

www.itcon.org - Journal of Information Technology in Construction - ISSN 1874-4753

ITcon Vol. 21 (2016), Solihin & Eastman, pg. 370

A KNOWLEDGE REPRESENTATION APPROACH IN BIM RULE

REQUIREMENT ANALYSIS USING THE CONCEPTUAL GRAPH

SUBMITTED: March 2016

REVISED: June 2016

PUBLISHED: November 2016 at http://www.itcon.org/2016/24

GUEST EDITORS: Dimyadi J. & Solihin W.

Wawan Solihin

School of Architecture, Georgia Institute of Technology, USA;

wawan.solihin@gatech.edu

Charles Eastman, Professor

School of Architecture, Georgia Institute of Technology, USA;

charles.eastman@coa.gatech.edu

SUMMARY: Specifications of the exact requirements for BIM-based rules are often much more complex than it

appears from their direct language interpretation. It is because the complete rule interpretation involves

knowledge from human experts. Therefore, detailed interpretation process of rules for the purpose of automated

rule checking implementation must be able to capture such knowledge and it must be retained throughout the

implementation process. In order to ensure both completeness and precision, the knowledge capture needs to be

formalized. We propose a formalized way to capture these requirements using a knowledge representation

approach. Detailed analysis of the structure of the rules points to the conceptual graph (CG) as a suitable

method for this purpose due to its expressiveness, which allows unambiguous description of the requirements.

Such unambiguous description can be understood by all the participants in the implementation efforts. The

conceptual graph is a representation that conforms to the first order logic that makes it suitable for the job.

Using the conceptual graph, rules can be broken into their atomic rules and incorporates the unwritten domain

checking knowledge that if done right will remove ambiguities that often plague building codes. It also provides

a standardized way to capture and document the model data requirements and the high level checking logic as

their functional requirements. With this, a layer that often separates the rule experts and the implementers can

be eliminated, resulting in clarity and immediate usefulness for the implementation. The validity of this assertion

is demonstrated using the comparison to the actual corresponding implementation of the rules.

KEYWORDS: BIM, Knowledge Representation, Conceptual Graph, Rule Checking

REFERENCE: Wawan Solihin, Charles Eastman (2016). A knowledge representation approach in BIM rule

requirement analysis using the conceptual graph. Journal of Information Technology in Construction (ITcon),

Special issue: CIB W78 2015 Special track on Compliance Checking, Vol. 21, pg. 370-401,

http://www.itcon.org/2016/24

COPYRIGHT: © 2016 The author(s). This is an open access article distributed under the terms of the Creative

Commons Attribution 4.0 International (http://creativecommons.org/licenses/by/4.0/),

which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly cited.

mailto:wawan.solihin@gatech.edu
mailto:charles.eastman@coa.gatech.edu

ITcon Vol. 21 (2016), Solihin & Eastman, pg. 371

1 INTRODUCTION

One of the important steps in a rule checking implementation process is the rule requirement analysis. This step

is unique for building rules, especially building codes, because it involves a step known as a rule interpretation.

The aim of the interpretation step is not only to understand the intent of the rule but also to gather knowledge

from the rule experts (C Eastman, Lee, Jeong, & Lee, 2009). In many of research papers on this subject, the

importance of the interpretation process has not received its due attention. Attention appears to be given only

when the effort relates to the real software implementation in which the actual users or experts are involved

because the accuracy of checking becomes critical. One example of such cases is the implementation of the

automated rule checking system at the national level in Singapore - CORENET ePlanCheck (Khemlani, 2005;

novaCITYNETS, 2000; Swaddiwudhipong & Kog, 2000). A Recent project in South Korea may cover a similar

scope, but it is still in the early stage of development (Kim, 2015). Based on the experience in implementing

CORENET ePlanCheck, the interpretation step can take as much as 30% of the total time to implement a rule.

Complex rules typically found in building codes are a combination of several aspects that contribute to their

complexity. They involve the language structure, the domain knowledge embedded in the rules, and their logic

structure. Added to those technical aspects of the rules is the knowledge of the human experts. The knowledge

covers many implicit assumptions within the relevant domain and, more importantly, the unwritten knowledge

on how the experts interpret the rules. This is usually an accumulated knowledge over many years of experience

dealing with the real world cases. A study by Fiatech confirmed that when human interpretation is involved,

inconsistencies are expected. Different officers tend to interpret the rules differently, often colored by their

experience and locality (Fiatech, 2012). Some rules in the CORENET ePlanCheck implementation went through

multiple iterations and revisions because of the same reason when multiple reviewers are involved. To make the

matter worse, software developers who are in charge of translating the semantic knowledge of the rule

requirements into computer codes are not the ones directly involved in the rule interpretation.

The role of knowledge capture extends beyond just the interpretation step to the entire rule checking system

development. The typical rule checking development process can be described in the diagram shown in Figure 1.

It involves multiple actors in different stages of the workflow. Apart of the rule analysts who capture the rule

requirements from the rule texts and the human experts for the benefit of the software developers, part of the

knowledge should also be accessible to the BIM authoring tool providers for their support of the relevant data

exchange requirements. The knowledge also is required by the modeler who will design buildings and submit the

design for compliance checks. The requirement for data exchange is an important step that has been recognized.

BuildingSMART has defined standard processes to capture the data exchange requirements using IDM

(Information Delivery Manual) and MVD (Model View Definition) (C. Eastman, Jeong, Sacks, & Kaner, 2010;

Charles Eastman & Sacks, 2010). Whereas the modeler is typically given the modeling guidelines or standards to

follow. However, the guidelines are only useful when there are clear specifications on what information must be

explicitly in the model for specific purposes or rules.

This paper addresses the issue of formalizing the knowledge capture during the interpretation process for the

purpose of documenting the rule requirements using a knowledge-based approach. The aim is to create a

consistent representation of the rule requirements and the expert knowledge to minimize knowledge loss when

such knowledge flows among the actors involved in the entire process of rule checking system development.

This paper is organized in the following manner. First, we will discuss current approaches to capturing the rule

requirements. It is followed by a detailed description how this was done in CORENET ePlanCheck project.

From here we will begin to look into the semantic representation of the rule requirements as knowledge. In the

next section a description how the Conceptual Graph fits the purpose set forth in this paper will be described,

followed by discussions on the issue of granularity of the conceptual graph and the potential mapping from the

CG to MVD and UML. To show the usefulness of the approach, we validated a few CG with the actual

implementation of the rules using the original CORENET ePlanCheck implementation and using our research

work on BIM Rule Language (BIMRL) (Wawan, 2016). In this paper, we will focus on IFC data format as the

source of BIM data. IFC is a widely used standard in the AECO industry and it has been published as an ISO

standard (ISO, 2013).

ITcon Vol. 21 (2016), Solihin & Eastman, pg. 372

Figure 1 - A Typical Rule Implementation Process and the Knowledge Flow

2 CURRENT APPROACHES TO CAPTURE THE RULE REQUIREMENTS

For many years since rule checking research started in the 1960’s with Fenves’s introduction of the decision

table to define the computable form of building structural codes (Fenves, 1966), many different approaches have

been proposed. In general, there are several broad categories with respect to the focus of the approaches. They

are semantic rule structure, production rule, logic based implementation, and language driven.

Among efforts with a focus on the semantic rule structure is the RASE methodology that tags the rules based on

four classifications - Requirement, Applicability, Selection, Exception (Beach, Kasim, Li, Nisbet, & Rezgui,

2013; Hjelseth & Nisbet, 2011). Since RASE methodology only deals with the semantic rule structure, it

requires another method for the rule definition and execution. Using RASE approach, several implementation

methods have been proposed including using the IFC constraint schema (Hjelseth & Nisbet, 2010) and

combining it with rule engine (Beach et al., 2013). Another more recent trend that is gaining popularity is the

semantic web approach using OWL and RDF graph (Bouzidi, Fies, Faron-Zucker, Zarli, & Thanh, 2012;

Pauwels et al., 2011; Yurchyshyna & Zarli, 2009). In this approach, model data is translated into RDF triplets

and stored into the RDF graph. Using SPARQL as the query language, rules can be defined by interrogating the

graph. Rules potentially can be coded into RDF too. This theoretically will make the rule execution to be

straightforward because both data and rules share the same graph and thus language (C. Zhang & Beetz, 2015).

There is also a Natural Language Processing approach that has been proposed (Salama & El-Gohary, 2013; J.

Zhang & El-Gohary, 2012). These methods suffer from constraint to only explicit data inside the IFC model, and

to the explicit terms that can be identified in the language of the rules. This restricts the usefulness of the

approach to only very few straightforward rules dealing with the individual objects and their properties and

explicit relationships. According to (Solihin & Eastman, 2015), this approach mainly is able to handle class-1 of

building rules. This may change in the future if the 3D spatial query is supported in SPARQL in future. OGC

currently has published a geographic query language for RDF data called GeoSPARQL (OGC, 2012). It supports

only 2D data for GIS related queries.

