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SUMMARY: With increasing interest in sustainable design, the issue of energy-efficiency in the building design 
process is receiving ever more attention from designers and researchers. Greater access to building 
performance analysis results has led designers and researchers to increasingly address energy-efficiency 
concerns. However, the huge amount of performance analysis data that may be generated during the design 
process cannot easily be handled by traditional data analysis methods. The goal of this research is to develop a 
data-driven approach for the integrated design process, in order to help to improve the accuracy of performance 
analyses and also reduce the time required to complete such design iterations. We propose our method to 
include five step: 1) Requirement identification; 2) Building modelling; 3) Workflow implementation; 4) 
Simulation and data mining; 5) Evaluation and refinement. A case study demonstrates our data-driven 
workflow’s ability to guide the design process with high precision. Our approach can also be extended and 
applied to discover useful patterns in the building design process. 
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1. INTRODUCTION 
The development of energy-efficient buildings is a sustainable vision that entails huge challenges for 
environmental and technical innovation. It has consequences for all professions, not the least for architectural 
design and building engineering, since it is here that the full complexity of building performance analysis has to 
be addressed and managed throughout the design process. While the huge amount of performance analysis data 
that is generated during the design process cannot easily be processed by traditional data analysis methods, there 
is a crucial need to apply more advance data analytical methods into the design process. Therefore, we propose 
to use a data-driven approach to support the design process of energy-efficient buildings.	
  

1.1 Energy-Efficient Design 
Energy-efficient buildings can be described as buildings that are designed to provide a significant reduction of 
the energy need for the building systems, including heating and cooling, lighting, etc. Design determines the 
building sector’s energy consumption for far longer than other end-use sectors’ components determine their 
sector’s efficiency (Lysen 1996).The improvement of a building’s energy efficiency at the planning stage is 
relatively simple while improvements after their initial construction are much more difficult: decisions made 
during a building’s project phase will hence determine consumption over much, if not all, of a building’s lifetime 
(Lysen 1996). In order to achieve energy efficiency, most buildings’ architects will consider from the following 
perspectives: 

1) Bioclimatic architecture: the shape and orientation of the building and its solar protections. 
2) High performing building envelope: thorough insulation, high performing glazing windows, and 

air-sealed construction. 
3) High performance controlled ventilation: mechanical insulation, and heat recovery. 

Early energy-efficiency requirements for buildings responded to poor insulation levels, which could lead to 
health problems because of moisture or air infiltration. These requirements contained U-values, R-values and 
specific insulation materials or multi-glazing, and were intended to improve energy efficiency and comfort in 
buildings.  

Lysen (1996) introduces the design concept Trias Energetica, which suggests an organized approach to reduce 
the dependence on fossil fuels. This concept mainly focuses on ways that deal with energy to achieve savings, 
reduction of dependence and environmental benefits, while maintaining the building’s comfort and construction 
progress.  

Trias Energetica proposes three main strategic actions: 
1) Reduce the overall energy demand of the building 
2) Supply the energy demand with renewable energy 
3) Supply the remaining part with efficient use of fossil fuel 

The first action refers to the insulation of the building envelope; the second action relates to natural energy gains, 
such as PV and windmill; the last action considers the equipment system including HVAC, lighting, control 
system, etc. (Fig. 1). 
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FIG. 1: The Trias Energetica concept and its relation to design components. 

1.2 Integrated Design 
Integrated design is a term used for the process where all the elements described above are used in an integrated 
way to reduce the energy consumption in a building. In this process actions are taken to reduce the energy 
consumption both through insulation or efficiency as through the design of the buildings and the HVAC systems. 
Passive use of renewable energy and other natural sources is an integrated part of the design and development 
process and there is an interactive process between the design of building and systems (Jens 2008). Integrated 
design of energy-efficient buildings requires more emphasis on energy efficiency and systems in the early 
planning phase than traditional design and it is difficult to regulate through building codes and energy efficiency 
standards, although the most advanced standards or energy performance calculation procedures include options 
for integrated design.  

