

www.itcon.org - Journal of Information Technology in Construction - ISSN 1874-4753

ITcon Vol. 21 (2016), Preidel & Borrmann, pg. 402

TOWARDS CODE COMPLIANCE CHECKING ON THE BASIS OF A
VISUAL PROGRAMMING LANGUAGE

SUBMITTED: July 2016

REVISED: October 216

PUBLISHED: November 2016 at http://www.itcon.org/2016/25

GUEST EDITORS: Dimyadi J. & Solihin W.

Cornelius Preidel, MSc,

Chair of Computational Modeling and Simulation, Technical University of Munich;

cornelius.preidel@tum.de

André Borrmann, Prof. Dr.-Ing.,

Chair of Computational Modeling and Simulation, Technical University of Munich;

andre.borrmann@tum.de

SUMMARY: In the AEC industry, there is a large number of standards and codes which ensure the structural

stability, reliability, usability of the building under design. Accordingly, checking the conformity of the building

design with these requirements is a crucial process. Nowadays this checking is performed to a large extent

manually based on two-dimensional technical drawings and textual documents. Due to the low level of

automation, the conventional checking procedure is laborious, cumbersome and error-prone. As Building

Information Modeling (BIM) becomes more and more mature, a suitable digital information basis also becomes

available to enable automating the process. The commercial solutions for code compliance checking available

so far mainly follow a black-box approach where the rules that make up a certain regulation are implemented in

a hard-wired fashion rendering their implementation in-transparent and non-extendable. A number of

researchers have tackled this problem and have proposed various ways that allow the user to define rules, either

in a standard programming language or in a dedicated language. However, AEC domain experts usually do not

have the required programming skills to use these languages appropriately. To overcome this issue, we

introduce the Visual Code Checking Language (VCCL), which uses a graphical notation in order to represent

the rules of a code in a machine- and human-readable language. The paper presents the features and

functionalities of the VCCL in detail and shows its application in a number of case studies.

KEYWORDS: Code Compliance Checking, Visual Programming Language, Building Information Modeling

REFERENCE: Cornelius Preidel, André Borrmann (2016). Towards code compliance checking on the basis of

a visual programming language. Journal of Information Technology in Construction (ITcon), Special issue: CIB

W78 2015 Special track on Compliance Checking, Vol. 21, pg. 402-421, http://www.itcon.org/2016/25

COPYRIGHT: © 2016 The author(s). This is an open access article distributed under the terms of the Creative

Commons Attribution 4.0 International (http://creativecommons.org/licenses/by/4.0/),

which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly cited.

ITcon Vol. 21 (2016), Preidel & Borrmann, pg. 403

1. INTRODUCTION

In the design and engineering of buildings, a large amount of building codes and regulations have to be taken

into account. These codes and regulations serve not only to ensure that the building to be erected functions

correctly, but particularly to guarantee the safety of its users. Today, the compliance of building designs with

such regulations is checked to a large extent manually; both by the responsible planning consultant as well as the

building authority officers.

The manual checking approach prevalent today is based primarily on construction plans (two-dimensional

technical drawings) and additional textual documents. Since almost no automation support is available, the code

compliance checking procedure is laborious, cumbersome and error-prone. In many cases, unwanted iteration

cycles become necessary due to modifications demanded by the respective authorities. As a consequence, the

checking of building code compliance is a major cause of delays and cost increases in construction planning

(Preidel et al., 2015).

A number of research projects around the world aim to undertake a major step forward through the development

of computer-aided methods and technologies for automating extensive aspects of the relevant checking

processes. With the aid of such tools, the manual effort required for code compliance checking can be drastically

reduced, thus providing a key contribution to increasing the efficiency of building design and engineering

processes.

The technological basis for the aspired automation in construction code checking is based on the concept of

Building Information Modeling (BIM) which is currently comprehensively transforming the working processes

of the architecture, engineering and construction (AEC) industry. While the advantages of BIM technology have

been researched and documented for large parts of the AEC processes, its great potential for automating the

building code compliance checking process has not yet been fully exploited.

The chosen methodological approach is based on the conception and development of a formal code repre-

sentation language for encoding construction codes in a computer-interpretable form. In contrast to existing

approaches, the proposed language is not a textual language, but a visual one based on a graphical notation with

well-defined semantics. Given the success of visual programming languages in the domain of (algorithmic)

architectural design (Anton and Tănase, 2016), the authors argue that a visual code checking language is much

more accessible to AEC domain experts with limited programming skills. This claim is supported by more

general investigations of the usability of visual programming languages (Catarci and Santucci, 1995).

2. STATE OF THE ART

So far, there have only been limited investigations into the use of digital building models for checking a

building’s compliance with codes and regulations. A good overview of the state of the art in this field as well as

the most important open research questions is provided by Eastman et al. (2009). The authors identify a great

need for research with respect to the separation of the representation of rules and the techniques required for

processing and checking them. They state that “no language for building model rule checking is known to have

been proposed”.

In most of the known approaches, the rules have been implemented by software developers as procedural code

embedded within the code checking system (Solihin, 2004; Ding et al., 2006; Eastman et al., 2009). In most

cases the code is not accessible for third-party developers or domain experts – its correctness is thus not

verifiable. Nisbet et al. (2008a) call this approach a “black box” implementation, which domain experts do

usually not trust. In addition, modifications to the implemented code in response to changes to the regulatory

documents can only be conducted by software experts.

An example of such a black-box implementation is the system CORENET e-PlanCheck, which is in use in

Singapore for checking the compliance of digital building models with building codes in the areas of building

control, barrier-free access and fire safety (Solihin, 2004). The main component of the code checking system is

the FORNAX library which has been developed and maintained by a private company. As a consequence, the

individual steps of checking process are not visible so that there is no or limited way for the users to alter it.

Extensions and modifications have to be carried out by the original provider.

ITcon Vol. 21 (2016), Preidel & Borrmann, pg. 404

Similar limitations apply to the software product Solibri Model Checker (SMC) which provides code checking

functionality within rule templates, which are based on hard-coded rules. Though these rule templates may be

adjusted by a given limited number of parameters and composed by the user to define a certain individual

checking process, they are nevertheless basically implemented as black-box procedures. Also, these rules cannot

be represented by means of a human-readable external format but have to be implemented by means of a native

data format. Nevertheless, SMC represents one of the most advanced representatives in terms of code checking

since the application is exclusively based on the open IFC standard and enables advanced and detailed checking

routines like accessibility checks according to the ISO DIS 21542 or ADA- and ABA guidelines (ISO, 2011;

United States Access Board, 2014). For this reason, it has also been employed in a number of code checking

research projects, among them the Norwegian project HITOS (Lê et al., 2006), where the International Code for

Accessibility Design (ICC/ANSI A117.1.) has been implemented by means of SMC rules. In a project led by the

U.S. American General Service Administration (GSA), circulation and security rules for U.S. courthouses have

been implemented by means of SMC (Eastman, 2009). In both cases, an external computer-interpretable

representation of the rules, which would allow the usage of alternative code checking software and thus provide

the desired degree of independence, has not been realized.