The second approach using production rule seems intuitively fits well with the rule checking since it deals with

rules after all. Each rule in the most basic form should follow the following pattern: if <condition> then

<action>, which is the essence of the production rule. In this approach, rules will need to be broken into their

atomic rules. A rule engine will be used to perform inference from the database of rules based on the facts being

fed into the engine from the building model. In general, it is expected that the rule engine provides a true or false

answer with respect to whether the fact complies or not compliant with the pre-defined rules. An example of

R
u

le
 C

h
ec

ki
n

g
Im

p
le

m
en

ta
ti

o
n

Pr
o

ce
ss

O
w

n
er

/
R

u
le

ex

p
er

t
Ex

ch
an

ge
R

u
le

im

p
le

m
e

n
te

r
Ex

ch
an

ge
B

IM
 a

u
th

o
ri

n
g

to
o

l
d

ev
el

o
p

m
en

t
Ex

ch
an

ge
En

d
 u

se
r/

M

o
d

el
er

Rule
Definition

Rule
Interpretation

Rule
Specification

Rule
Implementation

Development
Specification

Product
Development

Modelling
Submission

/ Check

Review
Submission / Check

Rule definitions Rule
specifications

MVD

Building Model

Approved
?

Interpretati
on Review

Testing

Approved
?

Verification

Deployment

Approved Rule
Specifications

Yes

No

Test
Specifications

Embedded Knowledge

Product Feature
 Specifications

Modelling
Guidelines

Submission package
(incl. Building Model)

Submission package
(incl. Building Model)

No

Yes

Test
System

Embedded Knowledge

Embedded Knowledge

Checking
results

Issues

Production
System

Issues

Knowledge

Knowledge

Knowledge

Knowledge

Knowledge

Knowledge FlowKnowledge

Legend:

Knowledge
Embedded Knowledge

Embedded
Knowledge

ITcon Vol. 21 (2016), Solihin & Eastman, pg. 373

research papers reporting the use of this approach is found in (Tan, Hammad, & Fazio, 2010). Since the

production rules are static and explicit, this approach also suffers from the limitation that it works only with the

explicit data. This limitation is similar to the semantic language approach. The production rule approach,

however, may allow support for an extended data, but it must be hard-coded to be executable by the rule engine.

This usually is restricted only to the well-defined requirements and the numbers are usually limited. It is also not

scalable easily to support a wide range of rule requirements from different sub-domains and different countries.

The implementation of the built-in extensions usually is a black-box to the user.

The third approach using logic based implementation is used in the commercial software developments, i.e.

Solibri and FORNAX (Solibri; Solihin, Shaikh, Rong, & Poh, 2004), and some research works (J. M. Lee, 2010;

S. Malsane, J. Matthews, S. Lockley, P. E. Love, & D. Greenwood, 2015). They both employ parametrized but

hard-coded rules into the system. This approach is categorized as a black-box approach (Preidel & Borrmann,

2015) since users do not have any idea how the actual checking is done. The advantage of this approach lies in

its ability to perform very complex rule without being constrained by another form of expression. It is only

limited by its own internal data model, the built-in capability in the system, and as far as a programming

language could do. The disadvantage is that it is hard to adapt to changing requirements of the rules.

The last category of approaches is the language-driven approach. BERA language is one of the approaches (J. K.

Lee, 2011). Using the domain-specific language approach allows queries to the model to be done and a

programming construct to be run on the data in a more transparent way since it is driven by the rule experts

themselves. BERA, however, is still lack of generality and it is unable to support complex rule structure. The

language itself is also not extensible without modification to the syntax. The main weakness, however, is that

BERA develops its own executing environment, which limits its capability to support more complex logic in the

complex rules. Recently, there is a preliminary work on using visual language (Preidel & Borrmann, 2015). This

approach strikes a balance between a need not to write a program and to support more complex rule logic. It may

be a promising approach in future provided that the toolset is rich enough to support the rule requirements.

In all the above discussions, the approaches focus on translating the rules to the computable software modules.

Although some papers recognized the need to translate knowledge into computable forms including the expert

knowledge, they rarely deal with the need to formalize the rules and their logic requirements for the purpose of

documentation and communication. Only papers or projects that deal with the actual implementation beyond the

proof-of-concept realizes the importance of capturing the knowledge into a form that is effective for knowledge

retention, flow, and communication. This concern is, in fact, a typical software development activities. The

unique issue one has to deal with when developing a rule checking system is the unique challenge managing a

large number of rules, capturing knowledge from years of experience from the rule experts, and translating those

into computable forms. In the next section, we present a brief description of the process done in developing

CORENET ePlanCheck with the focus on the knowledge flow.

3 CORENET EPLANCHECK DEVELOPMENT PROCESS

CORENET ePlanCheck project followed a similar process shown in Figure 1. Relevant to this paper, we will

focus on the knowledge flow. The knowledge mainly originated from the codes and the owners, through the

interpretation process. The process involved interviews and documentation of each code in scope. It resulted in

detailed analysis of the rules that are captured in an extensive documentation. Much of the documentation

captures more detailed descriptions or explanation of the rules, the checking requirements, the objects in focus

for checking, explanations of implicit assumptions and dependencies, checking logic, and the rule exceptions.

Figure 2 shows a sample of such documentation. The documentation contains several sections:

a. Rule header section, which described the rule number from the original source and the author of the

document plus the date when the document was created.

b. Interpretation section. In the interpretation section, diagrams or floor plans are often used in the left

column to aid understanding of the clause and to give the context to which the rule applies. On the

right-hand side, the text describing the interpretation is usually listed in a numbered list. The

description may contain a clarification of terms, checking conditions, checking logic, constraints

and any other knowledge obtained from interviews with the owner of the rule.

c. Interpretation tracking section and approval or acceptance of the interpretation document.

d. An MVD-like section. It is called an MVD-like section since it was done prior to the definition of

MVD. It captures what required to be in the IFC model, this is it in essence what MVD is. It also

contains an early assessment of the level of difficulty.

ITcon Vol. 21 (2016), Solihin & Eastman, pg. 374

The sections below (highlighted in yellow in the document) are internally used within the implementation team:

e. Usage scenario section. It is being filled by the domain expert to assist the development team in

understanding the requirement, scope, and scenarios for testing.

f. Comments and feedback section.

g. CAD input requirements section, which is intended to be used for the implementer’s agreement

when this MVD is implemented by the BIM authoring tool vendor.

The sample is arbitrarily chosen because of its completeness to represent the documents and its compactness in

size. Many other documents are much longer than this. As these are description-based documentation that has

been done by various people, there was difficulty in maintaining a uniform quality of the documents and there

were plenty of “lost in translation” cases. These require a certain degree of redundancy to “interpret” the

documents at every major step of development whenever handover from one team to the other occurred, for

example from the rule analyst to the developer and from the developer to the tester.

Figure 2 - A Sample of CORENET ePlanCheck Rule Interpretation Documentation

After CORENET ePlanCheck, there had not been any other major attempt to develop a similar system at the

same scale. Only recently, the Korean authority has launched a similar initiative as CORENET (Kim, 2015).

Among the activities is rule checking system. From the information available, it follows the production rule

approach where rules are broken down into the atomic sentences following a form: if <condition> then

<action> else <action>. It is combined with the object model that encapsulate IFC objects including the

geometry and adding methods to the objects as an extension of the rule requirements (J. K. Lee, 2015). This is

essentially the same approach as FORNAX (Solihin et al., 2004). It is not obvious at present whether the

ITcon Vol. 21 (2016), Solihin & Eastman, pg. 375

knowledge capture involves rule experts. It is also too early to see how this project scale beyond the first phase

of rules that usually involves mostly simpler rules (as described as class-1 and a section of class-2 in (Solihin &

Eastman, 2015)).

4 SEMANTIC KNOWLEDGE REPRESENTATION OF BUILDING RULES

Recognizing the importance to address the knowledge gap and reducing the information loss, this study looks

into a suitable representation to capture semantic knowledge for building rules. The most suitable method

appears to be from the field of Knowledge Base (KB) that is a branch of Artificial Intelligence (AI). But even

within KB, there are many different approaches including First Order Logic (FOL), Description Logic (DL), and

Conceptual Graph (CG). CG was originally proposed by Sowa in 1976 (John F. Sowa, 1976) and further

developed in 1984 (J. F. Sowa, 1984). The Conceptual Graph (CG) offers intuitive, easy to read and suitable to

capture semantic knowledge representation of the rules (Chein & Mugnier, 2008). CG has a semantic foundation

in FOL and the basic form of CG can be mapped 1-to-1 directly to FOL. In this paper, we propose the use of

Conceptual Graph (CG). The CG is designed to capture knowledge of the rule into its basic logic structure and

the data involved. The aim is to enable effective communication between all users and to identify exact data,

relationships between data, and any required functions to encapsulate the complex algorithms involved in

solving a rule. The CG if used effectively will allow transparency into otherwise a black-box in the

implementation. The white-box approach, as opposed to the black-box approach, allows the use of CG to capture

the requirement for derived data and relationships that are vital to rule checking implementation.

Thus, the goals of using the CG are:

 As an expressive tool to capture knowledge of rules in term of their requirements for automation that

are easily understood by the rule experts, who are typically not familiar with computer programming.

 Ability to capture data requirements of the building objects and their relationships or interactions with

other building objects.

 Direct mapping of the CG concepts into IFC entities, derived entities and extension functions. The

mapping is important for both defining MVDs and for software development efforts.

 Ability to break down complex rules into their atomic rules in a systematic and standardized way.

4.1 Conceptual Graph as a Knowledge Representation of Building Rules

With its history in semantic networks, CG defines rectangles to represent concept nodes, ovals represent

conceptual relations and diamond shapes represent functions (an extension to CG). The nodes are connected by

arcs with an arrowhead pointing to the ellipse, which marks the node as the first argument of the relation. The

node with the arrow pointing away from the ellipse marks the last argument (Figure 3).

