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SUMMARY: Accurate estimate of onsite productivity of earthmoving operations is essential for successful 
delivery of this class of projects. Estimating onsite productivity is a difficult task that requires tracking heavy and 
costly equipment and requires collecting, managing, and analyzing a considerable amount of data from 
construction sites on daily bases. Despite the fact that there are many systems available to carry out such process, 
those systems are expensive and require collection of large volume of data. This paper introduces a newly 
automated web based system for estimating actual productivity and for forecasting cost and time of earthmoving 
operations in near real time. The developed system integrates Global Positioning System (GPS) and Geographical 
Information System (GIS) in addition to four developed algorithms.  The proposed system makes use of limited 
samples of GPS data for tracking and control purpose instead of collecting large volume of data from construction 
sites. The proposed system considers uncertainties associated with activity durations and cost. The results obtained 
from the application of the proposed system to two actual projects, indicates that the proposed system can be used 
as an effective tool for tracking and control of earthmoving operations.  
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1. INTRODUCTION   
Estimating onsite actual productivity is a vital function in forecasting cost and time of large earthmoving 
operations. It is always a main concern of project managers (Alshibani 2011 and 2015). Estimating onsite actual 
productivity requires tracking and monitoring the construction equipment involved (Eldin and Mayfield 2005, 
Montaser et al. 2011 and 2012; Alshibani and Moselhi 2007). The tracking process mainly involves the following 
steps: (1) collection a large volume of data from construction sites; (2) managing, processing, and analyzing the 
collected data, (3) estimating actual productivity based on the collected data; (4) comparing the estimated actual 
productivity to that planned(Alshibani 2008); and (5) taking corrective actions, if deviation found. The literature 
reveals that over the years, many models and systems have been introduced for estimating on-site productivity of 
earthmoving operations.  

Traditionally estimating productivity relies on the use of performance charts provided by equipment manufactory 
and multiple regressions based models (Edwards and Holt, 2000, Han and Halpin, 2005). The main setback of 
using performance charts is that they do not reflect actual conditions of project site and they have been found to 
overestimate the productivity (Han and Halpin, 2005). Other methods were build based on the use of artificial 
neural networks (ANN) (Tam et al. 2002).  ANN is used to estimate equipment productivity of different individual 
construction equipment such as dozers and excavators (Ok  and Sinha , 2006). Tam et al (2002) concluded that 
both multi-regression and ANN based models could be used to predict excavator productivity although the MLFF 
is superior to multiple regression models. It is worth it here to note that the application of ANN require the use of 
a large volume of data to build the model. Using large volume of data can be costly, time consuming, and not 
accurate since every project is unique. Moreover the use of such data has a great impact on the accuracy of the 
outcomes of those models since they do not account for uniqueness of construction projects. 

In recent years and because of the progressive advancements in information technology, new models and systems 
have been introduced utilizing different technologies such as; (1) spatial technologies particularly GPS (i.e. 
Topcon; VisionLink; Alshibani and Moselhi 2007, Moselhi and Alshibani 2007; Montaser et al. 2011& 2012); 
Radio frequency identification technology (RFID) (I. e. Montaser and Moselhi 2012, Montaser and Moselhi 2013); 
(2) on board instrumentation system (OBIS). The OBIS is a powerful tool for equipment management, which 
provides managers and operators with information on a wide range of functions. The system relies on the 
placement of sensors on many locations on the tracked equipment to detect abnormal conditions in any of the 
equipment systems. The main function of these sensors is to: (1) diagnose the mechanical health of tracked 
equipment to improve productivity; and (2) measure physical parameters such as temperature, pressure, and control 
lever position. These parameters are then used to determine the equipment cycle time and productivity.   

The OBIS is used in several earthmoving applications including controlling scraper wheel slippage and 
transmission shifting, maximizing dozer production, providing increased traction to haul trucks, and preventing 
loader rollovers. Caterpillar is a leading company in using OBIS. It developed Vital Information Management 
System (VIMS, CAT Product Link, 2013) to estimate actual productivity and to monitor the mechanical status of 
its equipment. However, the OBIS are characterized by being expensive in cost and those systems could not 
forecast eaither fleet productivity nor project cost and time at completion deterministically or stochastically 
(Montaser et al 2012).  

