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SUMMARY: The increasing attention on the improvement of new and existing buildings’ performance is 

emphasizing the importance of the reliability of the simulation models in predicting the complexity of the 

building behaviour and, consequently, in some advanced applications of building simulation, such as the 

optimization of the choice of different Energy Efficiency Measures (EEMs) or the adoption of model predictive 

control strategies. The reliability of the energy model does not depend only on the quality and details of the 

model itself, but also on the uncertainty related to many input values, such as the physical properties of 

materials and components, the information on the building management and occupation, and the boundary 

conditions considered for the simulation. Especially for the existing buildings, this kind of data is often missing 

or characterized by high uncertainty, and only very simplified behavioural models of occupancy are available. 

This could compromise the optimization process and undermine the potential of building simulation. In this 

context, the calibration of the simulation model by means of on-site monitoring is of crucial importance to 

increase the reliability of the predictions, and to take better decisions, even though this process can be time 

consuming. This work presents a multi-stage methodology to calibrate the building energy simulation by means 

of low-cost monitoring and short-term measurements. This approach is applied to a Primary School in the 

North-East of Italy, which has been monitored from December 2012 to April 2014. Four monitoring periods 

have been selected to calibrate different sets of variables at a time, while the validation has been carried out on 

two different periods. The results show that even if less than 8 weeks have been considered in the proposed 

calibration approach, the maximum error in the estimation of the temperature is less than ±0.5  in 77.3% of the 

timesteps in the validation period. 
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1. INTRODUCTION 

The building stock is responsible for a major fraction of the global energy demand. Currently buildings 

renovation represents a significant opportunity toward reducing buildings' energy use. To achieve this end, 

detailed simulation can be used as a tool not only to assess the energy performance of an existing building but 

also to optimize the choice of different Energy Efficiency Measures (EEMs) from an energetic and economic 

point of view or to compare different strategies of system control and building management. The dynamic 

simulation allows to create a detailed model of the building and to consider aspects that are normally neglected 

in simplified calculations. However, it requires significant input information that for existing buildings is often 

difficult to be provided with a sufficient level of reliability. Otherwise inaccurate building models could 

compromise the selection process of EEMs, thus preventing cost-optimal renovations. In order to use building 

energy performance models with any degree of confidence, it is necessary that the model closely represents the 

actual behaviour of the building under study (Coakley et al. 2014). This aim can be achieved through model 

calibration. Calibration process can be very useful to obtain more reliable predictions from the simulation even 

though authors have frequently underlined some issues to be solved (Carroll W.L. et al, 1993, Kaplan M. et al, 

1990). In most of the cases the calibration of the simulation is “highly dependent on the personal judgment of the 

analyst doing the calibration” and it is based on a case-to-case approach without the implementation of a 

methodical way (Reddy, 2006). Respect to this issue monitored field data can be deployed to calibrate the 

simulation model in a systematic manner. The potential of using measured data to improve the results of the 

simulation has been already underlined by different authors (Reddy et al, 2007, Raftery et al, 2011). Otherwise 

the monitoring phase can be expensive and time-consuming. In this respect Liu and Liu (2012) propose short-

monitoring of about two weeks with an hourly time-step in energy consumption data collection. The reliability of 

this approach has been also demonstrated by previous works (Soebarto 1997, Pedrini et al. 2002). Concerning 

the object of monitoring, some authors used energy consumption data to tune the model (Heo et al. 2012, 

