. 14: Bridge User Importance Rating on MR&R Alternatives 

Following bridge user’s assessment on the importance of relative bridge components on bridge MR&R 

alternatives, relative importance perception ratings in crisp and fuzzy forms are obtained according to equations 

(1) and (2). Afterwards, a bridge users’ competitive matrix is developed based on equations (3) and (4). Then, the 

probability distribution and corresponding measure of entropy along with competitive ranking of bridge 

components is determined by using equations (5) through (8) and (11) respectively as shown in Fig. 15.  

 

 
FIG. 15: Bridge Components Competitive Matrix on MR&R Alternatives 

It is important to note that improvement goals to evaluate the competitiveness rating amongst bridge components 

for diverse bridge type alternatives are set for each component. Accordingly, corresponding improvement ratios 

and competitive ratings are determined. In comparison with Fig. 10, bridge component ‘C1’ possesses the second 

highest importance weight and competitive rating as opposed to ‘C7’ which possess the first ranking from an 

importance standpoint; however, ‘C5’ had dropped to the seventh ranking in terms of competitiveness. A similar 

analogy is observed for the other bridge components; such as ‘C3’and ‘C4’. Once completed, a TOPSIS matrix is 
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developed based on equation (21). Afterwards, normalized decision and weighted matrices are constructed as per 

equations (22) and (23) respectively. Next, the determination of positive and negative ideal solutions is undertaken 

as per equations (24) and (25) respectively and set as the reference datum. Towards the end, separations from 

positive and negative ideal solutions are obtained as per equations (26) and (27) respectively. Finally, TOPSIS 

relative closeness to ideal solution decision matrix is obtained according to equation (28) with priority ratings as 

illustrated in Fig. 16. 

 

 
FIG. 16: Final Ranking of Bridge MR&R Alternatives 

As illustrated in Fig. 16, ‘C1.Approach Slab’ is the bridge component that requires further consideration at the 

conceptual design stage. Besides that, the MR&R solution ‘S1.M15’, which implies the maintenance solution when 

the approach slab component extent of deterioration is at 15%, is the most favorable. On the other hand, ‘REPA60’; 

which implies the repair solution when approach slab component extent of deterioration is at 60%, is the MR&R 

solution with the second rank. Based on the afore-mentioned, it is shown that bridge users have no preference to 

maintenance works when the approach slab extent of deterioration exceeds 15%. Furthermore, the deterioration 

resistance capacity of the approach slab must be reconsidered at the conceptual design stage in order to withstand 

a 60% extent of deterioration. Once completed, a deterioration model for each of the bridge components is 

necessary to predict their time-dependent deterioration behavior. Hence, mean values of the resistance function 

for the bridge ‘approach slab’ is obtained from previous similar bridges at diverse years throughout their service 

life. Table 2 summarizes approach slab mean deterioration resistance data at diverse years. 

TABLE 2: Approach Slab Mean Deterioration Resistance Data at Diverse Years 
    

Time, t 

(years) 

Bridge 1* 

µ[g(t)] 

(%) 

Bridge 2* 

µ[g(t)] 

(%) 

Bridge 3* 

µ[g(t)] 

(%) 

11 - 20.3 11.0 

12 26.2 41.2 12.8 

13 21.4 - 10.3 

14 24.3 24.4 - 

15 - 38.3 22.4 

16 25.7 23.8 13.4 

17 - 26.8 16.4 

18 10.4 27.6 15.8 
19 26.2 - 15.5 

20 - 33.8 - 

21 - 34.4 19.1 

22 17.4 48.3 - 

23 - 34.5 19.8 

24 - 39.2 22.3 

25 44.1 50.3 29.4 

*Source: Ministry of Transportation, Highway and Bridges, Ontario  
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Upon obtaining mean resistance data, the user can then proceed with mean resistance deterioration module as 

shown in Fig. 17.  

 

 
FIG. 17: Mean Resistance Deterioration Module 

 

Afterwards, the user inputs the year and corresponding mean deterioration percentages such that a regression 

analysis along with the quality of fit methodology is deployed as illustrated in Fig. 18.  

 

 
FIG. 18: ‘Approach Slab’ Regression Analysis at 15% Deterioration 

 

As shown in Fig. 18, a probabilistic matrix factorization process is deployed to avoid biased and over-fitted values. 