One of the first documented approaches for the representation of regulations in a system-independent computer-

processable form was realized by Kerrigan and Law (2003) who applied First Order Predicate Logic for the

formal expression of rules. However, they did not use a digital building model as input for the compliance check

but instead gathered the required facts by means of an interactive system where the user has to answer a large

number of questions. The gathered facts were subsequently used by a reasoning engine to formally check the

compliance of the project with the US regulations for the protection of the environment. Rules with geometric or

spatial semantics were not subject of the research project.

An important step towards the use of an independent rule representation has been conducted by the Australian

code checking project DesignCheck, where the Australian code “Design for access and mobility” (AS 1428.1)

has been implemented on the basis of the commercial system EDModelChecker (Ding et al., 2006). In this

project, the computer language EXPRESS (Wilson, 1988) has been employed for encoding the rules. However,

as EXPRESS is a not widespread and hard-to-learn language that is not widely supported by software tools, the

encoding of the rules can again only be realized and checked by trained software specialists.

The international project SMARTCodes led by the International Code Council (ICC) aimed to overcome this

deficiency by introducing a two-step process where in the first step domain experts enrich the regulation texts

written in human language with semantic mark-up, and in the second step the enriched text is semi-automatically

transferred into a computer-processable form (Nisbet et al., 2008a; Hjelseth and Nisbet, 2011; Hjelseth, 2012).

For the first step, the well-known and widespread data modeling standard Extended Markup Language (XML) is

applied, resulting in an easily verifiable and maintainable code representation. For the formalization of

guidelines, SMARTCodes uses the RASE-Syntax. Using this tool, all elements that are used in a guideline can

be categorized into the four different classes Requirement, Applicability, Selection und Exception. Doing so,

even complex contents of codes and guidelines may be formalized and divided into these basic components. The

result of this categorization can be illustrated and marked within the guidelines flow text and there-fore the result

is readable for machines as well as humans. In principal, this method provides a practical and efficient approach.

A major limitation of this approach is that only the content of a standard can be covered, but not expert

knowledge, which results from the experience of the respective reviewer. Furthermore, the approach does not

cover procedural knowledge; so how objects and information to which the guideline refers to, is produced in

order to check the rule. Semantically higher predicates, such as topological or geometric relationships, are not

represented.

An alternative direction of research for automated code compliance checking is based on the usage of an

ontological description of both the building regulations and the digital building model to be checked. For

example, in (Lange, 2008) the applicability of ontology-based knowledge representation and reasoning for

checking the compliance of building models with the German fire codes has been investigated. The author comes

to the conclusion that only a very small part of the regulations can be transferred into an ontology-based

representation. One of the main limitations is the lack of support for semantically higher concepts, such as spatial

relationships. Accordingly, the achieved compliance checking was restricted to simple rules, such as checking

the fire resistance class of a certain wall. In (Kim and Grobler, 2009) ontological consistency checking

ITcon Vol. 21 (2016), Preidel & Borrmann, pg. 405

mechanisms have been employed to check the conformance of a building design with constraints and

requirements. Again, only very simple checks have been implemented referring to alphanumeric properties of

building elements, such as a slab’s thickness.

In the context of the research project C3R (Conformance Checking in Construction - Reasoning), conformance

requirements have been transformed into queries formulated in the ontology query language SPARQL (FIG. 1)

and subsequently applied to extract information from a given digital building model represented by an

ontological representation (Yurchyshyna et al., 2008; Yurchyshyna and Zarli, 2009). Also in this research,

spatial relationships and properties have been completely neglected.

FIG. 1 The SPARQL statement used in (Yurchyshyna and Zarli, 2009) for defining the constraint that the

minimal width of a security door is 80cm. The example clearly illustrates the high complexity of the employed

language.

For the encoding of more complex rules, (Lee, 2011; Lee et al., 2015) developed the Building Environment and

Analysis Language (BERA) and applied it for evaluating a building’s circulation and its spatial programme. The

language provides a set of spatial operators for the definition of rules in the context of these application areas.

Though the developed language lacks the desired generality aimed at by the project proposed here, it forms a

highly relevant foundation and an important point of departure.

As a part of the Korean KBim project, Park and Lee (2016) introduce KBimCode, a standardized scripting

language for the representation, definition and evaluation of building permit rules. With this language, natural

language rules can be translated into KBimCode through a logic rule-based mechanism. Since this is basically a

programming language, the translation of the rules can again only be realized by software specialists.

In (Uhm et al., 2015), request for proposals for large buildings in South Korea have been analyzed for the

possibility to automate the compliance checking procedures. The study deployed a context-free grammar for

processing the rules defined in natural language and translated them into computer-interpretable Semantic Web

Rule Language (SWRL) rules.

Another important approach to checking Building Information Models for compliance with geometric rules was

realized in (Zhang et al., 2013), where safety rules for preventing fall-related hazards have been implemented.

However, the rules are not represented in a neutral format but have been hard-coded into the BIM system.

In summary it can be stated that significant research has been conducted with respect to automating the code

compliance checking for digital building models. However, in many cases, the rules contained in building

regulations have been hard-coded into the code checking software, which results in a severe lack of transparency

and flexibility of the encoded rule system. Only a small number of research projects have investigated the

employment of a computer-processable intermediate representation of the building code.

In the majority of the work published in this regard, an ontology-based approach for the representation and

checking of rules has been implemented. However, this ontology-based approach exhibits significant limitations:

firstly, the encoding of rules into an ontological representation is too complicated to be directly performed by

domain experts (see FIG. 1 for an example). Secondly, the ability of the resulting systems to represent

semantically higher constructs is very restricted. In particular, abstract geometric and topological constraints and

requirements can neither be represented nor checked, although they form an important part of many building

codes and regulations.

In consequence there is a strong need for research to develop a code representation language which is (1) capable

for the expression of geometric as well as non-geometric constraints and requirements, (2) accessible for domain

experts with limited software development knowledge, and (3) independent from the employment of a particular

code checking engine. This article aims at contributing to fill this important research gap.

ITcon Vol. 21 (2016), Preidel & Borrmann, pg. 406

3. VISUAL CODE COMPLIANCE LANGUAGE

As discussed in Section 2, there are a number of approaches to automate code compliance checking. However,

there are still a lot of inadequacies, among them the inaccessibility of textual programming languages for domain

experts. To overcome this deficit, we introduce a new approach here, which is based on a visual language for

representing the Code Compliance Checking process. A first preliminary work on this approach has already been

developed in (Preidel and Borrmann, 2015, 2016).