Soebarto 1997, Pedrini et al. 2002, Liu and Liu 2012, Pan et al. 2007, Raftery et al. 2011), others deployed the 

zone air temperature alone (Tahmasebi and Mahdavi 2012, Tahmasebi et al. 2012, Taheri et al. 2013) or in 

combination with total solar radiation and energy consumption (Nassiopoulos et al. 2014). All of them used 

weather data collected by meteorological stations. Concerning the modality to process a calibration Coakley et 

al. (2014) distinguish between manual or automated calibrations: while the first ones rely on iterative pragmatic 

intervention by the analyst without the employment of any automated technique, the latter use a kind of 

automated (i.e., not user driven) process to assist or complete model calibration. In the automated approach the 

issue, related to the choice of the variables to calibrate and to the objective function to use for tuning, is assisted 

by mathematical and statistical methods. In this framework the optimization-based calibration approach, 

proposed in previous publications (Tahmasebi and Mahdavi 2012, Tahmasebi et al. 2012, Taheri et al. 2013), is 

an efficient manner to conduct the model calibration. The optimization process, through the adjustment of the 

input parameters of the simulation, is used to minimize the difference between the model output and the 

monitored data. The choice of the variables, that mostly influences the cost function, can be carried out by means 

of sensitivity analysis (Tahmasebi and Mahdavi, 2012). Concerning the assessment of the calibration 

performance, the difference between estimated and measured value can be calculated in different ways: in some 

papers the error was calculated as the simple percentage difference between the total calculated consumption and 

the collected data; other authors propose the use of standardised statistical indices such as the Mean Bias Error 

(MBE), the Root Mean Square Error (RMSE) or the Coefficient of Variation of the Root Mean Squared 

Deviations, CV(RMSE), that aggregates the individual time step errors into a single dimensionless number. 

Tahmasebi and Mahdavi (2012) propose a cost function that takes into account not only the CV(RMSD) but also 

the coefficient of determination, R
2
, that provides a measure of the potential of the calibrated model in predicting 

the future outcomes.  

In this paper a methodology to calibrate the building simulation model based on a low-cost monitoring and short-

term measurements was tested and validated. The proposed calibration process has been applied to a real 

building, a Primary School in the North-East of Italy, in which the air temperature has been monitored from 

December 2012 to April 2014. A detailed simulation model has been set-up and calibrated using an 

optimization-based approach in order to minimize the difference between the temperature data collected and the 

ones predicted by the model. To achieve this aim four calibration periods have been considered according to 

different occupancy schedules (with or without occupants) and heating load (heating system switched on or 
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switched off). Since different periods requires also a different number of inputs for simulation, it was possible to 

calibrate some simulation inputs during one period and some others during other periods, using an approach that 

can be defined as a progressive calibration.  

2. METHODOLOGY 

2.1 Monitoring of the case study 

To test and validate the potential of the proposed calibration methodology in a realistic setting, a Primary School 

is selected as a case study (Fig. 1). The building was built in the ’50s and enlarged in the ’60s and is located in 

Schio (in the province of Vicenza), a municipality in North of Italy. The building has three-storeys: the 

basement, with canteen, gym and facilities rooms and two upper storeys with the classrooms. The monitoring of 

the building started in December 2012. A representative room in the first floor was selected and the difference 

between the room simulated and monitored data have been minimized in the calibration process (see Fig. 2). 

Data loggers and temperature sensors for radiators were installed in the selected room to store information on 

indoor air temperature, relative humidity and heat emitted by radiators. Data loggers were also installed in the 

adjacent rooms (Fig. 2) in order to get information on the boundary temperatures. All the indoor air temperature, 

relative humidity, and surface temperature of radiators’ supply and return pipes are logged at 5 min intervals. 

Hourly weather data collected by the weather station of the municipality of Malo, approximately 10 km far away 

from Schio, were used to create a real-year weather data file. 

Since detailed occupancy recordings were not possible, users' interviews and surveys were conducted in order to 

describe presence and occupants’ behaviour in the simulation model. By means of school register book it was 

possible to define the activities schedule of the class and the student presence day by day. The staff of the school 

has been interviewed in order to get information on the activities done in the room, when the students used to 

leave the room for extra-activities (such gym, informatics or music), when the cleaning are carried out and how 

and when people use to open the windows and manage the shading devices. 

 

FIG. 1: (left) Case study: San Benedetto Primary School (Italy). 

FIG. 2: (right) Selected room for monitoring (in square) and location of the sensors. Sensors 1-2-3-4 monitor 

Temperature and Relative Humidity, sensors R1-R2 log the surface temperature of radiators’ supply and return 

pipes. 

