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SUMMARY: Within the past few years, simulation and modeling have been adopted by the Architecture, 
Engineering, Construction, and Facility Management (AEC/FM) industry because it provides unique 
opportunities to transform traditional human-centered decision-making in design, planning, execution, and 
maintenance practices into simulation-centered decision-making. This allows a decision-maker to understand 
system behavior, and predict future events without having to test scenarios and interfere with the current 
operations of an existing system. However, a major challenge in transitioning from human-centered decision-
making to simulation-centered decision-making is to establish methods and guidelines that facilitate seamless 
integration of field data into project planning, monitoring and control, and operation. This integration of field 
data into a simulation model allows the dynamics and evolving nature of events that may occur in a real system 
to be integrated into the simulation for effective decision-making. The goal of this paper is to conduct a vigorous 
review and investigate the underlying challenges associated with aspects such as modular design, data 
interfaces and translation, and model development and validation. In particular, this paper: 1) presents Discrete 
Event Simulation Specification (DEVS) as a simulation formalism that facilitates decision-making across a 
single operation (e.g. earthmoving); 2) reviews High Level Architecture (HLA) as a distributed simulation 
platform that allows for the coupling of several standalone simulation models and data sources to improve 
decision-making across complex systems; and 3) describes the hierarchy of multimodal data sources for 
simulation and different formalisms (i.e. model representations) that facilitate storage and querying of real time 
data to support simulation and distributed simulation models. The materials presented in this paper are the 
latest findings of an ongoing collaborative project being conducted by the Simulation Taskforce of the 
Visualization, Information Modeling, and Simulation (VIMS) Committee of the American Society of Civil 
Engineers (ASCE), and aim to lay the foundation for future research and implementation efforts in AEC/FM 
domain-specific real-time simulation systems. In the long term, work in this area will enable researchers to 
address some of the most fundamental problems in AEC/FM simulation modeling. 
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1. INTRODUCTION 

Traditionally, project engineers and planners in Architecture, Engineering, Construction, and Facility 
Management (AEC/FM) have used techniques, such as the Critical Path Method (CPM) and Earned Value 
Analysis (EVA), to study work progress and identify deviations from project time-cost plans. Most existing 
scheduling and decision-making approaches however, are unable to model the repetition of operations and 
resource dynamics (i.e. interactions), and have limited capabilities to support sensitivity (e.g. what-if) analysis. 
Meanwhile, in most AEC/FM projects (e.g. highway construction, transportation infrastructure, and building 
systems), activities and events do not take place in fully controlled environments and the presence of ambient 
factors (e.g. delays, repairs, adverse weather, breakdowns, occupant preferences, and unforeseen conditions) can 
intensify uncertainty. Within the past several years, the AEC/FM domain has witnessed a rapid pace of 
information technology (IT) advancement and integration, which has provided unique opportunities to transform 
traditional human-centered decision-making in design, planning, execution, and maintenance practices into 
simulation-centered decision-making. Some notable examples of such new approaches include building 
information modeling (BIM), remote sensing, data mining and fusion, simulation and visualization, and process 
automation. A review of recent literature reveals several efforts both in academia and industry to employ one or 
more of these techniques in order to improve the current state of research and practice (Golparvar-Fard and 
Peña-Mora 2007, Jang and Skibniewski 2009, Abourizk 2010, Akhavian and Behzadan 2013, Bosché et al. 
2013). Among these approaches, simulation and modeling offers unique opportunities to understand the system 
behavior and predict future events without having to test scenarios on a real system or interfere with the current 
operations of an existing system. The aim of this paper is to investigate the state-of-the-art in AEC/FM 
simulation modeling, its limitations, and potential future directions. 

Most AEC/FM systems, by definition, consist of repetitive operations that involve resources interacting at 
different levels to transform a set of inputs into a set of outputs within the constraints of time, budget, and 
required quality. Despite this structured definition, every project is unique as it takes place in an environment 
that can completely be different from another project. In other words, while the internal mechanisms and logics 
governing a class of AEC/FM systems (e.g. earthmoving, highway construction, building) may be similar across 
several projects, the external mechanisms (e.g. location, ground conditions, type of machinery, weather, labor 
skills, occupants) surrounding each project are exclusive to that project alone. This is in contrast with many 
manufacturing and industrial systems where internal and external mechanisms are controlled and the effect of 
unexpected (or undesirable) conditions (i.e. system noise) is kept to a minimum. Discrete event simulation 
(DES) has thus evolved as a method that allows decision-makers to closely represent an AEC/FM system and to 
model the effects of internal and external uncertainties on project planning, execution, operation, and 
maintenance. 