For this research, we will integrate a logical workflow informed by data mining results into the integrated design 
process. From this research using data mining, it is also our intention to ensure the logical correctness of the data 
mining analysis and its reliability in the proposed workflows. Using the data mining analysis will allow further 
discovery of the best correlation between different energy systems within building models, and inevitably will 
shorten the adaptive-iterative prototyping cycle (Fig. 2). 

 
FIG. 2: Overview of the data-driven workflow cycle within the integrated design process. 
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As shown in the workflow in Fig. 2, data mining will be applied between the design review and simulation steps. 
As is well known, the data mining process allows the discovery of useful knowledge from a collection of data 
and is applicable in any multidisciplinary activities. This process is an iterative process and the patterns 
generated from the data should be validated on any relevant data records, and possess some degrees of certainty.  
In addition to that, these knowledge patterns can easily be updated with respect to future updates of the data 
source. During the data mining part, we will compare and evaluate different approaches before jumping into the 
next step. To understand the effectiveness of the proposed data-driven workflow for the design process, this 
research will focus on insulation of the envelope to improve energy efficiency by applying mainly two 
simulation tools: EnergyPlus and Radiance. Building physical attributes such as roof, walls, floor, and windows 
will be the main focus of this research. 

1.3 DATA-DRIVEN WORKFLOW 
We propose our design process, based on the current integrated design process, to include the following steps: 

1) Identify the critical design requirements and parameters for energy and daylighting; 
2) Model the building (in Revit Architecture); 
3) Implement the data-driven workflow and its essential technologies, including transferring the 

modelling information between the different software; 
4) Apply data mining techniques, including clustering, classification and associated rule, to process 

the integrated discipline analysis results for energy and daylighting simulation; 
5) Evaluate and refine the effectiveness of the proposed workflow. 

Fig. 3 presents an overview of our integrated design process; for the building modelling we adopt Revit 
Architecture 2013 and for the simulation tools we choose EnergyPlus and Radiance. 

 
FIG. 3: Overview of the role of the data-driven workflow within the integrated design process. 

1.4 CHALLENGES AND CONTRIBUTIONS 
The research addresses the following two questions: 

1) How to apply the data mining methods into the data-driven workflow? 
2) How to control the data-driven workflow to support the design of energy-efficient buildings? 

This research uses a design project as a case study; the challenges of the data-driven workflow include: 
1) Data interoperability between the different file formats of the modelling software and simulation 

tools. For example, Revit does not support the IDF file format which is the input format for 
EnergyPlus. 
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2) Data analysis and detection. As the building information analysis is processed by data mining 
methods, how will the new knowledge discovered from the simulation results be applied into the 
next data analysis cycle? 

3) Workflow control, using the data mining analysis to determine the next task. It is difficult to 
estimate the direction of the design process when different scenarios use different analysis 
methods during the data process. 

After we investigate the case study, the main contributions of the research will be: 
1) To overcome the data exchange problems between the modelling software and the simulation tools 

within the scope of this research. 
2) To apply data mining methods in the design process to support the decision-making workflow. 
3) To develop a data-driven workflow to support the design of energy-efficient buildings. 

The rest of the paper is organized as follows. The related work will be reviewed in Section 2. Section 3 presents 
the design ideas and detail of our approach. Algorithm details and implementation issues are discussed in Section 
4. A case study analysis is showed in Section 5. Section 6 gives the conclusions of this paper. 

2. LITERATURE REVIEW 
The literature review concerns three parts: I) Integrated design process; II) Data mining; II) Data-driven 
workflow. 