2.2 Building model 

The simulation code TRNSYS v.16 was used to model the building thermal performance. The thermo-physical 

model of the building was defined through the multi-zone building subroutine, Type 56. The building hydronic 

heating system is composed by two cast iron radiators that were modelled through the dynamic radiator model 

type TRNSYS subroutine 362 (Holst 2010). 

Dynamic simulation allows a detailed representation of the buildings, but it requires a lot of input information. 

The required input data on the building can be grouped as follow: i) weather data and boundary conditions; ii) 
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characteristics of the building envelope, furniture and appliances; iii) heating system characteristics; iv) 

occupants’ presence and behaviour.  

i) The hourly weather data collected by the weather station of Malo were interpolated to provide data consistent 

with a simulation time step of 10 minutes. The boundary conditions in the adjacent rooms recorded with a 

timestep of 5 minutes have been resampled to the 10 minute simulation timestep. 

ii) A first assumption on the thermal properties of the building components was done according to on-site 

surveys and technical documentation. Walls, floor and ceiling are composed of a main material layer (brick for 

the walls and hollow concrete structure for floor and ceiling), covered with overlays on both sides,. The two-

dimensional thermal coupling coefficient for thermal bridges at the intersections of floor and walls, as well as the 

windows and walls, were calculated in accordance with the EN ISO 10211:2007 (CEN 2007a) using Therm 

(LBNL 2013). The resulting values were considered in defining the effective thermal properties of building 

materials. The infiltration rate was fixed to 0.25 ACH according to the standard EN 12831:2003 (CEN 2003). 

The zone air capacitance is considered 10 times bigger than the default value (1.2 times the volume of the room) 

in order to consider the effect of the materials and furniture (McDowell 2003). The electric lights were 

considered switched on during the occupied period and the heat gains generated by their operation were set to 15 

W m
-2

 (ASHRAE Handbook 2009). The monitored temperature of the corridor was used to estimate the air mass 

entering through the internal door by means of EN 15242:2007 (CEN 2007b).  

iii) The first estimations of the radiator parameters were made according to the on-site surveys. With regard to 

the building heating system the monitoring data were used to identify: the heating system operation schedule, 

during weekdays and weekends in the working season, and the supply temperature, based on the outdoor air 

temperature for working and break seasons. 

iv) The occupants presence and the schedule of the school activities were defined day-by-day based on the 

information obtained from the school register book. The internal gains due to the presence of people were 

defined according to the values proposed by ASHRAE (ASHRAE Handbook 2009) for seated people (very light 

work). The users have been supposed to interact with the building affecting the shading factor and the air change 

rate. According to the survey, users’ interviews and some relevant literature a first assumption on those values 

was defined. Concerning the shading factor, during occupied periods, the first trial value was set according to the 

façade orientation (Mahdavi et al. 2008), while during unoccupied periods the windows were considered 

completely shaded. The air change rate was set to 1.5 h
-1

 during occupied period based on simplified 

considerations (CEN 2007c). 

2.3 Optimization-based calibration 

The optimization-based approach (Tahmasebi et al. 2012a) is an automated process to assist the calibration of the 

simulation model. Setting the cost function as the minimization of the differences between model predictions and 

monitored data, the input of the simulation program are varied, within a specified range, in order to find the 

combination of values that is able to achieve this goal. The cost function was defined using two model evaluation 

statistics that can represent the cumulated differences between measured and simulated values for the indoor air 

temperature of the monitored zone.  

The first indicator is the CV (RMSD), a dimensionless number that aggregates the time step errors over the 

runtime (Equation 1 and 2). 
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where mi is the measured indoor air temperature; si is the simulated indoor air temperature; n is the number of the 

simulation time steps; m is the measured mean temperature.  

The second indicator is the coefficient of determination, R
2
, calculated according with the Equation 3. 

Coefficient of determination describes the proportion of the variance in measured data explained by the model 

(Moriasi et al. 2007). R
2
 has a range from 0 to 1, where 1 indicates that the regression line perfectly fits the data. 