From a pure modeling and simulation (M&S) perspective, a system is defined as a collection of entities (or 
components) that act and interact together toward the accomplishment of one or more logical ends (Maria 1997). 
Within this context, there are two types of systems: discrete and continuous. In a discrete system, state variables 
change instantaneously at specific points in time (Cassandras and Lafortune 1999). In building construction, for 
example, tower cranes operate on a discrete basis since the state variable describing tower crane status (busy or 
idle) changes only when a new payload arrives at the lifting station. In a continuous system, however, state 
variables change continuously with respect to time. For instance, in a built facility (e.g. office building or factory 
plant), if the state variables are defined as instantaneous indoor temperature and humidity, the corresponding 
system is considered continuous since these variables continuously adjust (not at predefined points in time) to 
maintain indoor temperature and comfort conditions for building occupants. DES is a paradigm used to model 
the former case where state changes occur at discrete points in time. A DES model can be either deterministic or 
stochastic in nature where in the latter changes to a new state are governed by probabilistic conditions. 

By simulating the behavior (i.e. state changes) of a system over time, the DES is sought to reproduce the process 
of how project entities (i.e. materials, equipment, and people) interact with each other, and what output may 
result from this interaction under different scenarios. Since the late 1970’s, several researchers have attempted to 
introduce DES tools and applications within the AEC/FM domain. Examples include CYCLONE (Halpin and 
Woodhead 1976), RESQUE (Chang 1986), UM-CYCLONE (Ioannou 1989), Micro CYCLONE (Halpin 1990), 
COOPS (Liu 1991), CIPROS (Odeh 1992), Stroboscope (Martinez 1996), SIMPHONY (Hajjar and AbouRizk 
1999), ABC (Shi 2000), and EZStrobe (Martinez 2001). Despite the advantages of DES in modeling AEC/FM 
systems, this simulation paradigm still has key limitations that have prevented it from full accreditation and 
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widespread adoption by the construction industry for large-scale decision-making. In a recent report published 
by the Visualization, Information Modeling, and Simulation (VIMS) Committee of the American Society of 
Civil Engineers (ASCE), several grand challenges in simulation for the AEC/FM industry were identified. 
Among those listed, the existing simulation frameworks are unable to: 1) create realistic operations-level models 
that can properly model the dynamics of project entities, and 2) adapt to changes in real time (Lee et al. 2013). 
The common denominator of these two limitations is the lack of systematic strategies that enable a simulation 
model to communicate with the corresponding real world engineering system through collecting process data 
and extracting meaningful computer-interpretable knowledge that can help the model update its properties, 
attributes, and design variables as the real system evolves. 

Currently, almost all construction DES models created using existing methodologies are static and built upon 
rigid structures. For instance, the routing mechanism that guides different entities throughout the system has to 
be explicitly hard-coded in a model. Similarly, queue disciplines need to be prescribed ahead of time. In reality, 
the dynamic nature of a real engineering system may require new routing mechanisms to be used or queue 
entities to be served in a different order depending on new information received from ongoing operations 
(Akhavian and Behzadan 2014). If data describing such deviations cannot be captured and represented in the 
simulation model, it is very unlikely that the model can adequately evolve over time or be useful for decision-
making beyond its intended application. Given the relatively high cost and unique set of skills needed to create 
simulation models, this limitation can make the development of simulation models quite uneconomical as they 
may not be usable beyond the early planning stages of a project when data from the real engineering system is 
scarce and thus, making engineering assumptions about model parameters can be better justified (Abourizk 
2010). The resulting models will be rarely used during the execution phase of the project to help make more 
informed decisions based on updated data that becomes available over time which better explains the actual 
system performance and highlight discrepancies from the simulation results. These discrepancies can be 
investigated to determine issues with the original assumptions, and also to update the model to better predict 
future performance. 