2.1 INTEGRATED DESIGN PROCESS 
The application of advanced control methods for building installations during building design, using building 
energy simulation tools, has received attention in the building automation community. Bernal et al. (2012) 
proposed the MLE+ tool, which can be used for performance evaluation of the proposed control methods with 
EnergyPlus. Liao et al. (2012) presented an occupancy driven approach for energy efficient building control 
system. Narayanan et al. (2010) analyzed and optimized the performance of a real building using EnergyPlus 
models. Auslander et al. (2013) used a Siemens Apogee controller for demand response control and predictive 
modelling of a campus building using EnergyPlus. The Alleyne Research Group (2012) developed 
THERMOSYS for analyzing the behaviour of air-conditioning and refrigeration systems. It contains dynamic 
models of the basic components used in compression cycles but it cannot be used for whole building simulation. 
Wetter (2011) described a popular tool for building energy co-simulation. None of these research projects apply 
an accurate and efficient workflow to direct the integrated design process. We propose to apply a data-driven 
workflow for this purpose. 

2.2 DATA MINING 
Recognizing the complexity of the search algorithms and the size of the data being analyzed when identifying 
useful patterns in energy modelling data, Kim et al. (2011) utilize data mining technology, which can be 
considered an interdisciplinary field involving concepts from machine learning, statistics, mathematics, high-
performance computing, and visualization. Fayyad et al. (1996) define data mining as the nontrivial process of 
identifying valid, novel, potentially useful, and ultimately understandable patterns in data. John (1994) defines it 
as the process of discovering advantageous patterns in data. Most of these research projects do not apply data 
mining within a workflow and do not consider a data-driven conception. 

Our research utilizes data mining methods such as filtering, clustering and classification to indentify the 
workflow direction and useful knowledge from the simulation result. 

2.3 DATA-DRIVEN WORKFLOW 
An et al. (2013) review data-driven approaches that use information from collected data to identify the 
characteristics of the damaged state and predict the future state without using any particular physical model. 
Instead, mathematical models with weight parameters are employed. The weight parameters are determined 
based on the training data that are obtained under the various usage conditions. Since the data-driven approaches 
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depend on the trend of data, which often has a distinct characteristic near the end of life, it is powerful in 
predicting near-future behaviours, especially toward the end of life.  

Data-driven approaches are divided into two categories: artificial intelligence approaches and statistical 
approaches.  Artificial intelligence approaches include artificial neural networks (Krogh 2008, Yao 1999) and 
fuzzy logic (Zio and Di Maio 2010). Statistical approaches include a regression-based model such as Gaussian 
process (GP) regression (Mackay 1997, Seeger 2004) and a probabilistic Bayesian learning framework (Tipping 
2001). However, the data-driven workflow has rarely been applied in the building design process to support 
energy efficiency design. In this research project, we will propose an efficient and effective data-driven 
workflow to guide the energy-efficiency design process. 

3. RESEARCH METHODOLOGY  

3.1 DENSITY-BASED CLUSTERING 
In density-based clustering, clusters are defined as areas of higher density than the remainder of the data set (Fig. 
4). Objects in the remaining, sparse areas that separate the clusters are usually considered to be noise and border 
points. 

 
FIG. 4: Density-based spatial clustering of applications with noise (DBSCAN). 

Density-based clustering is based on the notion of density reachability. Basically, a point q is directly density-
reachable from a point p if q is part of the ε-neighbourhood of p, that is, the distance between p and q is at 
most ε, and if p is surrounded by sufficiently many points such that one may consider p and q to be part of a 
cluster. Also, a point q is density-reachable from p, instead of directly density-reachable, if there is a 
sequence (p1, p2, …, pn) of points with p1= p and pn= q where each pi+1 is directly density-reachable from pi (Fig. 
5, left). The density-reachable relation is not symmetric. While p may be surrounded by sufficiently many points, 
q may not. Two points q and r that are both directly density-reachable from p but where neither q nor r are 
surrounded by sufficiently many points, are said to be density-connected (Fig. 5, right). 