3.1 Methodological approach

In general, a visual language can be defined as a “formal language with a graphical notation”, which means that

it represents a modular system of signs and rules using visual elements instead of textual ones on the semantic

and syntactic level (Myers, 1990; Hils, 1992; Schiffer, 1998). Information systems, which are described by a

visual language can be interpreted much faster and easier by humans. Visual programming languages are often

also called flow-based, since they display complex processing structures as a flow of information. The reason for

the higher interpretation capability can be found in cognitive psychology, which states that visual information

can be processed with two instead of only one hemisphere of the human brain in parallel. Schiffer (1998)

performs a detailed discussion of the advantages and disadvantages of visual languages.

In recent years, Visual Programming Languages (VPL), have been established particularly in the field of

building design creation. Known software products in the context of building design are in particular the plug-in

Grasshopper for Rhinoceros3D, Dynamo for Autodesk Revit (or as a standalone application) and Marionette for

Vectorworks. Although these representatives focused initially especially on the 3D parametric modeling, they

were significantly extended by further functionalities since there is a huge third party community supporting

these projects. However, since the existing VPL systems in AEC industry focus on tasks like architectural and

geometric modeling, the language is designed to handle intuitive design tasks. In order to give the user as much

freedom as possible for these tasks, the VPL systems usually have a low error tolerance, so that these systems

usually lack rigidness and strictness. As an example, many VPL systems allow to define generic (= untyped)

data transfer, which can lead to manifold errors. In contrast, the code checking process demands a high level of

accuracy and correctness since it represents an essential process as discussed in Section 1. If the accuracy is not

given, the users might lose the trust in the software product and the acceptance of the automation is significantly

decreased. Nisbet et al. (2008b) state, that this acceptance is a key criterion for the successful introduction of an

Automated Code Compliance Checking. Furthermore, the existing VPL systems like Dynamo (Autodesk) or

Marionette (Vectorworks) are geared towards working closely with corresponding native BIM authoring tools

and therefore do not themselves represent open software solutions in the sense of an openBIM approach.

However, since the model as well as Code Compliance Checking is a central task that affects several disciplines

and models at the same time, the checking must be applicable for any kind of model. Therefore, it makes sense

to pursue a technically neutral approach, which is able to work with information of an open standard, e.g. IFC.

To meet the above requirements, the authors do not extend an existing VPL system but build a new visual

language design from scratch.

By adapting a visual language to the specific needs and requirements of Code Compliance Checking, one of the

main shortcomings of the existing approaches to automated code compliance checking – the inaccessibility of

the rule definition to domain experts - can be overcome. The developed approach focusses in particular on the

human-machine-communication, which represents a mandatory requirement for the success of automating Code

Compliance Checking. At any time and degree of completion of the visual processing system, the user is able to

understand and inspect every single processing step, which is particularly important, since the accuracy of the

results of the compliance checks are in the responsibility of the reviewer. If errors are identified in the processing

chain, the system can be adjusted very quickly and easily according to the user’s requirements. With the help of

such a visual language, it is possible to describe most parts of prescriptive compliance checks without sacrificing

the transparency for the user. So it makes a lot of sense to speak of a semi-automatic process as it is inevitable to

involve the user into the checking process.

The VCCL implements two basic principles: genericity and finest granularity. The genericity describes the

property of the VCCL that all elements must be defined as generic as possible regardless of the level of

complexity. As a result, each element can be used in any situation and on any point of a desired code checking

process. At the same time, it must be possible to break down each element to its lowest level. This property of

ITcon Vol. 21 (2016), Preidel & Borrmann, pg. 407

the VCCL is called finest granularity. These two features cause a maximum of flexibility for the user, who can

formulate the desired content. The principle behind this approach is to make the overall process of compliance

checking both transparent and flexible, by allowing the user to compose the overall checking procedure from

individual process steps. Each of these elements is a single white box, which can be considered as a small

module of the whole process. To this end, we introduce a modular principle (see Section 3.2), which can be used

by any user even without profound programming skills. In this way we allow that any engineer can bring his

professional skills and his experience into the process. The VCCL is not only intended to store the contents,

which are represented within codes or guidelines, but also to cover the procedural knowledge. This means, that

the VCCL describes, how information must be processed in order to describe any kind of content, which is a part

of a guideline. In this sense, the VCCL represents a far more advanced approach compared to mechanisms,

which cover only the guideline knowledge.

3.2 Basic elements of the VCCL

To define the language both fundamental aspects, semantics and syntax, need to be specified. In the following

sections, the elements of VCCL and their graphical representation are presented.

OUTPUT PORTSMethodINPUT PORTS

METHOD NODE

FIG. 2: Representation of a VCCL method node

VCCL is a strongly typed, object-oriented language. On the semantic level, the VCCL provides two different

elements: methods and ports. Within a VCCL system data processing steps are realized by means of methods. To

represent these methods in a graphical notation, the VCCL provides method nodes visualized by a rectangle with

rounded corners (FIG. 2). Such a node describes a well-defined operation on a specified number of input

variables, the operands, and generates a corresponding result.

The method node provides dedicated input ports (left end) and output ports (right end) which allow to connect

other VCCL elements to it. These ports represent data objects of specific data types, which are handled within a

VCCL program, and are visualized as colored circles. To each port a well-defined data type is assigned, meaning

that only ports of the defined type can be connected to it. In this way, the data processing within a VCCL

program is tightly controlled and the accuracy is increased since information cannot be misled. To improve the

clarity of the overall program and support the user in terms of understanding the processing of the information,

the ports are visualized with a specific colour representing the corresponding data type. Furthermore, any port

may also be visualized with an extended badge, which illustrates and specifies the referred data type. A selection

of ports of different data types as well as the corresponding badges are shown in FIG.3. In order to provide the

necessary flexibility to meet the demands of a wide range of code checking scenarios, the type system of VCCL

is extendable. VCCL provides currently a large set of pre-defined object types in its type library. This includes

types representing atomic values (String, Boolean, Float) as well as relations or collections. A collection such as

a set of a certain data type is visualized as a double circle (see FIG. 3).