Therefore, R
2

 value is to be maximized in the optimization process.  

 (3) 

The defined cost function f takes into account both the model evaluation statistics, with different weighted 

factors. In this analysis the minimization of CV(RMSD) was considered more important. 

 (4) 

The optimization process has been carried out by means of the generic optimization tool GenOpt (LBNL 2012), 

that can be easily coupled with simulation tools. GenOpt can manage the repetitive process of varying the input 

variables, run the simulation and evaluate the cost function. The algorithm used to optimize the objective 

function is the hybrid generalizes pattern search with particle swarm optimization algorithm, which is one of the 

recommended optimization algorithms for problems, where the cost function cannot be simply and explicitly 

stated, but can be approximated numerically by a thermal building simulation program (Wetter 2010).   

2.4 Calibration process 

The aim of this work is to test and validate a methodology to calibrate the simulation without a comprehensive 

monitoring of the building system and based on short-term measurements. The proposed methodology can be 

defined as a progressive or multi-stage calibration. Firstly, the input variables to be calibrated have been listed 

and grouped in input sets dealing with a specific aspect of the building energy balance. Then, representative 

calibration periods of the year have been correspondingly identified in order to reduce the number of variables to 

calibrate at one time. As previously highlighted the required input data are: i) weather data and boundary 

conditions; ii) physical characteristics of the building envelope and infiltration; iii) heating system 

characteristics; iv) shading level and air change rate due to occupants’ presence and behaviour. The weather data 

and the boundary conditions are considered reliable, because measured by the weather station, and therefore they 

are not involved in the calibration process. As concerns the three other sets of inputs, they have different impact 

in the energy balance in different periods of the year. In particular, their relevance and impact on the dynamic 

behaviour change depending on the occupants’ presence (building occupied or not), on the occupants’ behaviour 

according to the external environmental conditions (summer or winter) and on the type and operation mode of 

the air conditioning system. It is worth noting that, in the considered case, the school has only a heating system 

and no cooling system. Moreover it is not occupied during the summer months (mid of June to mid of 

September). To calibrate the three sets of input ii) to iv), four different representative periods of the year have 

been selected (Table1), considering occupied and non-occupied periods and active (winter) or passive (summer) 

operation modes. Each period is two weeks long, except for the Period 2, which is only eleven days long. Period 

1 (non-occupied building, passive mode) is selected to calibrate the set i) building’s physical properties and 

infiltration (1
st
 calibration): in fact, the absence of occupants and the off-mode of the heating system limit the 

number of the variables to calibrate. Once defined the thermo-physical properties of the building, the monitored 

data from the Period 2 (unoccupied building, active heating) are used to calibrate the set iii) characteristics of the 

radiative heating system and the radiators’ supply temperature as a function of the external temperature, which 

are being the only unknown variables affecting the dynamic behaviour of the model (2
nd

 calibration and 3
rd

 

calibration). The so-calibrated values (1
st
 and 3

rd
 calibrated models) have been then used to calibrate the user 

interactions with the building (set iv). Since people tend to operate actively on the building in order to prevent 

discomfort conditions (Nicol 2002, Mahdavi 2011), it is reasonable to assume that they react differently in 

“summer” and “winter” conditions. For this reason in Period 3 (occupied building, passive mode) and in Period 4 

(occupied building, active heating) the user behaviour has been modelled and calibrated separately. Fig. 3 
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outlines the calibration process. In the following sections, details on the above mentioned calibrations are 

provided.  