Although the simulation has received a great attention by researched as a powerful tool for analysing complex 
problem, the main setbacks of the simulation as stated by (e.g. Chung 2007; Shaheen et al. 2007, Hajjar and 
AbouRizk 2002) are: (1) simulation is expensive and time-consuming; (2) it relies on expert opinions to 
compensate for lack of numerical data for various construction activities; (3) it requires dedicated simulation 
professionals and a number of simulation runs to generate meaningful estimates, and (4) it is sensitive to 
assumptions and /or calculations required not only to quantify correlation coefficients among input variables, but 
also to develop the probability density functions associated with these variables.  

For the purpose of identifying the causes of unacceptable performance, the GPS has many advantages comparing 
to OBIS. The following advantages can be observed: (1) GPS can identify idle time from activity duration, (2) 
GPS can collect a large volume of data, which can be utilized in developing realistic probability distributions for 
activity durations, (3) collected GPS data provides good representation of operating conditions; and (4) the truck 
loading and dumping time can be identified only if GPS is used. The OBI can only record the aggregate travelled 
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time whereas GPS data are used directly to calculate the time for hauling and return. Even though the use of GPS 
as tracking tool has many advantages, still there is a need for collecting a large volume of data. This can make the 
task of the project manager complex since there is a need to manage; process; and analyses such a big volume of 
collected data.   

In an effort to overcome the previous stated limitations of simulation and OBIS, RFID technology has been applied 
by many researcher as a new technologies. The RFID can offer low cost method of tracking earthmoving 
operations. The main limitations of RFID is that the technologies cannot help in detecting the causes behind the 
unacceptable performance since the fixed RFID readers is attaching only to designated gates of projects dumping 
and / or loading area. In addition, the RFID based systems can track the moving equipment outside the loading 
and dumping area. As stated above and regardless of the technique used, the models and existing systems require 
collecting large volume of data from construction site which as result requires the development of information 
system capable of processing and analyzing the collected data.  

This paper presents a practical and easy to use system in an effort to overcome the limitations of current automated 
systems in estimating onsite productivity and in forecasting project cost and time. The system is designed to be 
used as a snapshot tool for estimating actual productivity and forecasting project time and cost. The cost and time 
is forecasted based on the productivity achieved on construction site.  The developed system uses limited GPS 
data samples as alternative approach for collecting large volume of data. The proposed system can help in detecting 
the causes of unacceptable performance based on the collected GPS data.  

2. PROPOSED SYSTEM  

The proposed system, neither requires human involvement to collect on site data nor expensive and sophisticated 
instrumentations for estimating actual productivity and forecasting project cost and time. The proposed system, on 
the contrary, relies primarily on collecting samples of GPS data in near real time using web-based system. The 
system uses the collected GPS data to estimate on-site productivity and forecast project time and cost. The 
collected GPS data includes time, speed, heading, longitude, latitude, and latitude (see Table.4).  The GPS receivers 
are mounted on hauling units to monitor their movement and location. The captured data is required to estimate 
tracked equipment cycle times for each round trip. For simplicity and efficiency, only one GPS unit is mounted on 
one of trucks in the fleet that travels the same path. The estimated productivity for the tracked truck represents the 
entire fleet productivity since the cycle time of that truck can reasonably represent that of the rest of the trucks 
involved. The latter option can be used when the hauling units in the fleet are deemed to be of good condition, i.e. 
none will be expected to breakdown during travel. This option is used in the example projects presented in this 
paper.  

In order to reveal actual conditions such as the uncertainties encountered in the durations of the activities involved, 
up to 75 samples of GPS data were collected in different time, different working conditions, and under different 
management conditions. The data samples were collected at relatively short time intervals (45 – 50 seconds). This 
allows capturing the truck locations in loading and dumping areas. The collection of limited volume of GPS data 
facilitate data managing and processing while satisfying the data needed for estimating actual productivity and 
forecasting project cost and time. The user can decide on the suitable number of these data samples that fits its 
need. 
The proposed system incorporates five modules and four algorithms as shown in Fig. 1 and Fig.  2. They are: (1) 
Data collection Module, (2) GIS Module (GIS), (3) Graphical User Interfaces (GUI) Module, (4) Database Module, 
(5) Uncertainties/Risk Module; and (6) estimating actual productivity and forecasting cost and time algorithms. 
The data collection Module uses GPS receiver to collect data from construction site of the moving truck. The GIS 
Module is used to graphically present the tracked hauling units along travel roads based on the collected GPS data.  
The GUI Module is used to automate data acquisition, analyze the collected GPS data, and to calculate the cycle 
times from the collected GPS data using the developed algorithm. The database Module is used to store the 
information pertinent to equipment (specification, cost, etc), project (time, direct cost, indirect cost, quantities of 
work), and soil characteristics (swell and shrinkage factors). The uncertainties/risk Module is used to model the 
uncertainties associated with the calculated duration and equipment cost and to assess the risk of the generated 
report. The module allows the user to select probabilities distributions of uncertain variables and to quantify the 
risk associated with the operation being considered based on user specified number of simulations.  
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FIG 1: Overview of the proposed model. 
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The steps required for the application of the proposed system can be summarized as follow: 
Step 1:   Collecting data from the construction site being considered using GPS receivers by data collection 