Integer

Double

String

Boolean

DataTable

BuildingElement

Relation

Basic

DataModelElementType

BuildingElement Single

BuildingElement Set

FIG. 3: left: Selection of different ports with badges representing different data types; right: Representation of a

single and a set instance

ITcon Vol. 21 (2016), Preidel & Borrmann, pg. 408

To build up a processing chain, methods are connected through their port by means of directed edges. An edge

forwards information from the output port of the source node to the input port of target node. The forwarded

information can only be transferred in one direction, so that the transmission is unambiguously. Since the edges

may only connect an output (right) with an input port (left), the resulting overall program can be interpreted as a

flow of information from the left to the right. For the creation of a VCCL graph, the user is provided with a

three-part control, which is divided into an input and output as well as a process environment. To define a

distinct starting and ending point of each VCCL program, the global input and output area have a number of

user-defined ports, which serve as initial information source and resulting ending point for the defined routine.

When creating a VCCL program, the user has to define which type of information is provided as the initial input

and which kind of information is produced as the final result of the program. The different parts of a VCCL

program, as well as an exemplary creation of a generic VCCL program is shown in FIG. 4.

Method

Method

Method

Method

1 2

3 4

G
LO

B
A

L
IN

P
U

T
A

R
EA

G
LO

B
A

L
O

U
TP

U
T

A
R

EA
PROCESS AREA

FIG. 4: Creating a generic VCCL program with the basic control

In order to ensure the robustness of the created VCCL programs, they must be validated. Each VCCL program is

inherently verifiable as it follows the principle of information flow. Starting with the initial given information -

represented by the global input ports – the information flows through the VCCL program, passing information

from port to port via the directed edges. The information flow principle is schematically shown for a generic

valid program in FIG. 5.

Method

Method

Method

Method

Method

Method

Method

Method

Method

Method

FIG. 5: Processing of information within a schematic VCCL programs based on the flooding principle

As described in Section 3.1, the VCCL follows the principle of realizing the finest processing granularity

possible. This means, that the user must be able to have an insight in every single part of the processing chain of

a VCCL program. To enable this, but also to avoid confusingly large VCCL networks, we introduce a nesting

approach which makes use of the global input and output areas.

ITcon Vol. 21 (2016), Preidel & Borrmann, pg. 409

Since a VCCL method describes an operation, it can also be displayed as a separate VCCL graph and therefore

be shown as a nested control. The concept can be compared to functions or subroutines in textual programming

languages. In FIG. 6 the basic principle of such a nested VCCL program is shown.

Method

Method

Method

Method

Method

Method

FIG. 6: Schematic illustration of a nested method within a generic VCCL program

A nested VCCL program realizes a number of well-defined processing steps which are hidden on the upper

graph level in order to reduce the complexity of the overall VCCL graph. The nested program has clearly defined

input and output ports and can be re-used in any given VCCL program. The input and output ports of the

affected method node define the ports of the global input and output area. Accordingly, the user is able to built-

up a hierarchic VCCL library which fits the particular needs of the code checking procedures he is confronted

with. Based on this principle VCCL programs can be composed of basic methods (and corresponding ports),

which are provided in a basic method library. The resulting hierarchic structure of the VCCL elements is shown

in FIG. 7.

O

Base Graph

Complex
Graph

Base GraphBase Graph

Complex
Graph

Complex
Graph

0

2

n

1

Atomic
Methods

Ports

Other

VCCL Node Library

VCCL Graph Library

Basic Ops

Relation Ops

Data Types Relation

Collection

d
e
g
r
e
e

o
f

c
o
m
p
l
e
x
i
t
y

FIG. 7: Schematic illustration of the VCCL node library and its resultant VCCL graph library with its ascending

degrees of complexity

To realize this approach, the basic methods must be defined beforehand. As a starting point, the VCCL provides

methods which are given as basic routines. These methods describe fundamental operations in a VCCL program,

which describe fundamental operations, whose semantics are unambiguously well defined. Therefore, these

methods are called atomic methods. As their internal structure of the atomic methods is invisible to the user, they

represent black-boxes. However, we assume that a certain “black-box level” is acceptable for a given application

area, where deeper control and insight is neither desired nor necessary and too much effort would be created for

implementing the provided functionality using VCCL instead of a standard programming language. A good

ITcon Vol. 21 (2016), Preidel & Borrmann, pg. 410

example is the evaluation of geometric information such as the computation of a shortest distance route for a

given floor plan. The computation is very sophisticated and the end user is most likely not interested in having

insight in this routine. So this computation can be given as an atomic method and reused for different

applications like fire escape routing or process distance computation. One important characteristic of such

atomic methods is the genericity so that the methods can be used for different purposes. Certainly different black

box limitations have to be considered for different applications and different levels of experience.

There is a large set of pre-defined atomic methods in VCCL. These include:

 Logical Methods

o comparison operators comparing two values and returning a Boolean value, including Equal,

Unequal, LargerThan, SmallerThan, etc.

o operators combining Boolean values, such as And, Or, Not, Xor, IsNotDefined

 Mathematical Methods

o basic calculation operators: Plus, Minus, Product, Division

o set operators: Union, Intersection, Complement, Difference

 Geometric-Topological Methods

o spatial predicates returning a Boolean value including topological predicates (Equal, Disjoint,

Touch, Overlap, Contains, Within), geometric predicates (CloserThan, FartherThan, …) and

directional predicates (Above, Below, etc.). Further details are provided in (Borrmann et al.

2009; Borrmann and Rank 2009a; Borrmann and Rank 2009b; Daum and Borrmann 2013)

o geometric operations generating geometric objects from existing ones, including ConvexHull,

Sceleton, etc.

o geometric evaluation operators: ShortestDistance, MaximalDistance, …

 Relational Methods

o operators for the Relational Algebra: Projection, Selection, Join, …

o aggregation operators: compute values in the course of loops, includes Sum, Average, Min,

Max, Count

 Building Model Related Methods:

o operators for the selection of building elements: TypeFilter, Filter, Selection

o operators for accessing and retrieving attribute data: GetProperty, GetRelated

 Utility Methods:

o By connecting an output port with a utility method node, the user is able to show alpha-

numeric or visualize geometric contents. In this way input data, intermediate results, or final

results can be presented and the content can be checked by the user.

To avoid overly complex VCCL programs, method nodes can include embedded UI controls designed to

facilitate the selection of different options for the user, thus reducing the complexity of the overall program. Due

to this embedding, no additional user inputs have to be mapped via global input ports and the number of edges is

also significantly reduced. A selection of various atomic methods with embedded UI controls are shown in FIG.

8.

In most codes and regulations, tables represent a major source of information. These tables usually provide a

value for a number of input values. To take this into account, VCCL provides the Data Table node as atomic

method. Accordingly, the corresponding method is able to query any kind of data table regarding the given input

variables. An exemplary application of these data table elements is described in Section 4.