 

TAB. 1. Monitoring periods used in the model calibration process 

Periods Start date End date 
Occupancy 

State 

Operation 

mode 

1 05.08.2013 18.08.2013 
Non-

occupied 
Passive 

2 24.12.2013 03.01.2014 
Non-

occupied 

Active 

heating 

3 03.05.2013 16.05.2013 Occupied Passive 

4 18.11.2013 01.12.2013 Occupied 
Active 

heating 

 

 

 

FIG. 3: Scheme of the Procedure of calibration 

2.5 Calibration during Period 1 

In the first calibration the values of ten building’s thermophysical properties and of the infiltration rate were 

optimized. The selected period, from 5
th

 to 18
th

 August 2013,, was characterized by the absence of occupants and 

by the passive operation mode. According to the users interviews the blinds were considered closed.  A variation 

range of approximately 20 % was allowed these parameters with respect to the first tentative value. The variables 

of the first calibration and their variability ranges are listed in Table 2. Not all the parameters can be considered 

independent: the thermal conductivity and the density of the components’ dominant layer are related. To prevent 
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the optimization process to lead to physically unrealistic combinations of these two variables, a simplified 

relationship between them was derived from information in the relevant literature (Gösele et al. 1996): 

λbrick = 0.0005 ∙ ρbrick + 0.12           (5) 

λconcrete = 0.0007 ∙ ρconcrete + 0.2648           (6) 

where λ is the thermal conductivity of brick or concrete in [W m
-1

 K] and ρ is the density of brick or concrete in 

[kg m
-3

].  

The variation of the thermal properties of the building materials affects also the thermal bridges’ impact. Three 

types of thermal bridges have been considered: the intermediate floor junction, the internal wall junction and the 

window intersection. Nine different linear thermal transmittances for  each thermal bridge were calculated 

combining the lower, the mean and the higher values of thermal conductivity of the material layers. A 

polynomial regression was then obtained to calculate the variation of the linear thermal transmittance over the 

continuous variation of the thermal conductivity of the materials. The calibration of glazing properties was not 

performed in a continuous manner. A set of eleven glazings, with different thermal transmittance and the Solar 

Heat Gain Coefficient (SHGC) was created through Window 6.3 (LBNL 2013) and considered in the calibration.  

 

TAB. 2: Input variables calibrated during the Period 1 (1
st
 calibration). 

Variables  Initial value Range  

Value 

Calibrated 

value 

Ext. wall brick layer – λ [W.m
-1

.K
-1

] 0.8 [0.64; 0.96] 0.687 

Ext. wall brick layer – Density [kg.m
-3

] 1840 [1520; 2160] 1614 

Ext. wall brick layer – Ext. Solar absorbtance 0.3 [0.24; 0.36] 0.336 

Int. wall brick layer – λ [W.m
-1

.K
-1

] 0.8 [0.64; 0.96] 0.953 

Int. wall brick layer – Density [kg.m
-3

] 1840 [1520; 2160] 2268 

Ceiling/Floor Hollow – λ [W.m
-1

.K
-1

] 0.606 [0.48; 0.73] 0.509 

Ceiling/Floor Hollow – Density [kg.m
-3

] 1244 [1070; 1417] 1105 

Window frame – Conductance [W.m
-2

K
-1

] 5 [4; 6] 4.028 

Windows* Transmittance [W.m
-2

K
-1

] 2.707 [1.569; 3.001] 1.569 

Infiltration rate 0.25 [0.2; 0.3] 0.21 

Zone air capacitance [kJ K
-1

] 2771 [1385 – 4156] 4141 
 

* the glazings were evaluated as a discrete variable 

 

2.6 Calibrations during Period 2 

The calibrated values of the material properties and of the infiltration rate obtained from the first calibration, 

were assumed as fixed in the second period of calibration, from 24
th

 December 2013 to 3
rd

 January 2014,when 

the heating system was operated in absence of occupants. The calibration of the characteristics of the radiative 

heating system was carried out in two steps. The model of the building hydronic heating system implemented in 

the dynamic radiator model type 362, calculates the return temperature and the heat emitted by radiators from the 

radiators’ supply temperature, the mass flow rate and the indoor air temperature. In the first step (2
nd

 calibration), 

the monitored radiators’ supply temperature and the control function on the mass flow rate derived from 

measurements were assumed as input and the radiators characteristics, reported in Table 3, were calibrated. 