 
FIG. 5: Density reachable and density connection. 
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Consequently, the data resulting from the simulation can be simply described as follows: 
Let δe be the energy consumption threshold, δl be the daylighting distribution threshold and δs be the density 
threshold, then, a group of objects q is called a simulation result analysis area, if: 

1) The members of q are density-connected among themselves for the energy consumption e where e 
≤ δe and the lighting distribution l where l ≤ δl 

2) Size (q) ≥ δs 

According to this conception of the simulation result analysis area, we developed the clustering method in C# 
(Fig. 6). The algorithm first performs density-based clustering for all the simulation results (lines 1 – 3). Then 
the system refines the results retaining only the clusters with sufficient size (Lines 4 – 5). Clusters with 
sufficiently low energy consumption (Lines 6 – 8), or sufficiently high daylighting distribution (Lines 9 – 11) are 
retained as output. At last, the qualified simulation area set A is updated to the data-driven workflow (Line 12). 

Density-based clustering and data analysis algorithm 
Input: energy consumption threshold δe, daylighting distribution threshold δl, density threshold δs distance 
threshold δd, candidate set R and the simulation data stream S 
Output: every qualified simulation result q 

1. for each simulation result s of S do 
2.  initialize new simulation analysis area set A; 
3.  cluster the objects in s according to δd; 
4.  for each cluster si ∈ s do 
5.   if size(si) ≥ δs then 
6.    if energy consumption (si) ≤ δe then 
7.     calculate the density area of si; 
8.     output si as a qualified energy consumption cluster qe; 
9.    if daylighting distribution (si) ≥ δl then 
10.     calculate the density area of si; 
11.     output si as a qualified daylighting distribution cluster ql; 
12.  add all the qualified clusters to A; 

FIG. 6: Density-based clustering and data analysis algorithm 

3.2 ASSOCIATION RULE LEARNING 
Association rule learning is a method for discovering potential relations between different variables. Association 
rules are created by analyzing data for frequent if/then patterns that satisfy the minimum support (minSup) and 
the minimum confidence (minConf) thresholds. The association rules problem can be described as follows: Let I 
= {i1, i2, …, in} be a set of items. Let D be a set of all transactions where each transaction T is a set of items such 
that T ⊆ I. Let X, Y be sets of items such that X, Y ⊆ I. An association rule is an implication in the form X ⇒ Y, 
where X ⊂ I, Y ⊂ I , X ∩ Y = ∅ (Agrawal et al., 1993). Given the research requirement, we separate the energy 
consumption (kWh) into three levels: Low, Medium and High, where a High level indicates a reduction in 
energy use less than 40% and where all obtained reduction values greater or equal to 40% evenly distribute over 
the Low and Medium level. The possibility of each combination of material items for different energy levels will 
be calculated and stored in the database. 

Fig. 7 shows all possible combinations of generic floor (1), wall (2), roof (3) and window (4) materials.  The 
representation of each set is simplified by only specifying the numbers (digits) in the set. The initial set is empty, 
represented as Ø. Lines connecting item sets indicate that two or more sets can be combined to form a larger set. 
Fig. 8 describes the corresponding association rule algorithm. 

 



 

ITcon Vol. 20 (2015), Liu et al., pg. 87 

 
FIG. 7: All possible combinations of materials. 

Association rule algorithm for all material combinations 
Input: the simulation data stream S 
Output: every combination result Ci 

1. initialize three levels of energy consumption areas: Eh, Em, El; 
2. initialize a frequent item set F1 = {large 1-itemset}; 
3. for (k = 2, Fk-1 ≠ Ø; k ++) do 
4.  set Ci = new combination of materials;  
5.  if energy consumption (S) ≤ Eh then 
6.   for each k-subset s of S do 
7.    if s ∈ Ci then 
8.     s.count++;  
9.  if energy consumption (S) ≤ Em then 
10.   for each k-subset s of S do 
11.    if s ∈ Ci then 
12.    s.count++; 
13.  if energy consumption (S) ≤ El then 
14.   for each k-subset s of S do 
15.    if s ∈ Ci then 
16.    s.count++; 
17. save all frequent item sets = { Ci Eh Fk ; Ci Eh Fk ; Ci Eh Fk }; 