ITcon Vol. 21 (2016), Preidel & Borrmann, pg. 411

Logical Exp

< == >

L
o
g
i
c
a
l

Logical Exp

< == >

< != >

< >= >

< <= >
M
a
t
h
e
m
a
t
i
c
a
l

Math

< + >

Math

< + >

< - >

< * >

< / >

< Sqrt() >

< Pow() >

...

< isNull >

G
e
o
m
e
t
r
y

Spatial Op

< Ovelap >

Spatial Op

< Overlap >

< Touch >

< BelowOf >

< AboveOf >

...

R
e
l
a
t
i
o
n
a
l

Relational Op

< Projection >

TypeFilter

< Type >

B
u
i
l
d
i
n
g

M
o
d
e
l

GetProperty

< PropertySet >

Relational Op

< Projection >

< Selection >

< Join >

...

Aggregator

< Sum >

< Column 1 >

Aggregator

< Sum >

< Tuple Value >< Multiply >

...

Aggregator

< Sum >

< Column 1 >

< Column 2 >

< Property >

GetRelated

< Type >

Watch

< Value >

U
t
i
l
i
t
y

Watch3DSelection

< Element >

D
a
t
a

DataTable

< Parameter >

Filter

<PropertySet>

<Property>

Logical
Expressions

(<=, >=, ==, ..)

Value

<Type>

Set Op

< Union >

< Intersection >

< Complement >

PropertyRelation

<PropertyName>Geometry

<Longest Distance>

<Shortest Distance>

< Vertical Distance >

< Hz Distance >

...

FIG. 8: Selection of atomic methods available within the VCCL

3.3 Handling of relations

The mathematical concept of relations has shown to be extremely useful in the context of algorithmic code

compliance checking. Formally, a relation is defined as the subset of the Cartesian product of a given number of

sets. More vividly, a relation can be described as a set of n-tuples where each tuple combines those objects that

are in a certain relation with each other. The relational algebra defined by (Codd, 1970; Codd, 1991) allows to

operate on, process and analyse a set of relations. The concept is well-known from relational databases where the

theory of relational algebra has been very successfully implemented in the widespread declarative query

language SQL (FIG. 9).

FIG. 9: Base Operators of the Relational Algebra, according to (Codd, 1991)

The VCCL integrates the possibility to work with relations by providing the basic data type Relation and

providing the operators of the relational algebra (see Section 3.2) as dedicated operator nodes of the VCCL

(Preidel and Borrmann, 2016). In this respect it has to be noted that, by contrast to SQL which is declarative

language implementing the relational algebra, VCCL provides an imperative implementation of the relational

ITcon Vol. 21 (2016), Preidel & Borrmann, pg. 412

algebra, i.e. the operators are applied in a procedural manner. This however, does not at all restrict the

applicability of the relational algebra.

Various methods within the VCCL produce relational output results. Usually such a relation is created out of at

least two input objects by checking if given criteria of the elements of these input sets are met. If the criteria are

fulfilled, the elements have a relationship and are added to the relation as an n-tuple (pair, triple, etc.). A simple

example for the mechanism of such a relation creation is shown in FIG. 10. Here the geometric-topological

method isInside identifies those pairs of Wall and Opening objects where the geometric relationship “is inside”

is given.

TypeFilter

<Wall> Relation

BuildingElement

TypeFilter

<Opening>

Spatial Op

< IsInside >

Watch
<Element, Element>

<Element, Element>

...

FIG. 10: Creation of a relational data object by a geometric-topological evaluation

The necessary checking processes of such a method must be implemented by means of a dedicated algorithm,

which is typically formulated using a textual notation. In the presented example, the creator checks which

building elements of the input sets are related by the criterion isInside. Depending on the underlying data model,

this information can either be directly queried from the data model or it has to be processed by (e.g. geometric)

algorithms.

FIG. 11 shows a more complex example where two relations have been created and subsequently combined

using relational operators to identify pairs of Walls and Windows/Doors that are related to each other. The

resulting relation can be used for further processing.

TypeFilter

<Opening>
SpatialOp

isInside

BuildingElement

Watch
<Opening, Wall>

<Opening, Wall>

...

TypeFilter

<Wall>

TypeFilter

<BuildingElement>

SpatialOp

isInside

Watch
<Window, Opening>

<Door, Opening>

...

RelationOp

Projection

Watch
<Wall, Window>

<Wall, Door>

...

Relation

FIG. 11: Exemplary application of the relational methods for the evaluation of topological relationships

3.4 Control flow

The demands of more complex code compliance checking procedures requires VCCL to provide elements of

control flow. Most of the existing imperative programming languages provide at least the most rudimentary

elements of control flow – conditional branching and iterations. In textual programming languages, conditional

branching is typically realized by means of if statements while iterations are implemented using loops. These

constructs have shown to be very effective, easy to understand and sufficient for many application scenarios

ITcon Vol. 21 (2016), Preidel & Borrmann, pg. 413

(Böhm and Jacopini, 1966). Accordingly, VCCL provides these two control flow elements using a graphical

notation.

These flow controls are basically implemented as derivations of nested methods. In this way, each VCCL

program can be tested for validity separately. Special control methods would lead to the use of multiple output

ports and therefore ambiguous programs, which can lead to invalid VCCL programs. FIG. 12 depicts the

notation of an If-Else node. For this node, two nested VCCL subprograms are defined, of which finally only a

single one is decisive depending on the result of a test case. So the prerequisite for such an If-Else node is the

Boolean result (True or False) of a check which is evaluated before. If the Boolean value is evaluated as True,

the corresponding area, which is defined for this case, is executed. If it is evaluated as False, the other sub-

program is executed. In order to re-align the control flow after the conditional branch, it is necessary that the

global input and output ports are of the same type for both sub-programs. At least one case of the logical

expression (True or False) must defined – the definition of the second one is optional and can be left blank.

If Else

If Else

Method

Compare

False

Method

True

Method

Method

FIG. 12: Example showing the graphical notation for an If-Else node

FIG. 13 depicts the notation of the iteration element, the Foreach node. This node is used if a certain process is

applied for each element of a collection. Therefore, the first input port must be multi-dimensional. The nested

subprogram in turn defines a process for a single instance of the same data type, so that this process can be

performed for each element, which is part of the input set. Since the nested subprogram produces a result for

each element, the result of this method node is a relation, which holds a tuple with each element and the

corresponding result. In this way, the results can be assigned to the respective values later on.

Foreach

Foreach

Method

each

Method

Method

Method

Watch
< ; >

FIG. 13: Example showing the graphical notation for an Foreach node

ITcon Vol. 21 (2016), Preidel & Borrmann, pg. 414

A simple exemplary application of both VCCL control elements is shown in FIG. 14. In this example, each

element within a set of walls is checked for a specific height. If the wall fulfils the criterion, which is described

by the logical expression within the nested Foreach statement, it is added to the resulting relation. In this case the

Else case is blank, since the object is not forwarded if the criterion is not fulfilled.