module. 
Step 2:   Mapping the collected GPS data into the GIS map using the developed GIS module for graphical 

presentation and for tracking the hauling units along travel roads on a GIS map in real time via internet. 
The collected GPS data is also stored in the system database Module. 

Step 3:     Defining the loading and dumping area on GIS map using the developed drawing tool in GUI Module. 
The developed drawing tool enables the user to define different borrow pit and landfill sites dynamically 
as the project progresses, when needed.  

Step 4:    Analyzing the uploaded GPS data to calculate the actual time for loading, dumping, and hauling using 
the developed algorithm for calculating cycle time of hauling units as will be described in next section. 

Step 5:    Repeating steps 2 and 4 for the number of data samples considered, e.g. 30 data samples are used here 
in the first case example and 75 samples are used in the second case example. It should be noted that 
the proposed system is open to process larger size of data sampling. 

Step 6:    Exporting the calculated time for loading, dumping, and hauling of the data samples into uncertainties 
Module in “Crystal Ball” software. The uncertainties associated with the determined duration; truck 
cost; loader cost; and project hourly indirect cost are then modeled to conduct the risk analysis of the 
estimated productivity and forecasted cost and time.  

Step 7:    Having built the probabilistic model that accounts for uncertainties associated with the seven variables 
referred to above, the simulation is run and the actual productivity is stochastically estimated. The 
developed algorithm to estimate the actual site productivity is fired simultaneously while the simulation 
is running. In the risk analysis software, the variables are referred to as assumptions and they are 
highlighted in green , while the outputs is referred as forecast cells and they are highlighted in yellow 
as shown in Fig. 5 and 8. The outputs are actual productivity, productivity index, cost forecast, time 
forecast, cost variances, and time variances. One thousand (1000) simulations are used in the numerical 
examples presented in this paper. The values of the output variables are displayed automatically in the 
forecast cells. 

Step 8:     Analyzing the outputs of the risk module and taking a corrective action(s), if needed, accordingly. 

To help project management teams in identifying causes of unacceptable performance, if any, additional indices 
can also be determined. Detailed description of these indices can be found elsewhere (Moselhi and Alshibani 
2008). 

2.1. Computation process  
The calculated hauling units’ cycle time and number of trips made per hour are used to calculate: (1) fleet actual 
productivity; (2) productivity performance index; (3) forecasted project cost and time; and (4)cost and time 
variances as described below. 

2.1.1. Hauling units’ cycle time  

The core of the developed system is calculating the haul unit cycle time from the collected GPS data. The hauling 
units’ cycle time is first determined to estimate on-site productivity. The cycle time consists of three main 
activities; loading, dumping, and hauling (travel and return). In order to accurately estimate of these cycle times 
directly from the collected GPS, an algorithm has been developed. As depicted in Fig. 4, after mapping the 
collected GPS data in GIS map, the user is asked to draw boundaries of loading and dumping areas on GIS map 
using the developed drawing tool of GUI. A circular shape is used to represent loading and dumping areas 
graphically in a GIS map. The developed system is flexible to allow the user to define a new dumping and/or 
loading area if those locations change with time due to changes in site topography.  
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The following steps are applied to determine the truck cycle time. 
1. The user needs to define loading and dumping areas graphically in GIS map. 
2. The algorithm first counts the number of points (tracked equipment locations) along the traveled road 

and extracts their position (latitude, longitude, altitude, time, and velocity) from collected GPS data. 
3. The algorithm then starts calculating the distance between the position of the point (location) under 

consideration and the centers of the loading and dumping areas defined by the user in (1).  
4. The algorithm then automatically determines, based on the traveled distance calculated in (3) above and 