Figure 3 - Basic Definitions of Conceptual Graph

A Concept node typically represents an object, but it can also be extended to represent a whole atomic rule. This

is achieved using a concept called coreference that links two different nodes. Coreferent nodes should be able to

be merged into just a single node. They are represented by dashed line (Figure 4).

Concept Node Relation Concept Node

Function Concept Node

Relation Concept Node

ITcon Vol. 21 (2016), Solihin & Eastman, pg. 376

Figure 4 - Coreferent Node

The CG is used to represent the semantic knowledge of the rules. A rule will be represented by a series of

connected graphs as above.

4.2 Notational Extension

Due to the complexity of building rules, there is a necessity to add a few notational extensions into the graph for

improved readability of the CG. Figure 5 shows such extensions:

Figure 5 - Notational Extensions for CG

 Nodes that is shaded represent a derived concept or concept that will require additional support during

the implementation using computer algorithm. The requirement for a derived concept has been

identified to address more complex classes of rules (Solihin & Eastman, 2015). The derived concept

usually requires support from a computer algorithm that is applied to the basic building model.

FORNAX
TM

 , which was developed for CORENET ePlanCheck, used the same concept (Solihin et al.,

2004), and very recently a rule checking effort in the UK took a similar approach (S. Malsane, J.

Matthews, S. Lockley, P. E. D. Love, & D. Greenwood, 2015).

 Specific labels: OR and (NOT) ¬ to represent logical disjunction () and negation (). By default, if

there are more than one link connecting a node, the operation is a logical conjunction (). A thin line

box surrounding the negation block is part of the standard CG.

 Thin dashed line with rounded rectangle represents a special block, which could be used to show the

exception rule.

Concept Node Relation Concept Node

Function
Concept Node

(extension)

Coreferent Node Relation Concept Node

Function Concept Node

Relation Concept Node

Coreferent Node Relation Concept Node

Function Concept Node

Extension/
Derived concept

Relation Concept Node

OR

(NOT)

Extension/
Derived concept

IBC 905 Dependency

Exception #1

ITcon Vol. 21 (2016), Solihin & Eastman, pg. 377

 A dotted line connecting a concept node to a double border box indicates a dependency for the concept

that is specified in another rule. This is important information that connects a certain concept with a

specific rule.

5 TRANSLATION OF RULES INTO THE CONCEPTUAL GRAPH

Translation of rules into CG is not always straightforward sequential mapping because the way the rules are

written. Generally, the translation step is done during and after the interpretation activity using the following

steps:

1) Identify the main concept that the rule is applicable to. The minimum requirement in this step is to

identify a concept without any qualification. Typically the main concept is constrained with a filter

or specifications for a specific type. For example:

 “Spaces (instance) must be from agreed list” (Solibri) will identify the concept applicable to

this rule as a “Space” instance without any further specification. In First Order Logic (FOL)

this rule is represented with ∀𝑥(𝑆𝑝𝑎𝑐𝑒(𝑥))

 “The underground building shall be equipped throughout with a standpipe system …” (IBC

2009 405.10) will identify that the concept is applicable to a building, but not just any kind of

building. It specifies an underground building. In FOL it is represented with ∃𝑥(𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔(𝑥),
𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦(𝑥, 𝑡𝑦𝑝𝑒: 𝑈𝑁𝐷𝐸𝑅𝐺𝑅𝑂𝑈𝑁𝐷))

In some cases, the concept may not be explicit. In this case, a level of abduction is needed. For

example:

 “Model should have components” (Solibri). In this rule, model refers to the building model as a

whole because the rule requires any type of entity can be specified. Since the rule comes from

Solibri Model Checker, which provides a template, this rule can only be operational once user

assigns what entity type(s) that the rule should apply to.

2) Identify atomic sub-rule(s). A rule, especially in building codes, often specifies more than one sub-

rules that are independent and are operating on the same entity. In this case, the sub-rules will be

defined as separate rules under the same heading. For example:

 “Doors, when fully opened, and handrails shall not reduce the required means of egress width

by more than 7 inches (178 mm). Doors in any position shall not reduce the required width by

more than one-half. Other nonstructural projections such as trim and similar decorative

features shall be permitted to project into the required width a maximum of 11/2 inches (38

mm) on each side.” (ICC, 2009).

This rule is applicable to doors that open to the egress path. There are three sub-rules, one deals

with the space occupied by the door at the fully open position, the second one deals with the

reduction of egress width due to the door opening, and the third one specifies maximum projection

of the trim and decorative features of the door into the egress space.

3) Identify atomic constraint(s). The general structure of a building rule is a specification of the main

building entity with its details, followed by one or many constraints. The constraints are not

restricted to the main entity, but can also apply to other entities that are related to the main entity or

even to an entity within the constraint, i.e. constraint within constraint. This increases the

complexity of the rule. For example:

 “All patient rooms must be visible from the nurse station”

This rule has a constraint on the main entity, the nurse station. The constraint specifies that the

patient rooms must be within the line of sight from the nurse station.

4) Define the appropriate CG of the rule by connecting the concepts using relations and functions until

the consistent semantic is clearly self-describing.

ITcon Vol. 21 (2016), Solihin & Eastman, pg. 378

5.1 Applying the Semantic Representation CG to Building Rules

In this section, several rules are selected to represent the ranges of rules that are applicable to buildings. Several

rules are selected from different classifications of rules as defined in (Solihin & Eastman, 2015), mainly for

class-1 to class-3. Class-4 does not create new semantics or complexity, but it introduces requirements in term of

the algorithmic solution to present a “proof of solution”. Therefore, it does require additional semantics than the

other three classes.

5.1.1 Class-1 rule (rules that require a single or small number of explicit data) example

 “Spaces must be from agreed list” (Solibri)

Figure 6 - Class-1 rule example

In FOL, the above rule (Figure 6) can be expressed as:

This rule checks the existence of properties Name and LongName, and checks

IfcClassificationReference.ItemReference using a simple query function that checks for the existence of a

property or a classification. Name and LongName properties are existing properties in IFC schema and

IfcClassificationReference is the IFC entity that is used to assign classification item to an entity, which is

expected in this case for an IfcSpace.

5.1.2 Class-2 rule (Rules that require simple derived Attribute Values) example

(42) 3.2.2 Design Criteria (Singapore, 2013)

f) The discharge pipe shall not be located in places where it can cause health and safety hazards such as

locating the discharge pipe above any portable water storage tank and electrical transformer/ switchgear.

Space

Property Name

Exists
ClassificationRefere
nce.ItemReference

LongName Query

Query

Valid LongName
List

Valid Name List

Query
Valid

Classification
Code

∀𝑎(𝑆𝑝𝑎𝑐𝑒(𝑎)) ∧ ∃𝑎((𝑆𝑝𝑎𝑐𝑒(𝑎)⋀𝑄𝑢𝑒𝑟𝑦(𝑎, 𝑁𝑎𝑚𝑒))⋀(𝑆𝑝𝑎𝑐𝑒(𝑎)⋀𝑄𝑢𝑒𝑟𝑦(𝑎, 𝐿𝑜𝑛𝑔𝑁𝑎𝑚𝑒))

∧ ∃𝑎((𝑆𝑝𝑎𝑐𝑒(𝑎)⋀𝑄𝑢𝑒𝑟𝑦(𝑎, 𝐼𝑓𝑐𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒. 𝐼𝑡𝑒𝑚𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒))

ITcon Vol. 21 (2016), Solihin & Eastman, pg. 379

Figure 7 - Class-2 Rule Example

Representation in FOL for the above CG (Figure 7):

This expression requires an extension function to construct a transient Box geometry based on a specified

location and dimension. This Box is used to evaluate the existence of any type of object within the Box that is a

type of a potable water tank, a transformer, or a switching device. Their existence within the Box is not allowed.

As shown in Figure 7, in this class-2 rule, we start to see the need for extensions to generate a new concept.

Three such extensions are required in here: a simple box geometry and two functions to construct the box and to

perform a spatial operation to find the specific object types that interact with the constructed box that is placed

below the discharge pipe. Since this rule comes from CORENET ePlanCheck, it is interesting to see how the CG

representation compares to the original interpretation document (Figure 8). From this comparison, CG clearly is

more compact, precise and self-describing compared to the original specifications used in CORENET

ePlanCheck.

This example also presents an interesting possibility that the CG specifications can also be done in a different

way. During the actual implementation of this rule, one will notice that applying the rule to all instances of

discharge pipes may require quite significant computing efforts due to the potentially large number of the pipes.

However, the number of instances of the potable water tank, switchgear, or transformer, should be much less in

the model. Therefore, it is more practical to invert the order of the rule definition. With this, the specific

equipment becomes the main objects to check and the pipes become the objects that defined the constraint

criteria. The logic of checking does not change much, except that the transient bounding box now should be

constructed upward instead of original specifications, which is downward. The inverted version of the CG is

shown in Figure 9.