According to the measurements, the heating system operation schedule during weekdays and weekends in the 

working season were defined. 
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Once those heating system properties had been estimated, in the second step, the heating system operation 

schedule and the supply temperature were identified using the data collected in the same period. Then, the 

multiplying coefficient of the function that describes the radiators’ supply temperature are calibrated (3
rd

 

calibration).  

During the winter season, the hot water is circulated according to a schedule. In this case the supply water 

temperature is assumed as a function of the external one, according to the function: 

If Text<10°C; Tsupply=a ∙Text+b (10) 

If Text>10°C; Tsupply=c (11)                                

Where Text is the outdoor air temperature and a, b, c are the multiplying coefficients. The first tentative values for 

those parameters, obtained from a regression based on monitored data, are reported in Table 4. 

Outside the scheduled heating time the heating system is switched on when the indoor temperature falls below 

14°C. For this period, the supply temperature was set to: 

Tsupply=d           (12) 

Where d was calculated as an average value equal to 22°C. 

In the second step of the calibration (3
rd

 calibration), a variation range of 20% were applied to the coefficient a, 

b, c and d, and these parameters were calibrated (Table 4).  

 

TAB. 3.  Input variables related to the radiators’ characteristics calibrated during the Period 2 (2nd calibration). 

Variables  Initial value 
Range  

value 

Calibrated 

value 

Maximum water flow rate – [kg.h
-1

] 150 [290; 210] 90 

Nominal Power with ΔT=60 – [W]   2592 [1759; 6739] 2.7 1787 

Radiator exponent 1.358 [1.28; 1.382] 1.378 

Radiator Thermal Capacitance – [kJ .K
-1

] 134.5 [100; 1340]  1164.2 

Radiative fraction at nominal conditions  0.3 [0.2;  0.4]  0.49 

 

 

TAB. 4.  Input variables related to the radiators’ supply temperature calibrated during the Period 2 (3
rd

 

calibration). 

Variables  Initial value 
Range  

value 

Calibrated 

value 

a -1.108 [-1.33; -0.89] -1.238 

b   54.377 [43.5; 65.25] 48.077 

c 43.136 [35.51; 51.76] 35.336 

d 22 [17.6; 26.4]  20.7 

2.8 Calibration during Period 3 and Period 4 

The lack of detailed information on users’ interaction during the occupied period have been solved  by selecting 

two different periods to calibrate the user behaviour according to different seasons of the year. Period 3 (from 3
rd

 

to 16
th

 May 2013),  with occupants but without heating (passive mode), and Period 4 (from 18
th

 November to 1
st
 

December 2013) with occupants and active heating mode. The number of occupants and the activities schedule 
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were determined day-by-day based on the school register book, for this reason the internal gains due to the 

human presence were not involved into the calibration process. Object of the calibration is the human interaction 

with the building defined as variation of shading factor and air change rate. Since the environmental conditions 

inside and outside the building can affect the operational control devices operated by people (Mahdavi 2011), the 

calibration of these variables was performed twice, obtaining different values in Period 3 and 4. Table 5 

summarizes the information on variables in the 4
th

 and 5
th

 calibrations. 

 

TAB. 5.  Input variables calibrated during the Period 3 and Period 4 (4
th

 and 5
th

 calibration). 

Variables  Initial value 
Range  

Value 

Calibrated 

value 

Shading level 0.68 [0 – 1]  

     Period 3    0.33 

     Period 4   0.05 

Air change rate 1.5 [0.7 – 3]  

     Period 3   0.7 

     Period 4   0.7 

3. RESULTS AND DISCUSSION 

3.1 Calibration  

The results of the calibration process are presented in Fig. 3 and the performance of the calibrated model 

synthesized in Table 6. In particular, Fig. 3 allows the comparison between the measured temperature profiles, 

the uncertainty range of the data logger and the calibrated model. The standardized statistical indices for the 

initial and the calibrated models in the four monitoring periods are presented in Table 6, where the calibrated 

model for a given phase has been tested as initial model during the following one. 