2. RESEARCH OBJECTIVES 

Considering the current state of knowledge in AEC/FM simulation, it is perceivable that a major challenge in 
transitioning from human-centered decision-making to simulation-centered decision-making is to establish 
methods and guidelines that facilitate the seamless integration of field data into project planning, monitoring and 
control, and operation. As a result, any data-driven simulation tool designed for this domain must take into 
account the dynamics and evolving nature of events that may occur in the real system. 

This paper reports on the latest collaborative efforts of the Simulation Taskforce of the ASCE VIMS Committee 
to lay the foundation for future research and implementation of domain-specific real-time simulation systems in 
AEC/FM. Section 3 provides an overview and definition of real-time simulation. A state-of-the-art review and 
the latest advancements in the three main areas that facilitate the simulation of AEC/FM systems in real-time are 
presented in Sections 4, 5, and 6. In particular, Section 4 presents Discrete Event Simulation Specification 
(DEVS) as a simulation formalism that facilitates decision-making across a single operation (e.g., earthmoving), 
Section 5 reviews High Level Architecture (HLA) as a distributed simulation platform that allows for the 
coupling of several standalone simulation models and data sources to improve decision-making across complex 
systems, and finally Section 6 described the hierarchy of multimodal data sources for simulation and different 
formalisms (i.e., model representations) that facilitate storage and querying of real time data to support 
simulation and distributed simulation models. Throughout this paper, different examples from three major areas 
within AEC/FM are used to facilitate the technical discussions and to demonstrate the applicability of the 
presented materials about formalism, model architecture, and data representation in a variety of AEC/FM 
applications. In particular, the examples in this paper are selected from construction (earthmoving), FM 
(building energy), and engineering (transportation). 

A thorough understanding of model formalism, model architecture, and data representation is of utmost 
importance to the development of domain specific real-time simulation systems for AEC/FM applications. In 
developing such models, the decision-maker needs to understand how entities function and interact (goal of 
formalism), how model components are assembled to create complex simulations (goal of model architecture), 
and how data is interpreted and transferred between different parts of a simulation model (goal of data 
representation). The objective of this paper is therefore to investigate the underlying challenges associated with 
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modular design, data interfaces and translation, and simulation model development and validation. Ultimately, 
the discussions presented in this paper are sought to lay the foundation for future research and implementation 
efforts in AEC/FM domain-specific real-time simulation systems. 

In order to present the most relevant and inclusive information in this review paper, this paper follows a cohesive 
approach. In particular, the authors adopted a methodology presented in Noguchi (2006) in which papers are 
grouped into four distinct categories according to their objective:  

• Status quo review: presentation of the most current research for a given topic or field of research. 
• History review: development of a field of research over time. 
• Issue review: Investigation of an issue (i.e. point of disagreement or a question) in a specific field of 

research. 
• Theory/model review: Introduction of a new theory or model in a specific field of research. 

While this review paper has components from almost all four categories, it mostly fits with the definition of a 
“theory/model” review since it attempts to introduce researchers and practitioners to the application of new 
topics such as DEVS and HLA in AEC/FM simulation modeling. The main aspects of the review method 
adopted in this paper are as follows: 

• Data sources: The most common engineering research databases such as ASCE Library, Elsevier, 
IEEE, Taylor and Francis, and Wiley Online were considered. 

• Search terms and strategies: Main search keywords that were used included “simulation”, “real-time”, 
“DEVS”, “HLA”, “knowledge modeling”, “decision-making”, and “formalism”. However, the authors 
also relied on their prior work in these areas and included work (in addition to search results) from 
prominent researchers on a case-by-case basis. 

• Selection criteria: Since this review paper is intended to focus on AEC/FM domains, articles that had 
little to offer in terms of application areas in AEC/FM domains were excluded. Also, with a few 
exceptions (e.g. where classic texts such as well-known dissertations or books had to be cited), articles 
published before 2000 were excluded. The rationale behind this was that the objective of this work is to 
introduce the “state-of-the-art” and therefore, more recent publications can better serve the purpose of 
this study. 