IfcPipeSegment

Construct
Geometry:

Box

Location

Property
Dimension:

(X, Y, Z)

Placement:
- Point: (X, Y, Z)
- RelPlacement:
IfcElement.Placement
- AxisAlignment: (x, y, z)
- Offset: (+/-a, <axis>)

Interact

IfcTank Property
Usage:

POTABLE

Member

System

Type Discharge

IfcTransformer

OR

IfcSwitchingDevice

OR

(NOT)

∃𝑏∀𝑎(∀𝑔(𝐼𝑓𝑐𝑃𝑖𝑝𝑒𝑆𝑒𝑔𝑚𝑒𝑛𝑡(𝑎)⋀𝑆𝑦𝑠𝑡𝑒𝑚(𝑏)⋀𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒(𝑔)⋀𝑀𝑒𝑚𝑏𝑒𝑟(𝑏, 𝑎)⋀𝑇𝑦𝑝𝑒(𝑏, 𝑔))

∧ (∀𝑐∀𝑝∀𝑑(𝐵𝑜𝑥(𝑐)⋀𝑃𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡(𝑝)⋀𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛(𝑑)⋀𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑐, 𝑝)⋀𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦(𝑐, 𝑝))

∧ 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡(𝑎, 𝑐)) ∧ ¬(∃𝑤∃𝑡∃𝑚(𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡(𝑐, (∀𝑢(𝐼𝑓𝑐𝑇𝑎𝑛𝑘(𝑤)

∧ 𝑈𝑠𝑎𝑔𝑒(𝑢, 𝑃𝑂𝑇𝐴𝐵𝐿𝐸)⋀𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦(𝑤, 𝑢))⋁𝐼𝑓𝑐𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟(𝑡)⋁𝐼𝑓𝑐𝑆𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔𝐷𝑒𝑣𝑖𝑐𝑒(𝑚))))))

ITcon Vol. 21 (2016), Solihin & Eastman, pg. 380

Figure 8 - The Original CORENET ePlanCheck Interpretation Document and Program Specifications for Rule

3.2.2 (f)

Figure 9 - The Inverted Version of CG Specification for Rule 3.2.2 (f) as Shown in Figure 7

(A) The Original Interpretation Document fot rule 3.2.2 Design Criteria (f)

(B) The Program Specifications by the Software Implementer

IfcElement

IfcTank Property
Usage:

POTABLE

IfcTransformer

IfcSwitchingDevice

IfcPipeSegment

Member

System

Type Discharge

Construct
Geometry:

Box

Location

Property
Dimension: (X,

Y, Z)

Placement:
- Point: (X, Y, Z)
- RelPlacement:
IfcElement.Placement
- AxisAlignment: (x, y, z)
- Offset: (+/-a, <axis>)

Interact

(NOT)

ITcon Vol. 21 (2016), Solihin & Eastman, pg. 381

5.1.3 Class-3 rule (Rules that require extended data structure) example

IBC 1005.2 Door encroachment. Doors, when fully opened, and handrails shall not reduce the required means

of egress width by more than 7 inches (178 mm) ○,1. Doors in any position shall not reduce the required width

by more than one-half ○,2. Other non-structural projections such as trim and similar decorative features shall

be permitted to project into the required width a maximum of 1-1/2 inches (38 mm) on each side ○,3. (ICC,

2009)

Figure 10 - Class-3 Rule Example – Sub-rule #1

In FOL, the above graph for sub-rule #1 can be expressed as:

Door PATH
Open

To
Property IsEgress: TRUE

Property
Panel Dimension:

(x,y,z)

LessEqual
Y-dim (or min

Dim): 7"

Construct

Door max
opening position:

SolidGeometry

ComputeXAxisAl
igned

Ydim Box x-
axis aligned

HasPanels

DoorPanel

∀𝑑∃𝑝((𝐷𝑜𝑜𝑟(𝑑)⋀𝑂𝑝𝑒𝑛𝑇𝑜(𝑑, 𝑝)

∧ 𝑃𝐴𝑇𝐻(𝑝)⋀𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦(𝑝, 𝐼𝑠𝐸𝑔𝑟𝑒𝑠𝑠: 𝑇𝑅𝑈𝐸))⋀∀𝑞((𝐷𝑜𝑜𝑟𝑃𝑎𝑛𝑒𝑙(𝑞)⋀𝐻𝑎𝑠𝑃𝑎𝑛𝑒𝑙𝑠(𝑑, 𝑞)

∧ 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛(𝑟)⋀𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦(𝑞, 𝑟: (𝑥, 𝑦, 𝑧))) ∧ ∀𝑏∀𝑦(𝐵𝑜𝑥(𝑏)⋀𝑌𝐷𝑖𝑚(𝑦)⋀𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡(𝑞, 𝑏)

∧ 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑋𝐴𝑥𝑖𝑠𝐴𝑙𝑖𝑔𝑛𝑒𝑑(𝑏, 𝑦) ∧ 𝐿𝑒𝑠𝑠𝐸𝑞𝑢𝑎𝑙(𝑦,𝑚𝑖𝑛𝑌𝐷𝑖𝑚: 7"))))

ITcon Vol. 21 (2016), Solihin & Eastman, pg. 382

Figure 11 - Class-3 Rule Example – Sub-rule #2

Sub-rule #2 can be expressed in FOL as:

Figure 12 - Class-3 Rule Example – Sub-rule #3

Class-3 rules require extensive extensions both to the building model in the form of derived data as well as

functions for the purpose of computation, which includes geometry operations. The above rule highlights the

nature of complexity besides the needs for an extension, but also nested and branching conditions of the sentence

that can occur in any entity within the statement.

Door PATH
Open

To
Property IsEgress: TRUE

Construct
SpaceEncroachm

ent:
SolidGeometry

Open
To

Door

Compute

Minimum
Clearwidth

LessEqual
Minimum

Clearwidth
Required

Query
Spaces

Upstream

Query OccupancyLoad

Compute
ExitCapacity

Required

Compute

Adjacency
Query

Door
(within x ft)

Door

Space

Open
To

Member
Of

Property
Panel

Dimension

PivotLocation

Door PATH
Open

To
Property IsEgress: TRUE

Face at +Y
direction

Calculate
+Y distance

1-½ (38 mm)
protrusion

Construct
AABB

Transform back
to WCS

Transform
to ECS

Host object Wall
Face at Door s

+Y direction

LessEqual

∀𝑑∃𝑝 ((𝐷𝑜𝑜𝑟(𝑑)⋀𝑂𝑝𝑒𝑛𝑇𝑜(𝑑, 𝑝)⋀𝑃𝐴𝑇𝐻(𝑝)⋀𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦(𝑝, 𝐼𝑠𝐸𝑔𝑟𝑒𝑠𝑠: 𝑇𝑅𝑈𝐸))

∧ ∃𝑦∃𝑥(𝑆𝑝𝑎𝑐𝑒(𝑥) ∧ 𝑀𝑒𝑚𝑏𝑒𝑟𝑂𝑓(𝑝, 𝑥) ∧ 𝑂𝑝𝑒𝑛𝑇𝑜(𝑑, 𝑥)

∧ 𝐷𝑜𝑜𝑟𝐿𝑖𝑠𝑡(𝑦)⋀𝐴𝑑𝑗𝑎𝑛𝑐𝑒𝑛𝑐𝑦𝑄𝑢𝑒𝑟𝑦(𝑑, 𝑦, 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒) ∧ 𝑂𝑝𝑒𝑛𝑇𝑜(𝑦, 𝑥))

∧ ∀𝑠∀𝑜∀𝑤(𝑆𝑝𝑎𝑐𝑒(𝑠)⋀𝑄𝑢𝑒𝑟𝑦𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚(𝑝, 𝑠)

∧ 𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝐿𝑜𝑎𝑑(𝑜)⋀𝐸𝑥𝑖𝑡𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑐)⋀𝑄𝑢𝑒𝑟𝑦(𝑠, 𝑜)⋀𝐶𝑙𝑒𝑎𝑟𝑊𝑖𝑑𝑡ℎ(𝑤)

∧ 𝐶𝑜𝑚𝑝𝑢𝑡𝑒(𝑜, 𝑐, 𝑤))

∧ ∀𝑙∀𝑚∀𝑒∀𝑣(𝑃𝑖𝑣𝑜𝑡(𝑙)⋀𝑃𝑎𝑛𝑒𝑙(𝑚)⋀𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦((𝑑, 𝑦), (𝑙, 𝑚))

∧ 𝑆𝑝𝑎𝑐𝑒𝐸𝑛𝑐𝑟𝑜𝑎𝑐ℎ𝑚𝑒𝑛𝑡(𝑒)⋀𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡(𝑥, (𝑑, 𝑦), 𝑒) ∧ 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦(𝑒, (𝑙, 𝑚))

∧ 𝑀𝑖𝑛𝐶𝑙𝑒𝑎𝑟𝑤𝑖𝑑𝑡ℎ(𝑣)⋀𝐶𝑜𝑚𝑝𝑢𝑡𝑒(𝑒, 𝑣)⋀𝐿𝑒𝑠𝑠𝐸𝑞𝑢𝑎𝑙(𝑣, 𝑤)))

ITcon Vol. 21 (2016), Solihin & Eastman, pg. 383

Sub-rule #2 in this example is an entirely independent rule from the sub-rule #1, except that it applies to the

same main entity. Here, it is perfectly ok to separate the sub-rule as a new independent rule. In other cases, the

sub-rule may serve as an exception to a nested rule inside the main rule. In this case, the use of coreferent

concept will become handy.

Sub-rule #3 requires computation of the amount of space occupied by door protrusion into the space. It can be

computed using its Optimized Bounding Box (OBB) and compared to the face of the space that it is facing.