FIG. 8: Association rule algorithm for all material combinations 

3.3 DATA-DRIVEN WORKFLOW 
The proposed data-driven workflow (Fig. 9) contains the following actions: 1) read the building information 
from the BIM model (Revit); 2) identify the direction of simulation from the data mining result (logical 
controller); 3) transfer the building information into an EnergyPlus file; (4) transfer the building information into 
a Radiance file; (5) read the simulation result from EnergyPlus; (6) read the simulation result from Radiance; (7) 
repeat the cycle (the iterative workflow controller controls the data-driven workflow with input from the 
designer). 

The development of the data-driven workflow requires three main steps. The first step is to identify the project 
requirements. This step is a challenging one since projects have constrained budgets, schedules, and resources. It 
is essential that all building stakeholders – including owners, designers, engineers and contractors – have a clear 
understanding of the problem definition and participate in identifying a set of design alternatives early in the 
project planning process. The second step, corresponding to actions 5 and 6 (Fig. 7), is the generation of a large 
amount of data, specifically, the energy and daylighting simulation results. Exemplar data include estimated 
energy costs or savings in terms of building orientation, HVAC systems, lighting efficiency and control, roof and 
wall construction, glazing type, etc. The last step is the data mining process where we develop an overall data 
analysis mechanism that can also be applied to find patterns that explain or predict any behaviours resulting from 
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the different simulations. Application of the density-based clustering method will guide the design process into 
an effective direction. 

 
FIG. 9: Overview of proposed data-driven workflow 

3.4 THE LIMITATION OF THE METHOD 
1) Handling noisy data: parts of the problem situation may be irrelevant to the actual problem posed. 

An unsuccessful assessment of such noise as present in the problem situation may result in the 
same problem being unnecessarily stored numerous times in the case base because of the 
difference in noise assessment. In turn this implies inefficient storage and retrieval of cases. 

2) Sustained learning: most of the machine-learning algorithms require a special training phase when 
information is extracted (knowledge generalization). This makes an on-line adaptation difficult. 

3) Data oriented: machine-learning algorithms model the relationships contained in the training data 
set. Consequently, if the employed training data set is not a representative selection from the 
problem domain, the resulting model may differ from the actual problem domain. This limitation 
of machine learning methods is aided and abetted by the fact that most of them do not allow the 
use of a priori knowledge. 

4. CASE STUDY  
The proposed data-driven workflow outlined above is applied within a design project. 

4.1 REQUIREMENT DEFINITION 
The energy-efficiency design process begins when the occupants’ needs are assessed and a project budget is 
established. Then, the proposed building is located on the site, and programmed spaces are carefully arranged to 
reduce energy use for heating, cooling, and lighting. Building heating and cooling loads are minimized by 
optimizing the building form and designing energy-efficient building elements – floors, windows, walls, and 
roofs. Taken together, they form the basis of the whole, integrated building design. 
The case study project concerns a new concept factory design. The objective of this design is to reduce more 
than 40% of the usual energy consumption and maximize the daylighting amenity of this factory building. In the 
design of the factory, strong emphasis is placed on the functionality and the efficiency of the movement of 
materials within the factory. The factory incorporates many structural provisions, such as bolting points and 
removable concrete slabs, to enable different material handling systems of up to two tons to be easily installed by 
the user without needing to modify the building structure. The factory provides fire fighting, medical service, 
recycle service, import and export service. The factory consists of a physical working space, day room, 
dormitory area, office room, decontamination room, storage area/rooms, latrines, communication and electrical 
closets, and a mechanical room. The size of the proposed factory is approximately 21068.8 m2 (by GFA) (Fig. 
10). The apparatus room is sized for a fire truck, military police car, and ambulance. The building is occupied 
seven days a week for 24 hours a day. A summary of the building model parameters and the thermal loading are 
presented in Fig. 11. 
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FIG. 10: Proposed factory building. 