Foreach

Foreach

each

Logical Exp

< == >

If

If

True

TypeFilter

< Wall >

GetProperty

< General >

< Height >

FIG. 14: Exemplary application of the VCCL control elements

4. APPLICABILITY

4.1 German fire code DIN 18232-2

In order to demonstrate the potential and versatility of the VCCL approach, a semi-automated compliance check

for the German standard DIN 18232-2 (DIN, 2007) is shown. The standard addresses the design of buildings in

terms of smoke and fire protection: Depending on the height of the room, the height of the smoke layer caused

by the fire and the strength of the fire, the code defines a minimal smoke ventilation area (FIG. 15).

FIG. 15: Illustration of the smoke distribution created by a fire according to the German standard DIN 18232-

11:2007 (DIN, 2007). Depending on the height of the room h, the height of the smoke layer z and the strength of

the fire, the code requires a minimal smoke escape area Aw.

The specific input and output values are provided by means of a table, which is shown in FIG. 16.

ITcon Vol. 21 (2016), Preidel & Borrmann, pg. 415

FIG. 16: Excerpt of the data table for the required smoke ventilation area in m² (DIN, 2007)

The encoding of this rule as a VCCL graph is depicted in FIG. 17 In this processing graph a single room is

identified and afterwards its attributes are used to capture the target as well as the actual area. The final step of

this checking procedure is the comparison of these values - to check whether the limit value is met or not. The

result is a corresponding Boolean value, which can be used afterwards for the further processing of the checking

results such as assigning the requirements which are not fulfilled to a responsible project stakeholder.

Selection

Logical Exp

<Room>

RelationOp

Projection

PropertyRelation

<Area>

DataTable

<RequiredArea>

GetProperty

<Height>

Aggregator

<Area>

Boolean

DataTable

BuildingElement

Integer

Relation

Double
Sum

Watch
<Opening, Area>

<Opening, Area>

...

<General>

< >= >

TypeFilter

<Opening>

SpatialOp

Touch

SpatialOp

AboveOf

RelationOp

Selection

FIG. 17: VCCL program encoding the smoke ventilation area rules of the DIN 18232-2:2007-11

4.2 Korean Building Act: Article 34 Clause 1

Another application the VCCL was applied for the translation of Article 34 Clause 1 of the Korean Building Act

(Korea Legislation Research Institute, 2008), which is shown in FIG. 18.

FIG. 18: Content of Article 34 Clause 1 of the Korean Building Act (Korea Legislation Research Institute, 2008)

1 2 3 4 5

3 0,5 4,8 6,2 8,2 11 15,4

1 3,4 4,4 5,8 7,8 10,9

0,5 3 8,7 11,3 15 20,4

1,5 2,5 3,6 4,7 6,4 8,9

1 3 6,2 8 10,6 14,4

2 2,5 3,1 4,1 5,5 7,7

1,5 3 5 6,5 8,7 11,8

1 3,5 8,4 10,7 13,9 18,6

Required Ventilation Area [m²]

3,5

4

4,5

Fire ClassificationRoom Height [m] Height of the Smoke Layer [m]

“On each floor of a building, direct stairs leading to the shelter floor or the ground other than the shelter

floor shall be installed in the way that the walking distance from each part of the living room to the stairs is

not more than 30 meters: Provided, that in cases of a building of which main structural part is made of a

fireproof structure or non-combustible materials, the walking distance of not more than 50 meters may be

established, and in cases of a factory prescribed by Ordinance of the Ministry of Land, Infrastructure and

Transport, which is equipped with automatic fire extinguishers, such as sprinklers, in an automated

production facility, the walking distance of not more than 75 meters may be established.”

ITcon Vol. 21 (2016), Preidel & Borrmann, pg. 416

Since the regulation is quite complex, it can be divided into different parts with the help of the VCCL.

Afterwards the single VCCL programs can be represented as nested modules, so that a perpetual clearness can be

guaranteed for the user.

First, all exit staircases must be identified for each floor. Therefore, the staircases (rooms, which have stairs

inside) have to be checked, if they can be used as exits (rooms, which have exit doors). Subsequently, a single

floor can be checked, if it is connected with such an exit staircase. The encoded VCCL graph is shown in

FIG. 19.

BuildingElement

BuildingElement

TypeFilter

<Room>

TypeFilter

<Stair>
SpatialOp

IsInside

Filter

General

�isExitDoor

< == >

True

<Door>

RelationOp

Projection

Floor

SpatialOp

IsInside

RelationOp
Selection

SpatialOp

Touch

RelationOp

Selection

Column1

Identification of Exit Staircases

Relation

FIG. 19: Identification of exit staircases for a selected floor with the VCCL

As described in Section 3.2, we assume, that there is a black box level in each checking domain that describes

the user's acceptance of working with not-accessible methods. In the present case the computation of the walking

distance represents a complex process, which the user most likely has no interest to have an insight. Therefore,

we assume at this point, that this evaluation is given as a method, which calculates the maximum walking

distance from the floor plan and a respective target point.

FIG. 20 shows the final composed VCCL translation of the guideline. In this program the already presented

VCCL method for the identification of the stairways as well as the atomic walking distance method is reused. In

the present case, we assume, that the indication whether the main structure of the building can be classified as

fireproof or is equipped with automatic sprinklers highly depends on the way this information is modelled in the

building information model. So this information can be obtained either as a user input or evaluated in a higher

VCCL program from the information of a building model. Both values are introduced as input variables for the

VCCL program. In order to set the relevant value for the maximum walking distance, the program uses If

elements. Finally, the relevant maximum value can be determined using simple mathematical methods.

ITcon Vol. 21 (2016), Preidel & Borrmann, pg. 417

BuildingElement

Floor

Identification of
Exit Staircases

Double: 30

Double: 50

Boolean:
isFireproof

Evaluation of
maximal

Walking Distance

Logical Exp
Boolean

< <= >

Math

< Max >

If

True

Math

< Max >

If

Double: 75

Boolean:
hasSprinklers

If

FIG. 20: Encoded VCCL representation of Article 34 Clause 1 of the Korean Building Act

5. PROTOTYPE IMPLEMENTATION

The application of the VCCL was developed and designed in close cooperation with the German software

company Nemetschek Group. The VCCL was implemented within a prototypical standalone application, which

is closely connected with bim+ (Allplan GmbH, 2016), a central platform for managing of building information

models (FIG. 21). Next to a large number of basic functionalities, such as a web project management and a web

viewer, the platform provides an open API, which enables developers to use the existing functionalities for their

own purposes. The platform follows the openBIM approach and therefore building model data can be uploaded

in various data formats including IFC files. The information is mapped onto a native internal data model, which

is closely related to the IFC standard and well documented (bim+, 2016).