6 THE GRANULARITY OF THE KNOWLEDGE CAPTURE

For the purpose of capturing knowledge for rule requirements and communication, the level of granularity of the

information is important. Too coarse of the granularity risks the requirements to be ambiguous, but too fine of

the granularity will also increase complexity and makes the specifications unreadable. One has to strike a

balance that the essential details of the knowledge should be captured but some details may be left to the

implementation. However, there should be no ambiguity of what the item is all about. To illustrate this, we use

an example from the best practice used in a modern hospital design in the USA:

All patient rooms shall be visible from the nurse station.

At the first glance, the above rule may be captured simply as followed (Figure 13).

PATIENT ROOM Visibility
NURSE

STATION

Figure 13 - The highest level of CG that captures the patient room visibility rule

The patient room and nurse station are both represented as spaces and, therefore, needs to be defined using the

relationship type (Figure 14). In this CG, the function “Visibility” does not have any details. Thus, this

knowledge is too coarse of the granularity and it is equal to a black-box.

SPACE Visibility SPACE

Type

PATIENT ROOM

Type

NURSE
STATION

Black-box

Figure 14 - The visibility rule as a black-box

One possibility to refine the granularity is to limit the visibility for the patient room and the nurse station only to

those on the same floor (Figure 15). However even with this refinement, the visibility is still a black-box. To

further the refinement, the visibility needs to be further defined with additional input from the rule experts. One

of the approaches for the visibility is using a line of sight from the nurse station to the opening of the patient

room that allows visibility such as a door, opening or a glass window. The access to the patient room is typically

from the nurse station that shares the same corridor space using the boundary information between spaces and

element connecting the spaces such as the door, opening or window.

ITcon Vol. 21 (2016), Solihin & Eastman, pg. 384

SPACE Visibility SPACE

Type

PATIENT ROOM

Type

NURSE
STATION

Location

BUILDING
STOREY

Location

Figure 15 - a finer granularity of the visibility rule

Extending the above diagram to incorporate this additional specifications results in Figure 17. In this diagram,

there is also another checking function introduced (checking function #2). The purpose of this checking function

is to compute the actually visible portion of the patient room by computing the volume intersection of the patient

room and a frustum created by connecting the starting point at the nurse station location and the ray extended

plane of the door, opening or window. By the percentage of this volume intersection, the estimated real visibility

can be computed and compared. Figure 16 describes this checking requirements visually.

Figure 16 - Visual description of constructing the line of sight and the view frustum

The visible part of the patient
room from the nurse station

ITcon Vol. 21 (2016), Solihin & Eastman, pg. 385

SPACE

Generate Line
Of Sight

VIRTUAL
BOUNDARY

Type

PATIENT ROOM

Type

NURSE
STATION

Boundaries

Boundaries

DOOR

WINDOW

OPENING

Boundaries

Common
Face

SPACE

Type

CORRIDOR

Boundaries

SPACE

Common
Face

CENTER POINT

CENTER POINT

Check Object
Collision

FACE
Generate View

Frustum

Line Of Sight

View Frustum
Compute

Intersected
Volume

ALL OBJECTS in
the Relevant

Proximity

Checking
Function #1

Checking
Function #2

Figure 17 - An even finer granularity of the visibility rule, the visibility is no longer a black-box

These rule requirements can be extended further by adding the possibility to measure the visibility from a point

in the nurse station using a position from the desk (furniture) within the nurse station location. Figure 18

represents complete rule requirements in a fine granularity that reflect transparent checking details without

creating too highly complicated diagram.

ITcon Vol. 21 (2016), Solihin & Eastman, pg. 386

SPACE

Generate Line
Of Sight

VIRTUAL
BOUNDARY

Type

PATIENT ROOM

Type

NURSE
STATION

Boundaries

Boundaries

DOOR

WINDOW

OPENING

Boundaries

Contains

SPACE

Type

CORRIDOR

Boundaries

SPACE

Common
Face

CENTER POINT

CENTER POINT

Check Object
Collision

FACE
Generate View

Frustum

Line Of Sight

View Frustum

Compute
Intersected

Volume

FURNITURE

Representati
on

Type

NURSE
STATION DESK

ContainsFURNITURE

Representati
on

DOOR

WINDOW

OPENING

ALL OBJECTS

(NOT)

Common
Face

OR

Checking
Function #1

Checking
Function #2

Figure 18 - Another variation of the visibility rule that allows more option for defining the line of sight

7 MAPPING THE CG TO THE MVD

With the well-defined CG, it is possible to create a direct mapping of CG concepts and relations into an IFC

MVD as well as to a UML diagram for software development (Figure 19). In the mapping to an MVD, IFC

entities represented by Concept and Relation can be directly mapped to the IFC MVD, which includes relevant

details such as Types and Properties. Each of the rules can be defined as one exchange requirement within the

MVD. In practice, it may be practical to define only one or just a few specific MVDs, in order to consolidate the

MVD requirements since they often overlap with other rules.

Extended Concepts and Functions do not have equivalent mappings to an MVD and are only applicable for

mapping to the software design, represented using a UML diagram in this example. Figure 19 shows an example

of mapping from CG to an MVD and to a UML diagram. This diagram uses the example for a class-2 rule given

earlier in section 5.1.2 (Figure 7).

ITcon Vol. 21 (2016), Solihin & Eastman, pg. 387

Figure 19 - Mapping CG into an MVD and UML

8 VALIDATING THE CG AGAINST THE ACTUAL IMPLEMENTATION

The CG as the tool to capture knowledge contains information where the data should come from and what

information is needed to perform the checking. It does not capture the detailed algorithm to perform the

checking. It is important therefore to be able to validate how effective is the knowledge capture using CG as

compared the actual implementation. Since one of the rules used in the examples is taken from the scope of the

actual implementation of CORENET ePlanCheck, comparing the codes written for the rules in CORENET

ePlanCheck that was completed in 2005 will give an indication of the effectiveness of the knowledge capture.

The rule that comes within the CORENET ePlanCheck scope is rule 3.2.2 (f) that is described in details in

section 5.1.2. It is also used to describe mapping the CG to MVD and UML in section 7. Figure 20 shows the

snapshot of the CORENET ePlanCheck implementation for the rule (written in C++ programming language)

with the relevant boxes that highlight corresponding section in the CG.

Another validation that can be done is against a rule language developed as part of a Ph.D. thesis (Wawan,

2016), named BIMRL (BIM Rule Language). It is a domain specific language designed specifically for

automating BIM rule checking. It deals with defining a simplified schema in a relational database to represent a

read-only building model including its geometry. It also supports spatial operations for rule execution. In another

word, BIMRL is a complete environment for data, rule definition, and rule execution. As part of the validation

IfcPipeSegment

Construct
Geometry:

Box

Location

Property
Dimension: (X,

Y, Z)

Placement:
- Point: (X, Y, Z)
- RelPlacement:
IfcElement.Placement
- AxisAlignment: (x, y, z)
- Offset: (+/-a, <axis>)

Interact

IfcTank Property
Usage:

POTABLE

Member

System

Type Discharge

IfcTransformer
OR

IfcSwitchingDevice

OR

(NOT)

IfcFlowSegment

IfcSystem

IfcFlowStorageDevice IfcFlowController IfcEnergyConversionDevice

Geometry

Box3D

Collision

IfcProduct

Mapping to
UML

Mapping to
MVD

Type: IfcPipeSegmentType Type: IfcTank
Usage: POTABLE

Type: IfcSwitchingDeviceType Type: IfcTransformerType

Dimension
Position
Transform

ObjectSet1
ObjectSet2Type: DISCHARGE

ITcon Vol. 21 (2016), Solihin & Eastman, pg. 388

tests in the thesis, rule 3.2.2(f) is also used as one of the proof-of-concept test cases. In BIMRL, the optimized

approach of using the inverted rule described in the section 5.1.2. The BIMRL description of the rule maps very

closely to the CG representation as shown in Figure 21.

The second validation example is the hospital design rule described in details in section 6. Since this rule is not

in the scope of CORENET ePlanCheck, it can only be validated against BIMRL. Figure 22 shows how the

knowledge capture is represented very closely in the BIMRL script that implements the rule, without the use of

black-box specifications.

Figure 20 - The CG for Rule 3.2.2(f) compared to the actual code implementation in CORENET ePlanCheck

(42) 3.2.2 Design Criteria

f) The discharge pipe shall not be located in places where it can cause health and safety hazards such as

locating the discharge pipe above any portable water storage tank and electrical transformer/ switchgear.