the radius of the loading and dumping areas defined by the user, the whereabouts of hauling units. If the 
distance is greater than the respective radius of loading and dumping areas, the hauler would be 
recognized as traveling or returning. Otherwise, the dumping time is calculated as the time depicted 
when the hauler is inside the dumping area, and similarly the loading time is calculated as the time the 
hauler stays in the loading area. It is essential here to note that the calculated loading and dumping time 
includes positioning, maneuver, and direct loading and dumping time. Also, travel and return times are 
distinguished by the direction of the moving unit. For example, if the direction were from loading into 
dumping, the time would be for travel.  The traveling time is calculated as soon as the hauling unit leaves 
the loading area and just before it enters the dumping area. Similarly, the returning time is determined 
as soon as the hauling unit leaves the dumping area and just before it enters the loading area. 

5. Steps 3 to 4 are repeated until all points on the traveled road are considered. It should be noted that number 
of trips of a hauling unit is calculated based on determining the number of times the hauling unit crossing 
the boundaries of loading or dumping area (hitting flag). The model considers the flag has been hit when 
the hauling unit crosses the loading or dumping area. For example, a hauling unit is considered to have 
completed one trip when it hits the flag in the loading area twice (one for entrance the loading area and the 
other when it leaves the loading area) and that in the dumping area once.  

6. The following regression equation is used to determine the number of trips a truck makes in a specified 
time by the user (Collected GPS sample duration).  
𝑁𝑜	𝑜𝑓	𝑡𝑟𝑖𝑝𝑠 = 2.8	×1012	× 𝑋 + 𝑋1 5 + 0.2788	×	 𝑋 + 𝑋1 − 2.08	×1015		×(60/𝑆𝑑)  (1)           
 
Where: 

 X: no of times truck enters loading area (Flagging in loading area). 

 X1: No of times, truck enters dumping area (Flagging in dumping area).  

 Sd : Sample duration in minutes and it defined by the user 
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 Fig 2: System layout.  

Fig. 3 depicts the algorithm developed to calculate the truck cycle time, while Fig. 5 depicts the output of the 
calculation generated by the developed algorithm for 30 samples of GPS data in example project 1. In Fig. 4, the 
screen displays the hauler speed profile. The speed profile gives a clear picture of the hauling unit traveling path. 
In this particular case for example, the profile indicates that the hauling unit has made many stops along their path 
outside the loading and dumping area. That can be main cause of unacceptable performance.  
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FIG 3:  Developed algorithm for calculating cycle time of hauling units.  
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2.2 Modeling the uncertainties  

After calculating the actual cycle time from the collected GPS data (i.e. loading, dumping, and hauling) of the 
samples GPS data for tracked truck in GUI module, a probabilistic model is built in Crystal Ball software to 
quantify the uncertainties associated with the operations being considered. Fig. 5 displays the calculated durations 
of the main activities based on the collected GPS data samples. The cells colored in green represents the model 
variables, whereas the cells colored in blue represent the model outputs.  The figure also presents the data range 
of the 30 data samples. For example the calculated loading time duration varies from 1.55 minute for data sample 
No. 29 to 5.13 minutes for data sample No. 7. Since loading, hauling and dumping are stochastic; they are defined 
by choosing a probability distribution that best fit the data and describes the uncertainty of their respective data. 
The user can select the distribution that best represent the data involved. In the examples presented in this paper, 
beta distribution is selected for loading, dumping, and hauling time based on the finding of AbouRizk and Halpin 
(1992). Normal distribution is selected to represent the uncertainty of the project cost data (loader cost, truck cost, 
and indirect cost), while triangle distribution is selected to represent the uncertainty of truck capacity.  As stated 
earlier, having the variable and the forecast cell are defined, the simulation is run. 1000 run is applied for the 
example projects. It should be noted that the algorithm developed to estimate the productivity is defined as forecast 
cell and it is fired simultaneously while the simulation is running. 