 
FIG. 11: Baseline building model parameters. 

4.2 BUILDING MODELLING 
The modelling and simulations are achieved using Autodesk Revit Architecture, EnergyPlus and Radiance. 
Individual energy analysis runs are often performed to identify the annual energy cost for each building feature 
or system under consideration, or to determine the effectiveness of applying multiple features or systems to a 
design. In order to perform the energy analysis, the building information is read from the Revit BIM model (Fig. 
12). This completes the first action of the data-driven workflow. 

 
FIG. 12: Information exchange. 
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4.3 DATA ANALYSIS AND WORKFLOW CONTROL 
When the workflow is run for the first time, there are no pre-defined data yet to follow. Thus, the design starts 
from the first floor plan, and the logical controller node in the workflow will choose to run the simulations in 
sequence, EnergyPlus then Radiance. Fig. 13 shows the clustering area of different building components from 
many EnergyPlus simulation results. It shows the window’s clustering area to be much larger than the others. In 
the second action of the data-driven workflow, based on this knowledge, the logical controller guides the 
designer to define the window materials and sizes first. The windows material can be chosen from the following 
ten materials: “CLEAR 12MM”, “BRONZE 6MM”, “GREY 12MM”, “LOW IRON 2.5MM”, “BLUE 6MM”, 
“REF A CLEAR LO 6MM”, “PYR A CLEAR 3MM”, “LOE CLEAR 3MM”, “COATED POLY-88” and 
“ECABS-1 BLEACHED 6MM”. 

 
FIG. 13: Density-based clustering from simulation results. 

When performing the Radiance simulations, the design alternatives initially only consider the window-to-wall-
ratio (WWR). Relating to the size of windows and walls, the Radiance simulation results are compared to the 
daylight autonomy benchmarks. From the simulation results, the data-driven workflow finds out that when the 
WWR increases, the daylight autonomy will increase too (Fig. 14). 

 
FIG. 14: Radiance simulation results. 
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Integrating the data from Fig. 13 and Fig.14 into an analysis with respect to daylight autonomy and energy 
consumption, the data-driven workflow software only includes the WWR 20%, 40% and 60% in the output 
charts (Fig. 15). 

 
FIG. 15: Daylight autonomy and energy consumption.  

From the analysis of daylight autonomy and energy consumption, the data-driven workflow can easily identify 
the best solution with respect to window sizes and materials. This feedback is given to the designer in action 7 of 
the data-driven workflow. The designer then updates the windows and walls in Revit. According to the density-
based clustering results shown in Fig. 13, in the next step we will use the association rule learning to analyze the 
different combinations of materials. The possible materials for floor, roof and wall are shown in Fig .16. 

 
FIG. 16: Materials for floor, roof and wall.  

The results from the association rule mining shown in Fig. 17 indicate that the wall material “F14 SLATE” has 
the highest possibility (as a percentage of all material combinations) of medium and low energy consumption 
level. Hence, the material of the walls will be selected as “F14 SLATE”. Because the design requirements only 
specify an energy reduction of 40%, the medium level already achieves this objective. The results from the 
association rule mining also show that the selection of materials for floor and roof cannot be considered 
independently of the selection of the wall material. Fig. 18, Fig. 19 and Fig. 20, demonstrate that while the 
possibility of the wall material “F14 SLATE” for the medium level is 3.52%, it is 4.3% for the Wall-Floor 
combination, 2.62% for the Wall-Roof combination and 6.67% for the Wall-Window combination. Multiplying 
the latter three percentages for floor, roof and window does not provide the same result as the percentage for 
wall only. 
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FIG. 17: The possibility of each wall material for the three levels of energy consumption. 

 
FIG. 18: The possibility of each floor material with the selected wall material (F14) for the three levels of 
energy consumption. 

 
FIG. 19: The possibility of each roof material with the selected wall material (F14) for the three levels of energy 
consumption. 
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FIG. 20: The possibility of each window material with the selected wall material (F14) for the three levels of 
energy consumption. 