The proposed technique predicts missing data from Table 2. The predicted data is plotted in a scatter fit where a 

regression analysis is conducted in order to determine the best of fit. Based on equations (38) and (39), the 

deterioration parameters,  and , are estimated to be 1.1944 and  x  = e-4.7878 = 0.00833 respectively; 

where  and  are determined as per equation (40) and equal to 0.0085 and 0.978 respectively as per the 

minimized error-fitted trend line. Once completed, the proposed system presents a recommendation statement to 

̂ ̂ ̂ ̂
̂ ̂
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reconsider the performance of the approach slab at the conceptual design stage in order to enhance its 

corresponding deterioration resistance capacity at the age of 9 years as shown in Fig. 18. A sample of the developed 

algorithm used to determine bridge component deterioration resistance capacity and regression analysis is shown 

below. 

{ 

 double[,] test = new double[dataGridView1.RowCount, dataGridView1.ColumnCount - 1]; 

 for (int x = 0; x < dataGridView1.RowCount; x++) 

   { 

    for (int y = 0; y < dataGridView1.ColumnCount - 1; y++) 

       { test[x, y] = double.Parse(dataGridView1.Rows[x].Cells[y + 1].Value.ToString()); 

   } 

} 

NonnegativeMatrixFactorization Test = new  

NonnegativeMatrixFactorization(test, dataGridView1.ColumnCount - 1); 

double[,] actual = Matrix.Multiply(Test.LeftNonnegativeFactors, 
Test.RightNonnegativeFactors); 

   for (int x = 0; x < dataGridView1.RowCount; x++) 

     {for (int y = 0; y < dataGridView1.ColumnCount - 1; y++) 

          { if (actual[y, x]>1) 

             { Random random = new Random(); 

               var next = random.NextDouble(); 

               actual[y, x]=  (next * (0.999)); 

             } 

 dataGridView1.Rows[x].Cells[y + 1].Value = Math.Round(actual[y, x],2); 

 } 

             

string AnticipatedCost="0.00" ; 

lbBetaValue.Text = "Beta = " + Math.Round(decimal.Parse(Result[0,3].ToString()),4); 

LbKValue.Text = "K = " + Math.Round(decimal.Parse(Result[0, 4].ToString()),4); 

LbGammaValue.Text =  "Gamma = " + Math.Round(decimal.Parse(Result[0, 5].ToString()),4); 

           // LbTimeValue1.Text = "Time of Interference = " + Result[0, 6].ToString(); 

LbTimeValue2.Text =  Math.Round(decimal.Parse(Result[0, 7].ToString()),2).ToString(); 

 

if (Properties.Settings.Default.ReconsiderValue.ToLower() == "approach slab") 

            { 

AnticipatedCost = (Math.Round(Properties.Settings.Default.ApproachSlabValue * CostFactor, 
2)).ToString(); 

            } 

textBox4.Text = "Reconsider " + Properties.Settings.Default.ReconsiderValue + " Deterioration 
Resistance Capacity at " + LbTimeValue2.Text + " Years \r\n"  + "Anticipated Cost $ " + 
AnticipatedCost; 

} 
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4. DISCUSSION AND CONCLUSION 
The proposed system presented herein is capable of forecasting bridge components elemental degradation at the 

conceptual design stage where very little or no available information about a bridge project is available. However, 

the results presented herein are intended for life cycle cost analysis and may be incorporated for allocating 

preventative maintenance budget at the conceptual design stage of a bridge project with an anticipated accuracy 

level ranging between a minimum of -15% to a maximum of +15% approximately Furthermore, future studies 

may utilize the findings of this study to enhance the performance of bridge components. In this study, the case 

study presented herein is used to validate the accuracy of the proposed system; where the results obtained are 

verified with findings of similar bridges and shared with experienced qualified asset managers and found to be of 

acceptable form. One limitation of the proposed system; however, underlies the shortage of similar bridges 

deterioration resistance data which could significantly affect the predicted regression fit and corresponding life 
cycle cost analysis. Towards the end, the forecasted bridge deteriorations are compared to the actual bridge 

deteriorations and found to be within a percentage difference ranging from approximately 10 to 15%, as illustrated 

in Table 3.  