2.3 Estimating fleet on-site productivity  
Having calculated the truck cycle time and the number of trips it made, the fleet on-site productivity is estimated 
as: 

 
  𝑃𝑎 = 𝑁@A ∗ 𝐶A ∗ 𝐶DA

AEF
AEG                                            (2)                                                                                                     

Where:                                    

n: number of hauling unit in the fleet being considered; 

aP  : estimated onsite actual fleet productivity;  

tiN : the ith trips the hauling unit (i) made in one hour (changes during simulation as cycle time defined as variable). 

iC : the capacity of the ith hauling unit taking in consideration soil type(defined as variable in risk analysis 
software);  

fiC : adjustment factor that accounts for the equipment operating factor, efficiency, its bucket fill; and on-site job 
and management conditions and it defines by the user, it has to be greater than zero. The above equation can be 
reduced to the simple equation given below if all hauling units are identical: 

 
  𝑃𝑎 = 𝑁H ∗ 𝑁@ ∗ 𝐶 ∗ 𝐶@                                                    (3) 

                                                                                                                    

2.3 Productivity performance index (PPI) 
This index provides a measure of the likelihood of finishing the project within its targeted schedule and cost and 
it is used here to forecast project time. The productivity performance index is determined by comparing the 
calculated on-site productivity to that planned as follows:  

                                                
 PPI = IJ@KLM	NOPQKJ@ARA@S

NMLFFTQ	NOPQKJ@ARA@S
                                                                 (4) 
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2.3 Project time and cost forecast at completion 
The project time at completion or at any targeted time horizons can be forecasted making use of the productivity 
performance index and it is calculated as follows: 
 

𝑇𝑖𝑚𝑒	𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 = IZ	[MLFFTQ	NOP\TJ@	QKOL@APF
NN]∗	^

                                     (5) 

 
Where: 

α : adjustment factor and it is based on the judgment of project manager and it has to be greater than zero. In 
assigning value toα , project manager can eliminate productivity consideration from which exceptional conditions 
are known to have prevailed. For example if a storm occurred in previous period, the project manager can exclude 
such short declining in productivity performance index. Having the time required to finish the project is forecasted, 
the project cost at completion also can be forecasted using the following equation.  
 

  𝐶𝑜𝑠𝑡	𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡	@	𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 = 𝑇𝑖𝑚𝑒	𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 ∗ $
HO [

∗ 𝛽                              (6) 
                                                 

Where 

	 $
HO [

 : planned hourly cost; 
                             

β : Cost adjustment factor and it is different from productivity adjustment factor since it is possible the productivity 
performance is as planned while the project is experiencing overrun. It should be noted that it was assumed 
that the hour unit cost for the remaining work will be as planned. Other assumption can be used such as the 
actual hourly unit cost will continue to the completion date.   

2.5 Cost and time variances at completion 
They are calculated by subtracting the forecasted time and cost at completion as defined in Equations 7 and 8 from 
that planned. 

             𝑇𝑖𝑚𝑒	𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝑃𝑟𝑜𝑗𝑒𝑐𝑡	𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑇𝑖𝑚𝑒	𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡	                                             (7) 

 
Cost variances at completion can also calculated using the equation given below 

 

𝐶𝑜𝑠𝑡	𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝐵𝐶@𝐶 − 𝐶𝑜𝑠𝑡	𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡	@	𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛                        (8) 
Where: 

            	𝐵𝐶@𝐶 : Budget cost at completion. 
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3 SYSTEM VALIDATION 

3.1 Application example 
The project involves excavating and moving approximately 740,000 m3 (bank cubic meters) of earth from one 
location, referred to as borrow pit and haul the excavated material to designated area, referred to as landfill site. 
The material is Gravel sand, weighting 2230 lb per BCY. The landfill site is located at a distance of approximately 
21 km (two ways) from the borrow pit location. The traveled road is in urban area with low-rise building. The 
allowed speed on the traveled road is 50 and 60 Km per hour for traveling and returning, respectively. The 
earthmoving fleet is considered to consist of one loader and 45 trucks, all are in a good operating condition.  

The hourly loader and truck cost are assumed to be $90 and $125, respectively. Based on the fleet considered in 
this example, the project should be completed in 931 hours at a total cost of approximately $ 3,909,697.733. It is 
required to track these operations in near real time without human involvement in data collection from construction 
site. In addition, it is required to estimate on-site productivity, forecast project time and cost at completion while 
taking in consideration the uncertainties associate with durations of the operations and uncertainties associate with 
the project cost (equipment cost and project indirect cost), and find the activities that have the greatest impact on 
fleet productivity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG 4: Analyzing collected GPS data by GUI Module. 