IfcPipeSegment

Construct
Geometry:

Box

Location

Property
Dimension:

(X, Y, Z)

Placement:
- Point: (X, Y, Z)
- RelPlacement:
IfcElement.Placement
- AxisAlignment: (x, y, z)
- Offset: (+/-a, <axis>)

Interact

IfcTank Property
Usage:

POTABLE

Member

System

Type Discharge

IfcTransformer

OR

IfcSwitchingDevice

OR

(NOT)

ITcon Vol. 21 (2016), Solihin & Eastman, pg. 389

Figure 21 - The CG for Rule 3.2.2(f) (the inverted version) as compared to the BIMRL script that implements the

rule

IfcElement

IfcTank Property Usage: POTABLE

IfcTransformer

IfcSwitchingDevice

IfcPipeSegment

Member

System

Type Discharge

Construct Geometry: Box

Location

Property
Dimension:

(X, Y, Z)

Placement:
- Point: (X, Y, Z)
- RelPlacement:
IfcElement.Placement
- AxisAlignment: (x, y, z)
- Offset: (+/-a, <axis>)

Interact

(NOT)

ITcon Vol. 21 (2016), Solihin & Eastman, pg. 390

Figure 22 - Another Validation for the CG for a hospital rule against the BIMRL script

9 DISCUSSIONS ON THE GENERAL CHARACTERISTICS OF THE RULE

STRUCTURE

From the exercise of describing the rules into CG, building rules may range from a simple to a complex

structure. The complexity is often man-made because of the way the rule is written in many iterations of edits by

different people over a period of time, and also the rules that are by nature complex due to the requirements they

present. The former complex structure may be simplified by breaking the rule into smaller sub-rules. It is

especially easy if the sub-rules are just a combination of various logic applicable to the same entity. An example

from IBC 1008.1.2 (Figure 24) shows that several of the exceptions are applicable to the same entity for various

SPACE

Generate Line
Of Sight

VIRTUAL
BOUNDARY

Type

PATIENT ROOM

Type

NURSE
STATION

Boundaries

Boundaries

DOOR

WINDOW

OPENING

Boundaries

Common
Face

SPACE

Type

CORRIDOR

Boundaries

SPACE

Common
Face

CENTER POINT

CENTER POINT

Check Object
Collision

FACE
Generate View

Frustum

Line Of Sight

View Frustum
Compute

Intersected
Volume

ALL OBJECTS in
the Relevant

Proximity

Checking
Function #1

Checking
Function #2

Checking
Function #2

Checking
Function #1

ITcon Vol. 21 (2016), Solihin & Eastman, pg. 391

building types or entity types. Note that the exceptions to a rule are generally rules themselves. The general logic

structure of the rules, thus, can be summarized as follow:

1. The rules generally take the form of:

a. An entity in focus, i.e. an entity where checking is to be done. For example Space

b. Further description of the entity, usually condition(s) that will narrow down the entity. For

example Circulation space, or Egress Path

c. A specific entity that is defined by another entity. For example Vestibule space where an exit

discharges into (see IBC 1027.1 rule Figure 29 - Figure 31) is what Description Logic (DL)

defines to be Noun Phrase.

2. Rules in the building codes are often applicable only to a certain type of building type or occupancy

type. This is an important feature that will help users to quickly identify what rules to check for the

specific type of developments. Currently, this information is not captured in the examples given in this

paper. They are generally independent of the logic structure and only gives further restrictions mainly

for search purposes. This condition can be added to the beginning of the CG with the building as a

constraint entity and is possibly further restricted by its property. In the case of mixed use buildings, a

relevant constraint that is usually applied to separate building stories can be assigned to the main object.

Since CG allows assignment of constraint to any concept node, rule definition can be tailored relatively

easily to filter applicability of the rule based on the constraint defined to the specific concept node.

3. The sentence can have sub-sentences or phrases starting at any entity within the sentence. The phrase

may take any of the following forms:

a. A phrase added to the sentence

b. A phrase added to a phrase, creating nested constraint

c. Branch, when a phrase is added in parallel to another phrase. As part of b, a branch can have

another branch creating a tree-like structure, even though usually it is not that deep.

Coreference usually is represented by a branch.

d. Merge, when two branches meet again at some point in the sentence

4. Function or Verb forms a very important part of the sentence especially at the higher level of rule

classification. Functions are general to be expected to be supported by computer algorithms in the form

of a library in a rule checking system. The capability of such a rule checking system will be a direct

proportion of the number of unique verbs in its vocabulary.

5. Higher level derived data is an integral part of rule structure. Many types of information required in the

rules are not usually in the model and many are simply impractical to be expected to be explicitly

included in the model. For example, a rule that requires a check of the distance between doors

connecting to circulation space from a single room. The distance information cannot be anticipated

beforehand and it depends on the model data. Other types of information may involve information that

is difficult to get manually and will be easier done by a computer. For example, a graph that represents

space connectivity or access to the entire building.

6. Exceptions. Many building codes contain one or many exceptions. From a closer look an exception may

take several forms:

a. As an additional constraint to the main rule. It may be a negation or a more specific condition

where the rule can be ignored or another rule is supposed to be adhered to.

b. As a form of sub-rule

c. As an independent rule on the same entity

d. As a phrase that can be inserted at certain points of the sentence, often as a negation.

7. Rule dependency. Rule dependency is a rather ambiguous definition often found in the rule. It is

ambiguous because the dependency is often very loose. For example, if a rule has an exception that in a

certain condition when there is an existence of a specific entity (e.g. a railing as a form of protection),

ITcon Vol. 21 (2016), Solihin & Eastman, pg. 392

the entity must comply with rules under a certain section. Unfortunately, not all requirements in those

sections related to the entity are applicable for this condition and in some cases there are other

exceptions that lead to a circular reference. Generally, the strategy to deal with rule dependency is one

of the following:

a. Ignore it since it will be captured when the rule is handled by the referred entity.

b. Create a dependency list for a rule checking system to automatically include dependent rules

during execution. It may also need to order the execution accordingly. Care needs to be taken

in this case not to create a situation where it leads to a very large dependency tree due to

unrelated dependency within the dependent rules. It also needs to ensure that it knows how to

handle a circular reference.

c. Define it as a sub-rule if it is distinct enough. This may be required in a very small number of

rules, especially when there is tighter dependency such as one result affecting the other.

Due to the generally complex form of rules, especially building codes, it is generally a good idea to try to

separate one large rule into independent sub-rules. It will make the rule more discernable and hence easier to

maintain. This is beneficial even if there are small redundancies between sub-rules due to some minor variations

in the sub-rule. Many exceptions as described above can be either separated as an independent rule, as a sub-rule

or inserted into the main rule.

10 CONCLUSIONS

In this paper, we have presented the case to treat interpretation of the rules as knowledge representation. It is

critical that such knowledge can be captured and retained throughout the entire process of rule checking

implementation with minimum loss of information (Figure 1). The use of Conceptual Graph as a tool to capture

the building rule requirements and their general checking logic looks very promising. It is effective in capturing

both data requirements and the higher level checking logic in an intuitive format, which can be understood by

typical rule experts with a little training. The exercise to capture the rule expert knowledge into CG also provides

a template for analysis and breaks down a complex rule into atomic rules and constraints. In our research work,

the method has been applied to more rules of higher level complexity and it is found to be able to describe the

rule requirements and logic successfully. The CG also has been shown to improve clarity and precision of the

rule requirements compared to the traditional documentation such as used in CORENET ePlanCheck project.

The proposed CG allows a direct mapping to an MVD for model exchange requirement relevant to the rule it

describes, and a mapping to software class design such as a UML diagram. The current mapping process is still

done manually, however with well-defined CG, an automated mapping process from the CG directly into an

MVD and software classes is possible. Similar work to capture requirements using CG-like representation into

UML has been done (Jaramillo, Gelbukh, & Isaza, 2006). While it is not specific to building rules that involve

the additional complexity of derived entities, properties, and functions, it may give an idea of what can be done

in the same direction for building rules. The potential time saved and knowledge retention throughout the whole

development process is extremely significant.

REFERENCES

Beach, T., Kasim, T., Li, H., Nisbet, N., & Rezgui, Y. (2013). Towards Automated Compliance Checking in the

Construction Industry. In H. Decker, L. Lhotská, S. Link, J. Basl, & A. Tjoa (Eds.), Database and

Expert Systems Applications (Vol. 8055, pp. 366-380): Springer Berlin Heidelberg.

Bouzidi, K. R., Fies, B., Faron-Zucker, C., Zarli, A., & Thanh, N. L. (2012). Semantic Web Approach to Ease

Regulation Compliance Checking in Construction Industry. Future Internet, 4(3), 22. doi:

10.3390/fi4030830

Chein, M., & Mugnier, M.-L. (2008). Graph-based knowledge representation: Computational foundations of

conceptual graphs: Springer.

Eastman, C., Jeong, Y., Sacks, R., & Kaner, I. (2010). Exchange Model and Exchange Object Concepts for

Implementation of National BIM Standards. Journal of Computing in Civil Engineering, 24(1), 25-34.

doi: doi:10.1061/(ASCE)0887-3801(2010)24:1(25)

ITcon Vol. 21 (2016), Solihin & Eastman, pg. 393

Eastman, C., Lee, J.-m., Jeong, Y.-s., & Lee, J.-k. (2009). Automatic rule-based checking of building designs.

Automation in Construction, 18(8), 1011-1033.

Eastman, C., & Sacks, R. (2010). Introducing a new methodology to develop the information delivery manual

for AEC projects. CIB W78, 16-18.

Fenves, S. J. (1966). Tabular decision logic for structural design. Proceedings of the American Society of Civil

Engineers, 92, 473-490.

Fiatech. (2012). Fiatech Autocode phase 1 report.

GSA. Courts Design Guide http://www.gsa.gov/graphics/pbs/Courts_Design_Guide_07.pdf.

Hjelseth, E., & Nisbet, N. (2010). Exploring semantic based model checking. Paper presented at the Proceedings

of the 2010 27th CIB W78 International Conference.

Hjelseth, E., & Nisbet, N. (2011). Capturing normative constraints by use of the semantic mark-up (RASE)

methodology. Paper presented at the CIB W78 2011 28th International Conference-Applications of IT

in the AEC Industry.