During the first period (non-occupied building, passive mode) even though the thermal properties of the 

envelope components have been calibrated, the effect of this calibration is almost negligible especially for the 

first 7 days of the period. The calculated temperature is lower than the real one. This could be ascribed to the 

weather data used for the simulation, which have been collected in a rural area while the building is located in an 

urban district where the actual outdoor air temperature is probably higher than the one considered in the 

simulation. Almost all the calibrated variables are quite close to the initial values. The calibrated conductivities 

are about 15 % lower than the initial values, while the calibrated zone thermal capacitance is almost twice as 

large as the initial one. Concerning the standardized statistical indices, the calibration slightly improves the 

RMSD, which still lies outside the accuracy range of the measuring sensors (±0.35 °C). In general the calibrated 

model is slightly better than the first attempt model. 

During the second period (non-occupied building, active heating mode ) the calibration of the characteristics of 

the radiative heating system and especially the calibration of the regression model coefficients of radiator supply 

temperature is very effective in determining the improvement of the simulation. With the two-step calibration of 

the radiator the RMSD and the CV(RMSD) are highly decreased, while maintaining high R
2
.  

During the third period (occupied building, passive mode), the interaction between people and windows (shading 

factor and air change rate) has been calibrated starting from the previous results (actually after the 1
st
 calibration, 

since the 2
nd

 does not affect the performance in non-heating periods) leading to a good performance of the 

calibration obtained. During all the calibration period the estimated temperature is within the accuracy range of 

the sensors (±0.35 °C). In more detail, the RMSD of the calibrated simulation is 0.26, slightly lower than the 

RMSD of the 1
st
 calibrated model, and the CV(RMSD) and R

2
 are also better than in the 1

st
 calibrated initial 

model. 
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Finally, during the fourth period (non-occupied building, active heating mode), once again the interaction 

between people and windows has been calibrated leading to a quite good performance in temperature prediction. 

The calibrated values show that the air change rate is the same as when the heating system is off, thus seems to 

demonstrate that the air change rate is much more related to the air quality perception than to people thermal 

conditions. On the contrary the shading factor is lower in autumn than in spring, probably because of the 

dependence of the shading control on the visual and thermal comfort sensation. Looking to the statistical 

indicators the 4
th

 calibration model has a RMSD of 0.67 that is the highest of the models calibrated on the other 

periods, but it is a less than a half the initial error obtained after the 2
nd

 Calibration. Looking at the temperature 

profile it can be seen that only during two days the calculated temperature does not match the measured one, thus 

worsening the overall calibration performance indicators: some unpredictable occupant behavior could be the 

reason of this difference. 

 

TAB. 6: The evaluation statistics of the initial and calibrated models in the monitoring periods. 

Period  RMSD CV(RMSD) R
2 

 Period  RMSD CV(RMSD) R
2
 

Period 1  

1
st
 Calibration      

Period 2 

2
nd

 Calibration    

    Initial Model 0.69 2.44 0.98 
     Initial Model (after 

1
st
 Calibration) 

1.29 8.41 0.86 

    After 1
st
 

Calibration 
0.54 1.92 0.99 

>     After 2
nd

 

Calibration, 1
st
 Step  

0.39 2.56 0.97 

    

  Initial Model (after 

2
nd

 Calibration, 1
st
 

Step) 

0.56 3.63 0.96 

    
  After 2

nd
 Calibration, 

2
nd

 Step 
0.17 1.07 0.98 

 V     V   

Period 3  

3
rd

 Calibration 
   

 Period 4  

4
th

 Calibration    

    Initial Model 

(after 1
st
 

Calibration) 

0.32 1.53 0.94 

     Initial Model (after 

2
nd

 Calibration, 2
nd

 

Step) 

1.44 7.60 0.84 

    After 3
rd

 

Calibration 
0.26 1.24 0.95 

     After 4
th 

 

Calibration 
0.67 3.53 0.92 

 

Some general consideration can be drawn. The calibration process presents a different effectiveness according to 

the period of the year used for calibrating even though in all the periods the initial model is improved by the 

optimization-based calibration. The calibration of the heating system (2
nd

 period) gives as good results as the 

calibration of the occupancy interactions (3
rd

 period) while combining the uncertainties of the two calibrations 

the simulation performance slightly decreases (4
th

 period). 
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PERIOD 1 (1
st
 Calibration) PERIOD 2 (3

rd
 Calibration) 

  

PERIOD 3 (4
th

 Calibration) PERIOD 4 (5
th

 Calibration) 

  

 

FIG. 3: Calibration of the Simulation Model in the four different Periods. 