FIG. 21: User interface of the VCCL application

ITcon Vol. 21 (2016), Preidel & Borrmann, pg. 418

The prototype allows the user to build up a VCCL graph using a library of elementary nodes. Since bim+ is used

as a database, which allows a fast loading and switching of different models, especially the principle of

generality of a VCCL-graph comes into effect. As each graph is supposed to be applied to any valid building

model, the model can be switched on the fly and the graph is subsequently re-processed. Most importantly, the

application focuses particular on involving the user in the checking process. Therefore, most of the nodes are

able to display intermediate results of the processing procedure by connecting the UI nodes with the output ports.

In this way, the user is able to check if the processed result meets his expectations and requirements. Any

defined VCCL graph can be stored in a native XML-format, which basically contains a list of the used methods,

ports and edges. In this way the stored graphs can be exchanged with different project stakeholders.

The developed tool was examined for its practical applicability by domain experts. To this end, the central

regulations of DIN 18232-2 discussed in Section 4 were translated into VCCL and successful semi-automated.

Exemplarily, the user interface as well as a result of a geometric checking, which stated an intermediate result of

the VCCL processing, is shown in FIG. 22.

FIG. 22: Visualized intermediate result of a checking program: Identification of the building elements

containing an opening and bounding to room with defined properties

6. CONCLUSIONS AND OUTLOOK

There is an extraordinary relevance and importance of methods for Automated Code Compliance Checking for

the construction industry. However, the approaches developed so far have a number of shortcomings. The most

advanced commercial tools typically realize a black-box approach where the code checking procedures are

hidden from the user and remain widely unmodifiable. For many building authorities, the non-transparency

involved is not acceptable. On the other hand, the scientific approaches aiming at representing rules in an open

computer-processable format typically use notations which are hardly accessible by AEC domain experts

without profound programming skills.

To overcome these limitation, we developed an approach which is based on using a visual programming

language for encoding code checking procedures. We defined a dedicated language, the visual code checking

language (VCCL) and presented the syntax and semantics of its major components. In this paper, we presented

the first steps towards proving the practical viability of the approach. Future publications will provide more

extensive applications for a large set of different application domains.

Besides, there are a number of challenges, which have to be tackled in the future work. A general criticism of

visual programming languages is that complex translation tasks quickly lead to a very large and unclear

programs, which can no longer be interpreted by the user. In our approach we implemented various mechanisms

like the nesting approach, the embedded UI controls or the control flow elements to counteract overly complex

visual programs. However, further application examples are needed to investigate if these mechanisms are

sufficient to address the challenges.

Although it is one of the principles of the VCCL to make each individual process step visible to the user, it

becomes clear that there are application examples where the user might not be interested to have a too deep

insight in expert routines. In order to define this level of “black-box acceptance”, further test cases must be

ITcon Vol. 21 (2016), Preidel & Borrmann, pg. 419

examined. It is also likely that this level is different for the various application areas and depending on the

experience of the user. In any case, care must be taken to ensure that too specific methods which relate

exclusively to a single application case are not defined as atomic methods, because this would violate the

principle of genericity.

In building practice, there is a variety of codes and many different ways of presenting information. Therefore, it

is necessary to develop more VCCL elements in general, which are able to represent this information within a

node and finally in a VCCL graph. Based on an analysis of other standards, these representations can be

identified and serve as a basis for further development. In this way, a library of VCCL elements progressively

arises, which captures gradually more different applications.

Last but not least, the information described in a VCCL program has to be exchanged between different project

stakeholders. Currently the contents of a VCCL program can only be stored as a native XML-file but not in a

generic format. As shown in Section 2 currently there is no common data standard for the representation of the

guideline knowledge, but BuildingSmart (2016) recently founded the working group Regulatory Room, which

aims to find an open format that is able to represent this knowledge. Although it will presumably take some time

until first results will be available, it is planned to align VCCL developments with the outcomes of this working

group and make the VCCL content independently accessible.

To put it in a nutshell, the introduction of a visual language for Automated Code Compliance Checking opens up

a variety of new opportunities to improve the process by involving the user in the process.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the support by the Nemetschek Group as well as ALLPLAN GmbH for the

research project presented in this paper.

REFERENCES

Allplan GmbH (2016), “bim+”, available at: https://www.bimplus.net/de/ (accessed 8 March 2016).

Anton, I. and Tănase, D. (2016), “Informed Geometries. Parametric Modelling and Energy Analysis in Early

Stages of Design”, Energy Procedia, Vol. 85, pp. 9–16.

bim+ (2016), “Documentation”, available at: https://doc.bimplus.net/ (accessed 15 May 2016).

Böhm, C. and Jacopini, G. (1966), “Flow diagrams, turing machines and languages with only two formation

rules”, Communications of the ACM, Vol. 9 No. 5, pp. 366–371.

BuildingSmart (2016), “Regulatory Room”, available at: http://buildingsmart.org/standards/standards-

organization/rooms/regulatory-room/ (accessed 25 August 2016).

Catarci, T. and Santucci, G. (1995), “Are Visual Query Languages Easier to use than traditional ones? an

Experimental Proof”, in Kirby, M.A.R. (Ed.), People and computers X: Proceedings of HCI '95,

Huddersfield, August 1995, Cambridge Univ. Pr, Cambridge.

Codd, E.F. (1970), “A relational model of data for large shared data banks”, Communications of the ACM,

Vol. 13 No. 6, pp. 377–387.

Codd, E.F. (1991), The relational model for database management: Version 2, Reprinted with corr, Addison-

Wesley, Reading, Mass.

DIN (2007), 18232:2007-11 - Smoke and heat control systems - Part 2: Natural smoke and heat exhaust

ventilators; design, requirements and installation, Beuth, available at: https://www.beuth.de/de/norm/din-

18232-2/101330298.

Ding, L., Drogemuller, R., Rosenman, M. and Marchant, D. (2006), “Automating code checking for building

designs - DesignCheck”, Cooperative Research Centre (CRC) for Construction Innovation, pp. 1–16.

Eastman, C. (2009), “Automated Assessment of Early Concept Designs”, Architectural Design, Vol. 79 No. 2,

pp. 52–57.

ITcon Vol. 21 (2016), Preidel & Borrmann, pg. 420

Eastman, C., Lee, J.-m., Jeong, Y.-s. and Lee, J.-K. (2009), “Automatic rule-based checking of building

designs”, Automation in Construction, Vol. 18 No. 8, pp. 1011–1033.