ICC. (2009). IBC 2009 http://shop.iccsafe.org/codes/2009-international-codes/2009-international-building-

code-tab-combo.html.

ISO. (2013). ISO 16739:2013 Industry Foundation Classes (IFC) for data sharing in the construction and facility

management industries.

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=51622.

Jaramillo, C. M. Z., Gelbukh, A., & Isaza, F. A. (2006). Pre-conceptual schema: A conceptual-graph-like

knowledge representation for requirements elicitation MICAI 2006: Advances in Artificial Intelligence

(pp. 27-37): Springer.

Khemlani, L. (2005). CORENET e-PlanCheck: Singapore's Automated Code Checking System.

http://www.aecbytes.com/buildingthefuture/2005/CORENETePlanCheck.html. Retrieved 03/01/2014,

2014

Kim, I. (2015). Automated Building Code Checking Related Activities in Korea [Presentation]. online at

http://iug.buildingsmart.org/resources/London/Regulatory%20Room/korea_automated-building-code-

checking-related-activities-in-korea_khu.

Lee, J. K. (2011). Building environment rule and analysis (BERA) language and its application for evaluating

building circulation and spatial program. (published Ph.D. Dissertation), Georgia Institute of

Technology.

Lee, J. K. (2015). Development of the database and logic system for translating sentences into computer

executable code (Vol. Regulatory Room). online at

http://iug.buildingsmart.org/resources/London/Regulatory%20Room/korea_development-of-the-

database-logic-system-for-translating-sentences-into-computer-executable-code_hyu: buildingSMART.

Lee, J. M. (2010). Automated checking of building requirements on circulation over a range of design phases.

(published Ph.D. Dissertation), Georgia Institute of Technology.

Malsane, S., Matthews, J., Lockley, S., Love, P. E., & Greenwood, D. (2015). Development of an object model

for automated compliance checking. Automation in Construction, 49, 51-58.

Malsane, S., Matthews, J., Lockley, S., Love, P. E. D., & Greenwood, D. (2015). Development of an object

model for automated compliance checking. Automation in Construction, 49, Part A(0), 51-58. doi:

http://dx.doi.org/10.1016/j.autcon.2014.10.004

novaCITYNETS. (2000). novaSPRINT awarded CORENET Integrated Plan Checking System.

http://www.novacitynets.com/news.htm. Retrieved 03/01/2014, 2014

OGC. (2012). GeoSPARQL - A Geographic Query Language for RDF Data. online at

https://portal.opengeospatial.org/files/?artifact_id=47664: Open GIS Consortium.

http://www.gsa.gov/graphics/pbs/Courts_Design_Guide_07.pdf
http://shop.iccsafe.org/codes/2009-international-codes/2009-international-building-code-tab-combo.html
http://shop.iccsafe.org/codes/2009-international-codes/2009-international-building-code-tab-combo.html
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=51622
http://www.aecbytes.com/buildingthefuture/2005/CORENETePlanCheck.html
http://iug.buildingsmart.org/resources/London/Regulatory%20Room/korea_automated-building-code-checking-related-activities-in-korea_khu
http://iug.buildingsmart.org/resources/London/Regulatory%20Room/korea_automated-building-code-checking-related-activities-in-korea_khu
http://iug.buildingsmart.org/resources/London/Regulatory%20Room/korea_development-of-the-database-logic-system-for-translating-sentences-into-computer-executable-code_hyu:
http://iug.buildingsmart.org/resources/London/Regulatory%20Room/korea_development-of-the-database-logic-system-for-translating-sentences-into-computer-executable-code_hyu:
http://dx.doi.org/10.1016/j.autcon.2014.10.004
http://www.novacitynets.com/news.htm
https://portal.opengeospatial.org/files/?artifact_id=47664:

ITcon Vol. 21 (2016), Solihin & Eastman, pg. 394

Pauwels, P., Van Deursen, D., Verstraeten, R., De Roo, J., De Meyer, R., Van de Walle, R., & Van Campenhout,

J. (2011). A semantic rule checking environment for building performance checking. Automation in

Construction, 20(5), 506-518.

Preidel, C., & Borrmann, A. (2015). Automated Code Compliance Checking Based on a Visual Language and

Building Information Modeling. Paper presented at the International Symposium on Automation and

Robotics in Construction and Mining (ISARC 2015), Oulu, Finnland.

Salama, D. M., & El-Gohary, N. M. (2013). Semantic Text Classification for Supporting Automated Compliance

Checking in Construction. Journal of Computing in Civil Engineering.

Singapore. (2013). Singapore Fire Code 2013 http://www.scdf.gov.sg/content/scdf_internet/en/building-

professionals/publications_and_circulars/fire-code-2013.html.

Solibri. Solibri Model Checker. http://www.solibri.com/solibri-model-checker/functionality-highlights.html.

Retrieved 03/01/2014, 2014

Solihin, W., & Eastman, C. (2015). Classification of rules for automated BIM rule checking development.

Automation in Construction, 53(0), 69-82. doi: http://dx.doi.org/10.1016/j.autcon.2015.03.003

Solihin, W., Shaikh, N., Rong, X., & Poh, L. K. (2004). Beyond Interoperability of Building Models: A Case for

Code Compliance Checking. Paper presented at the BP-CAD Workshop, Carnegie Melon University.

https://www.researchgate.net/publication/280598933_BEYOND_INTEROPERATIBILITY_OF_BUIL

DING_MODEL_A_CASE_FOR_CODE_COMPLIANCE_CHECKING

Sowa, J. F. (1976). Conceptual graphs for a data base interface. IBM Journal of Research and Development,

20(4), 336-357.

Sowa, J. F. (1984). Conceptual Structures - Information Processing in Mind and Machine: Addison-Wesley

Publishing Company.

Swaddiwudhipong, S., & Kog, Y. C. (2000). IT Strategy of the Singapore Construction Sector Computing in

Civil and Building Engineering (2000) (pp. 635-642).

Tan, X., Hammad, A., & Fazio, P. (2010). Automated code compliance checking for building envelope design.

Journal of Computing in Civil Engineering, 24(2), 203-211.

Wawan, S. (2016). A Simplified BIM Data Representation Using a Relational Database Schema for an Efficient

Rule Checking System and Its Associated Rule Checking Language. (Ph.D. Dissertation), Georgia

Institute of Technology.

Yurchyshyna, A., & Zarli, A. (2009). An ontology-based approach for formalisation and semantic organisation

of conformance requirements in construction. Automation in Construction, 18(8), 1084-1098.

Zhang, C., & Beetz, J. (2015). Model Checking on the Semantic Web: IFC Validation Using Modularized and

Distributed Constraints. Paper presented at the CIB W78 2015, Eindhoven University of Technology,

October 27-29, 2015.

Zhang, J., & El-Gohary, N. (2012). Extraction of Construction Regulatory Requirements from Textual

Documents Using Natural Language Processing Techniques. Proc., Comput. Civ. Eng, 453-460.

http://www.scdf.gov.sg/content/scdf_internet/en/building-professionals/publications_and_circulars/fire-code-2013.html
http://www.scdf.gov.sg/content/scdf_internet/en/building-professionals/publications_and_circulars/fire-code-2013.html
http://www.solibri.com/solibri-model-checker/functionality-highlights.html
http://dx.doi.org/10.1016/j.autcon.2015.03.003
https://www.researchgate.net/publication/280598933_BEYOND_INTEROPERATIBILITY_OF_BUILDING_MODEL_A_CASE_FOR_CODE_COMPLIANCE_CHECKING
https://www.researchgate.net/publication/280598933_BEYOND_INTEROPERATIBILITY_OF_BUILDING_MODEL_A_CASE_FOR_CODE_COMPLIANCE_CHECKING

ITcon Vol. 21 (2016), Solihin & Eastman, pg. 395

APPENDIX A - MORE EXAMPLES OF THE USE OF CG FOR VARIOUS RULES

10.1 A-1 Class-1 rules:

1. “[F] 405.10 Standpipe system. The underground building shall be equipped throughout with a

standpipe system in accordance with Section 905.” (ICC, 2009)

Figure 23 - CG for IBC/IFC 405.10 (ICC 2009)

2. “Egress doors shall be of the pivoted or side-hinged swinging type” (IBC 1008.1.2 – without

exceptions) (ICC, 2009)

Figure 24 - CG for IBC 1008.1.2 (ICC 2009)

3. (ICC, 2009) “504.2 Automatic sprinkler system increase. Where a building is equipped throughout

with an approved automatic sprinkler system in accordance with Section 903.3.1.1, the value

specified in Table 503 for maximum building height is increased by 20 feet (6096 mm) and the

maximum number of stories is increased by one. These increases are permitted in addition to the

building area increase in accordance with Sections 506.2 and 506.3. For Group R buildings

equipped throughout with an approved automatic sprinkler system in accordance with Section

903.3.1.2, the value specified in Table 503 for maximum building height is increased by 20 feet

(6096 mm) and the maximum number of stories is increased by one, but shall not exceed 60 feet (18

288 mm)or four stories, respectively.

Exceptions:

1. Buildings, or portions of buildings, classified as a Group I-2 occupancy of Type IIB, III, IV

or V construction.