3.1.2 Analysis of the Results  

Considering the condition of the fleet, it was decided to mount only one GPS receiver on one of the 45 trucks. A 
total of 30 samples of GPS data of the operations involved were collected. The sample duration in minutes is of 
shown in the last column in Fig. 5. The captured data were then transferred to the web server using graphical user 
interface (GUI) of the developed system. The system then process and analyzes this data in near real time to 
calculate actual loading, hauling, dumping, and returning time. Fig. 4 represents the screen printout of data sample 
No.15.   As it can be seen in the figure, the sample duration in the screen printout is 131.47 minutes., the loading 
time is 4.6 minutes, dumping time is 2.26 minutes, average speed is approximately 12 Km/hr, and the total distance 
of this data sample is 25.5 Km.  Having the cycle time is estimated; the number of trips the truck made for data 
sample duration (131.47) is then determined using Equation 2. The number of trips made in 131.47 is 1.4592 trips. 
Therefore, the number of trips made in an hour is 0.68 trips (1/ 1.4592). Knowing the soil type, equipment capacity, 
and project data, the actual productivity can be easily estimated. One of the features of the developed system is 
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that the system can graphically show the traveled road condition, for example as presented in the screen printout 
(Fig. 4), although the maximum allowed speed is 50 Km/hr, the driver exceeds this constrain up to 68 km/hr. The 
Figure also shows that the travel road is flat (Grade % =0).  

After calculating the hauling units’ cycle time for the 30 samples of GPS data as described above, the user is then 
requested to define the uncertainties associate with the calculated hauling units’ cycle time (loading, traveling, 
dumping, and returning) and define defines uncertainties associate with the project coat. Based on the data, the 
user selects the distribution that best represent the data involved in the Crystal Ball, and 1000 trial is conducted. It 
should be noted that the inputs and outputs variables of the probabilistic model are also defined. Figure 5 depicts 
the uncertain variables (inputs data) of the example project. The uncertain variables are presented in green while 
the outputs are presented in blue. The uncertain variables associated with the productivity are the operations 
activities durations (loading, hauling, dumping, and returning times) and the truck capacity.  The uncertain 
variables associated with the project cost are truck cost, loader cost, and project indirect cost.  

 

FIG 5: Risk analysis module as built in Oracles Crystal Ball. 
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The outputs of the developed model is referred to as forecast as presented in Fig. 5. They are project total cost at 
completion, project time, cost variances, time variances, fleet actual productivity, and productivity index. The 
result shows that the project is experiencing cost underrun and ahead schedule status. This status has been indicated 
by the calculated productivity performance index (1.05). This good productivity can lead to cost underrun of $  
179, 337 and ahead of schedule of 42 hours. It should be noted that the cluster of columns near the mean indicates 
the most likely value. For example, the most likely time forecast is between 1450 and 1500 hours. The certainty 
level of the project has good productivity index is about 4 %. 

 

 

Fig 6: Output of the developed model. 

As showed by Scatter Charts (Fig. 7), the Hauling time has a strong positive correlation with cost and time forecast 
of 0.8487 and 0.9247, respectively. In addition, although the truck hourly cost is less than the loader hourly cost, 
the truck cost has greater positive correlation (0.38) with the cost forecast than loader cost (0.0052). The dumping 
and loading time, on the other hand, have the weakest correlation with time forecast. Furthermore, the correlation 
between hauling time and on-site productivity is a negative value, which means that are inversely related. 

 

 

 

 

 

 

 

 

 

 

 

 

                         

 

  FIG 7: Scatter Charts. 
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3.1. Application example II 
The developed system was additionally tested in a second example project to investigate its capability in estimating 
onsite productivity and forecasting project cost and time using larger volume of collected GPS data. The project 
involves the construction of a research laboratory building of 4 floors including a basement. The excavation area 
is approximately 1,800 m2 with an average depth of 7.70 m. the project is located in west end of Montreal. The 
contractor wishes to estimate, with high level of confident, onsite actual productivity and forecast project cost and 
time. The project data is summarized in Table. 1. Figure 8 shows the excavation work of the project under 
consideration and the equipment involved.   Figure 8(b) shows the site, its surrounding area, and travel road in 
google map. The fleet used by the contractor in this project consists of an excavator, type VOLVO ECR235CL 
and 4 CAT 725 trucks. A 75 GPS data samples were collected of the example project in support of data processing 
and simulation modeling. A 75 cycle times were extracted from the collected GPS data using the developed GUI. 

 

 

(a)                                   (b) 
 

FIG 8: Project site overview. 
The GPS data were collected at different time intervals, and at different hours of the work day to represent a wide 
range of possible conditions. The system parameters and the probability distributions considered for each of its 
variables are shown in Table. 2.  