Hils, D.D. (1992), “Visual languages and computing survey. Data flow visual programming languages”, Journal

of Visual Languages & Computing, Vol. 3 No. 1, pp. 69–101.

Hjelseth, E. (2012), “Converting performance based regulations into computable rules in BIM based model

checking software”, in Gudnason, G. (Ed.), eWork and eBusiness in Architecture, Engineering and

Construction: ECPPM 2012, CRC Press, Hoboken, pp. 461–469.

Hjelseth, E. and Nisbet, N. (2011), “Capturing normative constraints by use of the semantic mark-up RASE

methodology”, Proceedings of the 28th International Conference of CIB W78, pp. 26–28.

ISO (2011), Building construction - Accessibility and usability of the built environment No. 21542:2011,

available at: http://www.iso.org/iso/catalogue_detail?csnumber=50498 (accessed 10 October 2016).

Kerrigan, S. and Law, K.H. (2003), “Logic-based regulation compliance-assistance”, in Zeleznikow, J. (Ed.),

Proceedings of the 9th international conference on Artificial intelligence and law, ACM, New York, NY,

pp. 126–135.

Kim, H. and Grobler, F. (2009), “Design Coordination in Building Information Modeling (BIM) Using

Ontological Consistency Checking”, in Caldas, C.H. and O'Brien, W.J. (Eds.), Computing in civil

engineering: Proceedings of the 2009 ASCE International Workshop on Computing in Civil Engineering ;

June 24 - 27, 2009, Austin, Texas, ASCE, Reston, Va, pp. 410–420.

Korea Legislation Research Institute (2008), Article 34 Clause 1, available at:

https://elaw.klri.re.kr/kor_service/jomunPrint.do?hseq=33006&cseq=926869.

Lange, M. (2008), Semantische Integration von Bauplanungsinformationen am Beispiel des vorbeugenden

Brandschutzes, Zugl.: Darmstadt, Techn. Univ., Diss., 2007, Berichte des Instituts für Numerische Methoden

und Informatik im Bauwesen, Vol. 2008,1, Shaker, Aachen.

Lê, M., Mohus, F., Kvarsvik, O.K. and Lie, M. (2006), “The HITOS Project - A Full Scale IFC Test”, in

Martínez, M. and Scherer, R. (Eds.), eWork and eBusiness in architecture, engineering and construction:

Proceedings of the 6th European Conference on Product and Process Modelling [ECPPM 2006], 13 - 15

September 2006, Valencia, Spain, Taylor& Francis, London.

Lee, J.K. (2011), “Building Environment Rule and Analysis (BERA) Language”, Architecture, Georgia Institute

of Technology, 2011.

Lee, J.-K., Eastman, C.M. and Lee, Y.C. (2015), “Implementation of a BIM Domain-specific Language for the

Building Environment Rule and Analysis”, Journal of Intelligent & Robotic Systems, Vol. 79 No. 3-4, pp.

507–522.

Myers, B.A. (1990), “Taxonomies of visual programming and program visualization”, Journal of Visual

Languages & Computing, Vol. 1 No. 1, pp. 97–123.

Nisbet, N., Wix, J. and Conover, D. (2008a), “The Future of Virtual Construction and Regulation Checking”, in

Brandon, P.S. and Kocatürk, T. (Eds.), Virtual futures for design, construction & procurement, Blackwell

Pub, Oxford, Malden, MA, pp. 241–250.

Nisbet, N., Wix, J. and Conover, D. (2008b), “The future of virtual The future of virtual construction and

regulation checking”, paper presented at AEC-ST Conference Presentation, Anaheim, USA.

Park, S. and Lee, J.-K. (2016), “KBimCode-based Applications for the Representation, Definition and

Evaluation of Building Permit Rules”, in 2016 Proceedings of the 33rd ISARC, Auburn, USA, pp. 720–728.

Preidel, C. and Borrmann, A. (2015), “Automated Code Compliance Checking Based on a Visual Language and

Building Information Modeling”, in Connected to the future: 32nd International Symposium on Automation

and Robotics in Construction and Mining (ISARC 2015) Oulu, Finland, 15-18 June 2015, Oulu, Finland,

Curran Associates Inc, Red Hook, NY.

ITcon Vol. 21 (2016), Preidel & Borrmann, pg. 421

Preidel, C. and Borrmann, A. (2016), “Integrating Relational Algebra into a Visual Code Checking Language for

Information Retrieval from Building Information Models”, in Yabuki, N. and Makanae, K. (Eds.),

Proceedings of the 16th International Conference on Computing in Civil and Building Engineering. Osaka,

Japan: ICCCBE, Osaka, Japan.

Preidel, C., Borrmann, A. and Beetz, J. (2015), “BIM-gestützte Prüfung von Normen und Richtlinien”, in

Borrmann, A., König, M., Koch, C. and Beetz, J. (Eds.), Building Information Modeling: Technologische

Grundlagen und industrielle Praxis, VDI-Buch, Springer Vieweg, Wiesbaden.

Schiffer, S. (1998), Visuelle Programmierung: Grundlagen und Einsatzmöglichkeiten, Addison-Wesley, Bonn.

Solihin, W. (2004), Lessons learned from experience of code-checking implementation in Singapore,

BuildingSMART Conference, Singapore.

Uhm, M., Lee, G., Park, Y., Kim, S., Jung, J. and Lee, J.-K. (2015), “Requirements for computational rule

checking of requests for proposals (RFPs) for building designs in South Korea”, Advanced Engineering

Informatics, Vol. 29 No. 3, pp. 602–615.

United States Access Board (2014), ADA and ABA Accessibility Guidelines, available at: https://www.access-

board.gov/attachments/article/412/ada-aba.pdf (accessed 10 October 2016).

Wilson, P. (1988), “STEP and EXPRESS”, in Patrikalakis, N. (Ed.), NSF Workshop on Distributed Information,

Computation and Process Management for Scientific and Engineering Environments: 15 -16 May, Herndon,

Virginia.

Yurchyshyna, A., Faron-Zucker, C., Le Thanh, N. and Zarli, A. (2008), “Towards an ontology-enabled approach

for modeling the process of conformity checking in construction”, CEUR Workshop Proceedings, Vol. 344,

pp. 21–24.

Yurchyshyna, A. and Zarli, A. (2009), “An ontology-based approach for formalisation and semantic organisation

of conformance requirements in construction”, Automation in Construction, Vol. 18 No. 8, pp. 1084–1098.

Zhang, S., Teizer, J., Lee, J.-K., Eastman, C.M. and Venugopal, M. (2013), “Building Information Modeling

(BIM) and Safety. Automatic Safety Checking of Construction Models and Schedules”, Automation in

Construction, Vol. 29, pp. 183–195.