From the same results, if we consider the various combinations of wall, roof and floor materials with the selected 
window material (“Blue 6MM”), we find that whatever material is selected for wall, roof and floor, the 
possibility will be limited for the medium level (Fig. 21, Fig. 22 and Fig. 23). Thus, the window material is the 
most influential factor for the energy consumption during the early design stage. 

 
FIG. 21: The possibility of each wall material with the selected window material (Blue 6MM) for the three levels 
of energy consumption. 
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FIG. 22: The possibility of each floor material with the selected window material (Blue 6MM) for the three 
levels of energy consumption. 

 
FIG. 23: The possibility of each roof material with the selected window material (Blue 6MM) for the three levels 
of energy consumption. 

Because the lesser impact of the floor and roof material on the energy consumption, the material “F14 SLATE” 
is selected for the floor and the roof will be applied with 150 mm heavyweight concrete. After updating the 
building model, the designer triggers the data-driven workflow again to repeat the cycle and perform similar 
actions as already explained. The data mining process automatically updates the knowledge which has been 
found into its algorithms. After many cycles, the factory design is finalized as shown in Fig. 3. The data-driven 
workflow has realized the adaptive-iterative design process within this case study and has applied the data 
mining methods to draw knowledge from the simulation results. For this research, we also conclude two rules 
during the early design stage of energy-efficient buildings: 

1) The materials of different components are non-independent factors for energy performance 
analysis. 

2) The window materials are the most influential factors, the sequence of decision-making for energy 
performance will be window > wall > roof and floor 
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4.4 VALIDATION 
Based on the “BCA Green Mark Certification Standard for New Buildings” as proposed by the Building and 
Construction Authority (2012) in Singapore, certification points are allocated to lighting and energy-efficient 
practices and features used. A minimum of 30 points must be obtained in the Energy Efficiency category to be 
eligible for certification. The number of points achievable for lighting and energy-efficient practices and features 
is capped at 50 points (including 20 bonus points that are obtainable under renewable energy). 

The final design achieved the original goal of the design: 1) to reduce more than 40% of the energy consumption 
and 2) to maximize the daylighting amenity of this factory building. A comparison of annual energy costs for 
each design alternative was conducted in the different categories of building elements. The material used for 
both walls and floors is “F14 SLATE”, the roof consists of 150 mm heavyweight concrete and windows use 
“BLUE 6MM”. Using this combination, the design collects 42 points in the green mark certification process. 
From this point of view, this approach realizes the purpose of using the data-driven workflow to guide the 
energy-efficiency design process. 

5. CONCLUSION  
Utilizing data-driven workflow, this research conducted a data-oriented modelling process. The process mainly 
contains five steps: 1) identify the critical design requirements; 2) model the building; 3) implement the data-
driven workflow and essential technologies, including transferring the modelling information between different 
software; 4) apply data-mining, including clustering, classification and associated rule, to perform an integrated 
discipline analysis for energy and daylighting simulation results; 5) evaluate and refine the effectiveness of the 
workflow. We anticipate that this workflow will help design teams to formally investigate the performance of 
many more alternatives during the different design phases, leading to improved built environments. The results 
of the case study demonstrate our data-driven approach’s ability to guide the design process with high precision.  

But the quality of the context-based analysis and assumptions depends upon 1) the breadth and quality of 
memory and experiences that is being drawn upon; 2) the correct identification of metrics or indicators that 
would accurately categorize and predict the missing attributes or information. Data-mining is performed in order 
to make assumptions of a high quality and is based on numerous case studies. Thus, there is an essential need to 
conduct further research to apply this software into more design projects. Additionally, the workflow needs to be 
reinforced by implementing it into a scientific system workflow software (e.g., Triana, Tavaxy, Kepler). In order 
to automate the data-driven workflow, the process also needs to adopt parametrical design techniques. 
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