 

TABLE. 1: Project data. 

Parameter Value 
Earth-moving volume ( m3) 
Swell factor 

10381.76 
0.81 

Bank density (Kg/m3) 2900  
Daily Indirect cost $2000 
Daily working hours 8 hrs 
Length of haul-road (Km) 15.6 km 
Job conditions Favorable 
Available number of trucks (CAT 725) 4 
Truck hourly cost 
Truck capacity( m3) 

$ 100 
14.30 

Available number of excavators (VOLVO ECR235CL) 1 
Excavator hourly cost 
Heaped bucket capacity 

$ 150 
1.73(m3) 

 
Table. 3 shows seven set of captured GPS data (positions), while Table. 4 depicts ten of extracted cycle times from 
a total of 75 samples of GPS data.  As it can be seen from the table, there is variation in the calculated cycle times. 
This variation was due to the fact that (1) the project was constructed in urban area where travel time is sensitive 
to traffic congestion; (2) the weather conditions such as rain fall slowed down traffic; (3) the project has two 
dumping areas; located at different distances from the construction site. 
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TABLE. 2: Parameters of the developed module. 

Simulation parameter Data source Probability distribution  
Loading time Extracted from GPS data Logistic Input data 
Hauling time Extracted from GPS data Beta Input data 
Dumping time Extracted from GPS data Maximum Extreme Input data 
Truck cost ($100/hr) Triangular Input data 
Excavator cost ($150/hr) Triangular Input data 
Project indirect $ ($20/hr) Triangular Input data 
Number of trucks 4  Input data Constraint 
Number of Excavators 1  Input data Constraint 
Excavator productivity(Cu m/hr) calculated  Input data Input data 
Simulation outcomes    
Truck productivity calculated                                 Forecast Output 
Project final cost calculated Forecast Output 

Project cost time calculated Forecast Output 
Cost variance calculated Forecast Output 
Time variance calculated Forecast Output 
Unit cost ($/Cu m) calculated Forecast Output 
Productivity index calculated Forecast Output 
Match index calculated Forecast Output 

TABLE. 3: Part of sample of collected GPS data 

 

TABLE. 4: Calculated cycle times of hauling unit 

 

Cycle No Cycle time (min) Loading Time 
(T1) min 

Travel Time 
(T2) min 

Dumping Time (T3) 
min 

Return Time (T4) 
min 

No of trips/ 
hour 

1 33.63 4.50 19.13 6.00 4.00 1.78 
2 33.75 7.75 10.00 8.00 8.00 1.78 
3 31.00 3.00 10.00 8.00 10.00 1.94 
4 29.08 3.08 9.00 5.00 12.00 2.06 
5 33.54 4.13 10.78 5.00 13.63 1.79 
6 28.00 2.13 9.87 7.00 9.00 2.14 
7 25.00 2.75 8.25 6.00 8.00 2.40 
8 27.00 4.00 9.00 5.00 9.00 2.22 
9 28.00 3.10 8.90 5.00 11.00 2.14 
10 27.05 3.05 8.00 6.00 10.00 2.22 
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The contractor selected a fleet consisting of one excavator and 4 articulated trucks to carry out the work, all in 
good operating conditions. The GPS data is collected to track the operations involved in time interval of 45 
seconds. The 45 seconds interval is used to enable the system to track the fleet configuration in loading and 
dumping area. For example, if the fleet is not well configured, a waiting time can be displayed in loading and /or 
dumping area. That is one of the advantage of using GPS data comparing to that of OBIS and RFID.  

3.2.2 Discussion of the results 
A total of 75 cycles were extracted from GPS data and these cycles were used to estimate actual productivity and 
project cost and time. The collected data samples were uploaded into GIS map using GUI of the developed system. 
The actual loading, hauling, dumping, and returning time are then estimated from the collected GPS data. Having 
the cycle times are estimated; the number of trips made in one hour is then calculated using Equation 2., the user 
defines the input and output variables of the probabilistic model, selects the distribution that best represent the data 
involved in the Crystal Ball, and 1000 trial is conducted. Fig. 9 depicts the input data of the example project. The 
uncertain variables associated with the project cost are truck cost, loader cost, and project indirect cost. The system 
determines the mean of actual productivity and project cost and time for each simulation run. Fig. 9 shows the 
system outputs of onsite actual productivity and project cost and time at completion the probability distribution of 
the mean obtained from 1000 replications. The result shows that the project is cost underrun and ahead of schedule 
status. This status has been indicated by the calculated productivity performance index (2.63). The good 
productivity leads to cost underrun of $ 94,523.5 and time saving of 165 hours. Match index indicates that although 
the actual productivity is higher than the as planned, the fleet configuration can be adjusted by increasing the trucks 
number. This would even further improve the actual proactivity rate and shorter the project duration. It is clear 
that the contractor underestimated the production rate at planning stage.  That is probably happened due to 
overestimating of the hauling time of truck.  