3.2 Validation 

Two periods of validation have been selected in order to verify if the calibrated model is able to improve the 

prediction’s reliability also in periods that are not involved into the calibration process. The calibrated model has 

been validated during 14 consecutive days in May and 14 consecutive days in December. Fig. 4 shows the trend 

of the measured and simulated zone air temperature. Comparing the initial simulation with the calibrated one it is 

possible to appreciate the advantages provided by the calibration process during the winter period, while during 

the spring time the calibration is not very effective in improving the correspondence between the model and the 

measurements. In particular, during winter time, with the calibration process, the RMSD and the CV(RMSD) 

have been halved  while the coefficient of determination has been improved from 0.84 to 0.96. In May the 

validation results are not so different from the initial model results but they are still better: the RMSD changes 

from 0.49 to 0.41, the CV(RMSD) becomes 2.24 % and R
2
 remains 0.91.  

In Fig. 5 the cumulative distribution error between the simulated and measured temperature has been reported for 

the two validation periods. The differences between the predictions of the calibrated model and the real 

measurement are between -2.1 and 1.5, but for the 50% of the times the difference is approximately between -0.3 

and 0.4. However the error obtained during the validation period is almost the same as the one obtained during 

the calibration period during the heating season while even if the error obtained during the spring validation 

period is twice as much as the calibration one it doesn’t exceed much the sensor accuracy range. From the graph 

it is possible to see that the calibrated model tends to underestimate the indoor air temperature; that it is also 

visible in Fig. 4, especially for the winter period. 
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VALIDATION MAY (18
TH

-31
ST

 May) VALIDATION DECEMBER (2
ND

–15
TH

 December) 

 

 

 

FIG. 4: Validation of the calibrated simulation model in two different periods. 

 

FIG. 5: Cumulative distribution error for the two validation periods. 

4. CONCLUSION 

In this work a methodology to deploy short-term monitored data for optimization-supported simulation model 

calibration was tested and validated on a case study. Different periods of the years were selected and used to 

calibrate different parameters of the simulation model. This way a progressive calibration has been performed in 

an order suitable to tune building physical properties, heating system characteristics and occupants interactions 

with windows and shading devices under different environmental conditions. 

Results have demonstrated that the use of different periods to calibrate different parameters is a promising way 

to lead a calibration even though there are still little discrepancies between simulation and real data, which 

however never exceed the temperature sensors accuracy also in the validation periods.  

The main advantage of the calibration method proposed is the limitation of the amount of measurement to 

collect, not only concerning the room to be monitored in the building, thus reducing the number of sensors and 

consequently the costs, but also concerning the length of the monitoring itself (2/3 months).  

Two main aspects have to be investigated yet: the robustness of the model on the long period (one or more 

years), and the application of the model to the whole building.  

Concerning the first aspect a further development of this research will be the validation of the calibrated model 

over the whole academic year and over different years in order to assess the robustness of this calibrated model 

to predict representative performance and this way to confirm the efficacy of the multi-stage calibration 
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implemented. In general, the robustness of the method should to be compared with that of more traditional and 

expensive (in terms of time and costs) approaches.  

Moreover the procedure is going to be repeated for different classrooms in the same building. The verification of 

a reliable performance would then allow us to generalize the method which could be repeated in any building 

being of great advantage in several fields, such as the energy diagnosis of existing buildings, the definition of 

predictive control strategies, the identification of optimal retrofit options.  
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