 

TABLE 3. Comparison of Forecasted Bridge Maintenance Deterioration Results  

Year 

System  

Data 

(%) 

Actual  

Data* 

(%) 

Percentage 

Difference 

(%) 

5 4.5 5.2 13.5 

6 9.4 10.7 12.1 

7 12.6 14.7 14.3 

8 13.7 16.2 15.4 

9 15.3 17.1 10.5 

*Source: Ministry of Transportation, Highway and Bridges, Ontario 

Prior to comparison of results, it is important to note that the discrepancy between the results is due to the multiple 

assumptions made as well as to the availability of deterioration data for similar bridge projects. For instance, 

deterioration forecast is based on moderate weather conditions. If severe conditions occur, the forecasting result 

would be instantly affected. Also, the deterioration forecast is estimated based on a probabilistic matrix 

factorization approach. The range of variation in maintenance deterioration results is somehow acceptable at the 

conceptual design stage since the overall information pertaining to the project is neither fully defined nor detailed. 

Overall results show that the accuracy of the system varies depending on: 

1. Subjectivity, 

2. Methodology, 

3. Project definition,  
4. Weather conditions, and 

5. Availability of historical data for similar bridges. 

In this study, an integrated fuzzy logic decision support system with bridge information management system 

(BrIMS) in order to assist bridge stakeholders and engineers/designers predict bridge MR&R decisions is 

proposed. Comparative analyses of diverse bridge components are conducted utilizing complex QFD and TOPSIS 

systematic approaches to assist users in predicting MR&R decisions at the conceptual design stage. The proposed 

system is then validated through a case study and is presently under further development in a .NET framework. 

When comparing practical results obtained to existing design guidelines, it is the found that the proposed system 

is capable of providing the user with recommendation statements to enhance the performance of bridge component 

at a particular year throughout its recovery period. Furthermore, the MR&R alternatives are defined as cost 

representatives of a bridge component. In this study, practical results of components’ deterioration forecasts fall 

within Class 3 of the AACE International Cost Estimate Classification System with an accuracy range of 10% to 

30% which is an improvement to bridge components’ deterioration forecast at the conceptual design stage that 

typically fall within Class 4 with an accuracy range of 20% to 50%. This indicates that the system may be utilized 
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to enhance a bridge component deterioration resistance capacity for better performance in terms of maintenance, 

repair, and replacement costs despite achieving the required integrity and soundness of a bridge component in 

accordance with existing design guidelines.  

Furthermore, the proposed system is found to possess an advantage over existing decision support algorithms and 

deterioration forecast applications known to the industry by including the following distinguishing features: 

 Developing an integrated stand-alone all-in-one system capable of providing the user with 

recommendations for bridge components MR&R alternatives based on a combination of decision support, 

probabilistic matrix factorization, and deterioration forecast at the conceptual design stage.  

 Facilitating the interoperability and compatibility among the diverse modules, sub-modules and database 

resources.  

 Applicability of the proposed system for the following list of bridge categories anywhere around the 

globe: (1) beam bridges; (2) truss bridges; (3) cantilever bridges; (4) arch bridges; (5) tied-arch bridges; 

(6) suspension bridges; (7) cable-stayed bridges; (8) movable bridges; and (9) double-decked bridges 

regardless of the differences noted in design codes among bridge asset management authorities as system 

databases presented in this study are designed in such a way that they may be customized to suit 
accordingly. 

 Implementing the TOPSIS technique for BrIM model to assist in prioritizing preventative maintenance, 

repair, and replacement decisions along with the deployment of complex cyclic gamma shock models for 

prediction of bridge temporal deteriorations at the conceptual design stage. 

Given the scarcity of studies on integrations of fuzzy logic decision support systems with bridge information 

management systems, the authors are conducting further studies in that field to include lifecycle cost analysis of 

bridge components. Furthermore, more attention is focused towards the effect of incorporating complex quality 

functions on prioritizing MR&R decisions for bridge components. The authors are presently working on the 

expansion of the probabilistic and numerical model databases of solutions, which is an important step towards 

developing rational design rules for bridge components. 

Finally, it is concluded that the proposed system possesses design and prediction limitations pertaining to complex 

and combined bridge sub- and super-structure designs. It is necessary to mention that the proposed system is 

developed as a validation tool that may be utilized to predict and prioritize MR&R decisions to components for 

diverse bridge alternatives. The proposed system may be utilized in the design of bridge projects compiled with 

BrIMS integration. This capability provides the system a great advantage over other management information 

algorithms, prototypes, or models published in the literature. Also, the results presented in this study are anticipated 

to be of major significance to the bridge construction industry and would be a novel contribution to advancements 

in BrIMS integrations with deterioration forecast at the conceptual design stage of bridge projects. 
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