 

FIG 9: The system outputs of the example project II. 
 

 

Cycle No Cycle	time	(min) Loading Time (T1) min Travel Time (T2) min Dumping Time (T3) 
min Return Time (T4) min No Trips/Hour

1 33.63 4.50 19.13 6.00 4.00 1.78
2 33.75 7.75 10.00 8.00 8.00 1.78
3 31.00 3.00 10.00 8.00 10.00 1.94
4 29.08 3.08 9.00 5.00 12.00 2.06
5 33.54 4.13 10.78 5.00 13.63 1.79
6 28.00 2.13 9.87 7.00 9.00 2.14
22 29.75 8.00 9.75 5.25 6.75 2.02
23 31.25 8.75 9.00 5.25 8.25 1.92
68 32.12 7.08 9.03 8.00 8.00 1.87
69 31.28 5.33 9.23 6.00 10.72 1.92
70 27.28 3.28 10.00 6.00 8.00 2.20
71 24.00 2.00 10.00 4.00 8.00 2.50
72 26.00 3.65 8.35 6.00 8.00 2.31
73 27.75 2.00 10.00 6.00 9.75 2.16
74 38.00 9.67 10.33 8.00 10.00 1.58
75 22.00 4.00 6.00 4.00 8.00 2.73
76 30.00 2.42 9.58 8.00 10.00 2.00

No Of Truck		Capacity Truck No Of Excavator Project Project Hourly Planned Productivity Quantity Project Planned 
Trucks (Heaped	CM) Hourly Cost Excavator(s) Hourly Cost Duraion(Hour) Indirect Cost (Cu M/Hour) Cu M Unit $/Cu M

4 14.3 100 1 150 267.57 20.00 38.80 10381.76 14.69

Actual Productivity Project Time Cost Cost Time Forecasted Match Index
Productivity(CM) Index(Actual/Planned) Forecast(hrs) Forecast at completion Variances($) Variances (hrs) Unit $

102.04 2.63 101.74 57992.05 94523.50 165.83 5.59 0.68

Forecast Cells

Define Assumptions  

Define Forecast Cells & Run Simulation 
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FIG 10: The system forecasts. 

4. SUMMARY AND CONCLUDING REMARKS 

This paper presents a new system for estimating onsite productivity and forecasting project cost and time of 
earthmoving operations. The developed system uses limited GPS data, collected from construction site using GPS 
receivers mounted on hauling units. The collected data is used to estimate equipment cycle time and subsequently 
estimate fleet productivity, which is then used for forecasting project cost and time. The developed system utilizes 
only samples of GPS data as alternative approach to current systems that require collecting a large volume of data. 
The system is can be used during construction phase by reconfiguring fleet dynamically while operations are in 
progress to support needed corrective actions.  

The develop system is limited to earthmoving operations which involve the use a fleet of loaders and trucks. The 
system has not been tested in tracking earthmoving operation that involve the use of pushers/scrapers fleet.  The 
system also is applicable only for open cut excavation as in highway construction projects.  

The system can be enhanced with RFID and other remote sensing technologies where the use of GPS alone 
becomes inadequate. This enables its application to underground earthmoving operations and to construction sites 
in urban area with high rise buildings that prevent receiving satellite signals.   

The system accounts for uncertainties associated with activity durations (loading, dumping, and hauling) and 
project direct and indirect cost. The system is expected to support contractors in making optimum use of available 
resources during project execution. Two example projects were analyzed to demonstrate the capabilities of the 
developed system. The results indicate that the proposed system can be used successfully in tracking and control 
of earthmoving operations. It also provides contractors with a tool that enables them to assess the risk associated 
with the fleet selection process. Analysis of the results obtained indicates that using GPS facilitates data exchange 
among members of project teams, which enables timely corrective actions. Displaying GPS data graphically can 
help project managers in identifying causes behind unacceptable performance, if any.  
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