2. Buildings, or portions of buildings, classified as Group H-1, H-2, H-3 or H-5 occupancy.

Building Location Elevation: < Grade

Has System Type Standpipe

IBC 905

Dependency

Door Property IsExit: TRUE

Operation
Type

SINGLE_SWING*

DOUBLE_SWING*

In

Building

ITcon Vol. 21 (2016), Solihin & Eastman, pg. 396

3. Fire-resistance rating substitution in accordance with Table 601, Note d.”

Figure 25 - CG for IBC 504.2 (ICC 2009)

10.2 A-2 Class-2 rules

1. “1106.1 Required. Where parking is provided, accessible parking spaces shall be provided in

compliance with Table 1106.1, except as required by Sections 1106.2 through 1106.4. Where more than

one parking facility is provided on a site, the number of parking spaces required to be accessible shall

be calculated separately for each parking facility.

Exception: This section does not apply to parking spaces used exclusively for buses, trucks, other

delivery vehicles, law enforcement vehicles or vehicular impound and motor pools where lots accessed

by the public are provided with an accessible passenger loading zone.”

Building
Protected

by
System Type Sprinkler Property Fully Automated

Height

No Of
Storey

Property

Property

Max: x + 20 ft

Occupancy
Type = R

Max: y + 1

IBC 903.3.1.1

Building
Protected

by
System Type Sprinkler Property Fully Automated

Height
Max: x + 20 ft AND <=

60 ft

Max: y + 1 AND <= 4

IBC 903.3.1.2

No Of
Storey

Building

Occupancy Type =
I-2

Construction Type
= IIB, III, IV, V

Property
Occupancy Type =
H-1, H-2, H-3, H-5

X, y are values obtained from
table 503

 Requires separate query
(NOT)

(NOT)

ITcon Vol. 21 (2016), Solihin & Eastman, pg. 397

Figure 26 - CG for IBC 1106.1 (ICC 2009)

10.3 A-3 Class-3 rules

1. “The judge's chambers are accessed from restricted circulation with convenient access to the
courtrooms” (GSA)

Figure 27 - CG for GSA Courthouse Rules on Accessibility of the Judge's Chambers

2. The complete IBC 1008.1.2 with all the exceptions (ICC, 2009):

Space Type Parking

Property
HandicapAccessi

ble: TRUE

Connected PATH To Door Property

HandicapAccessible
: TRUE

PublicEntrance:
TRUE

Building Count Space Type Parking

Space

Type Parking

Property
HandicapAccessi

ble: TRUE

Count

SpaceCount
: A

SpaceCount
: B

Query

Query

Compare

SpaceCount
: B

Require
ment

Table
1106.1

Query
ReqParking

: C

ReqParking
: C

Require
ment

B >= C

Sub-rule 1:
Checking accessible parking space

Sub-rule 2:
Checking the required minimum

number of parking space

Connect PATH

Member
Of

Zone
Security

Type
Restricted

Space

JUDGECHAMBERType

Member Space

SpaceTo Type COURTROOM

Compute
Distance: x

NoOfHops: y
LessEqual

Convenience
access:

MaxDistance: ?
MaxNoOfHops: ?

ITcon Vol. 21 (2016), Solihin & Eastman, pg. 398

1008.1.2 Door swing.
Egress doors shall be of the pivoted or side-hinged swinging type.

Exceptions:
1. Private garages, office areas, factory and storage areas with an occupant load of 10 or less.

2. Group I-3 occupancies used as a place of detention.

3. Critical or intensive care patient rooms within suites of health care facilities.

4. Doors within or serving a single dwelling unit in Groups R-2 and R-3.

5. In other than Group H occupancies, revolving doors complying with Section 1008.1.4.1.

6. In other than Group H occupancies, horizontal sliding doors complying with Section 1008.1.4.3

are permitted in a means of egress.

7. Power-operated doors in accordance with Section 1008.1.4.2.

8. Doors serving a bathroom within an individual sleeping unit in Group R-1.

9. In other than Group H occupancies, manually operated horizontal sliding doors are permitted

in a means of egress from spaces with an occupant load of 10 or less.

Doors shall swing in the direction of egress travel where serving an occupant load of 50 or more

persons or a Group H occupancy.

ITcon Vol. 21 (2016), Solihin & Eastman, pg. 399

Figure 28 - CG for IBC 1008.1.2 Rule (ICC 2009)

Door Property IsExit: TRUE

Member PATH Property Egress: TRUE

Operation
Type

SINGLE_SWING*

DOUBLE_SWING*

Open To Space

QueryNextSpace
along Direction

Building Property
OccupancyType: I-3 &

DETENTION

Building

Type
PRIVATE &
GARAGE

Occupancy Number: <= 10

In

Building

Building Has Zone Has Space
Occupancy

Type
Critical/

Intensive Care

Building Type
Group: R-2 OR

R-3

Door Member PATH Property Egress: TRUEIn

Building

Operation
Type

REVOLVING

Type OccupancyType: H

IBC 1008.1.4.1

E5

Operation
Type

SLIDING IBC 1008.1.4.3

OR

E6

Operation
Type

SLIDING

Property
SelfClosing:

FALSE

Door

Occupancy Number: <= 10

E9

(NOT)

(NOT)

(NOT)

(NOT)

(NOT)

Part of

BuildingStorey

OccupancyNu
mber: >= 50

Group: H

Property

Part of

OR

E1

E2

E3

E4

Operation
Type

Power
Operated IBC 1008.1.4.2

Space

E7

(NOT)

DoorIn

Building Type OccupancyType: R1

Type BATHROOM

Space Type
SLEEPING

UNIT

AccessE8

ITcon Vol. 21 (2016), Solihin & Eastman, pg. 400

3. 1027.1 General. (EXIT DISCHARGE)

Exits shall discharge directly to the exterior of the building. The exit discharge shall be at grade or shall

provide direct access to grade. The exit discharge shall not re-enter a building. The combined use of

Exceptions 1 and 2 below shall not exceed 50 percent of the number and capacity of the required exits.

Exceptions:

1. A maximum of 50 percent of the number and capacity of the exit enclosures is permitted to
egress through areas on the level of discharge provided all of the following are met:
1.1. Such exit enclosures egress to a free and unobstructed path of travel to an exterior exit

door and such exit is readily visible and identifiable from the point of termination of the
exit enclosure.

1.2. The entire area of the level of exit discharge is separated from areas below by
construction conforming to the fire-resistance rating for the exit enclosure.

1.3. The egress path from the exit enclosure on the level of exit discharge is protected
throughout by an approved automatic sprinkler system. All portions of the level of exit
discharge with access to the egress path shall either be protected throughout with an
automatic sprinkler system installed in accordance with Section 903.3.1.1 or 903.3.1.2,
or separated from the egress path in accordance with the requirements for the enclosure
of exits.

2. A maximum of 50 percent of the number and capacity of the exit enclosures is permitted to
egress through a vestibule provided all of the following are met:
2.1. The entire area of the vestibule is separated from areas below by construction

conforming to the fire-resistance rating for the exit enclosure.
2.2. The depth from the exterior of the building is not greater than 10 feet (3048 mm) and the

length is not greater than 30 feet (9144 mm).
2.3. The area is separated from the remainder of the level of exit discharge by construction

providing protection at least the equivalent of approved wired glass in steel frames.
2.4. The area is used only for means of egress and exits directly to the outside.

3. (Omitted)
4. (Omitted). Exceptions 3 and 4 are omitted in this example because they are practically

separate rules.

ITcon Vol. 21 (2016), Solihin & Eastman, pg. 401

Figure 29 - CG for the IBC 1027.1 Main Rule (ICC 2009)

Figure 30 - CG for IBC 1027.1 Exception Rule no. 1 (ICC 2009)

Door
Connected

to

IsExit: TRUE

Wall
IsExternal:

TRUE

Space
IsExternal:

TRUE
Space

Property

Open
to

Hosted in

Property

Property

Space Grade

On

Direct
Access to

(NULL) Level with

Another
Space

Connected
to

Door

Exit discharge must be on grade level
or has direct access to the grade level

Exit discharge shall not
reenter a building

OR

(NOT)

Door
Connec
ted to

Egress Path

IsExit: TRUE

Space
IsExternal:

TRUE

Property

Open
to

Property

Level
Location:

Discharge level

Door

Wall
IsExternal:

TRUE

Hosted in

Property

VisibleLine of Sight

Discharge
point

AtAt

Space FloorContains

Property

FireRating: x
hr

Contained
in

Building
storey

Space
Protected

by
Sprinkler
system

Bounded
by

Space boundary
object

Space

Access to Space

Conceptual Graph of
the Exception to the

rule (E1)

Constraint for Exception 1:
E1.2
E1.3

OR

ITcon Vol. 21 (2016), Solihin & Eastman, pg. 402

Figure 31 - CG for IBC 1027.1 Exception Rule no. 2 (ICC 2009)

Door

IsExit: TRUE

Space

Property

Open
to

Type Vestibule

Space

Access
to

Along Egress PATH

Depth Dim: 10 ft

Bounded
by

Space
boundary

object

Length Dim: 30 ft

Conceptual Graph of the
Exception to the rule (E2)

Constraint for Exception 2:
E2.1
E2.2
E2.3
E2.4

Direction Perpendicular
Relative

to
Wall

IsExternal:
TRUE

Property

Property
FireRating: x hr (equiv.
approved wired glass in

steel frame

Space Grade

On

Direct
Access to

(NULL)
Level
with

OR

OR

Bounded
by

Space
boundary

object
Space Property

FireRating: x
hr

At Floor

Space

Space