3. REAL-TIME SIMULATION SYSTEMS 

Shaw (2001) defines a real-time system as a system that “monitors, responds to, or controls an external 
environment. This environment is connected to the real-time system through sensors, actuators, and other 
input/output (I/O) interfaces”. Due to increasing complexity and multidisciplinary nature of many engineering 
phenomena including AEC/FM projects, such systems often include subcomponents that are distributed over a 
much larger physical space, while still coordinating and cooperating together to satisfy an objective function. 
Despite some differences, one key requirement of all real-time systems is timeliness, a property defined as the 
ability of the system to respond correctly (reliably) to inputs within acceptable time intervals (Laplante 1997). In 
addition to reliability, real-time systems also benefit from a concurrent event-driven nature, and are characterized 
by their continuous interaction with an external environment. Therefore, they are sometimes referred to as 
reactive systems. The combination of temporal requirements (timeliness), limited resources (computing power), 
concurrent environmental entities (complexity), high reliability requirements, and distributed processing has led 
to real-time systems being recognized as a distinct discipline with its own body of knowledge and theoretical 
foundation (Hu 2004). 

4. DISCRETE EVENT SIMULATION SPECIFICATION (DEVS) FORMALISM 

Formalism refers to the mathematical structure of different building blocks of a simulation model (Antoine-
Santoni 2007). Within the context of DES, the discrete event formalism is sought to express changes of variable 
values (i.e. state variables) at time segments that are piecewise constant. Thus, an event is essentially a change in 
a variable value that occurs instantaneously. In other words, the goal of formalism is to define how to generate 
new values for state variables and to identify the time segments these new values take effect. A widely used 
simulation formalism is the discrete event simulation specification (DEVS) which enables modelers to 
mathematically define the structures of individual components involved in a single DES model. It also allows 
individual models to be contextually linked to facilitate the prospect of simulating more complex systems 
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(Zeigler and Sankait 1993). A variety of DEVS modeling and simulation tools have been implemented in the 
past several years for domains other than AEC/FM (Li et al. 2011). In DEVS formalism, the time intervals 
between event occurrences are variable (in contrast to discrete time where the time step is generally a constant 
number). Using DEVS formalism, one must specify the basic models from which larger ones are built, and how 
these models are connected together in a hierarchical manner (Posse et al. 2003). The definition of a model in 
DEVS is slightly different from that defined by the common DES terminology. A DEVS model is a unit that 
possesses input and output ports through which all interactions with the environment are mediated. In the 
discrete event case, when external events (from the external environment) are received on input ports, the model 
description must determine how to respond to them. Also, internal events arising within the model can change its 
state, as well as resulting events on the output ports. Using DEVS, the behavior, structure, and timeliness of a 
real-time system can be effectively modeled, evaluated, and ultimately implemented by different simulation 
methods (Hu 2004). The behavior aspects of a system can be specified by DEVS atomic models. The structure 
aspects of the system can be specified by DEVS coupled models which allow hierarchical composition of 
models through coupling input ports and output ports between multiple models. Also, a DEVS model can 
explicitly specify time using the time-advance function. This makes it possible to model and evaluate real-time 
requirements in a systematic way. DEVS also has the capability to model dynamic reconfigurations of a real-
time system which allows for self-adaptation of a simulation model to the evolving nature of the external 
environment. 

4.1. Basic (Atomic) DEVS Model 

An atomic model is an irreducible component in DEVS framework that implements the behavior of a component 
(Zeigler et al. 1976). It executes the state-machine and interacts with other components using its predefined input 
and output ports. A basic DEVS atomic model is expressed using Equation (1), 

𝑀 =< 𝑋, 𝑆,𝑌, 𝛿!"# , 𝛿!"# , 𝛿!"#, 𝜆, 𝑡𝑎 >      Eq. (1) 

In this Equation, 

𝑋: set of external input events 

𝑆: set of sequential states (including phases and variables) 

𝑌: set of outputs 

𝛿!"#:  𝑆   → 𝑆: internal transition function 

𝛿!"#:  𝑄  ×𝑋!   → 𝑆: external transition function 

𝛿!"#:  𝑄  ×𝑋!   → 𝑆: confluent transition function 

𝑄 =    𝑠, 𝑒   𝑠 ∈ 𝑆, 0 ≤ 𝑒 ≤ 𝑡𝑎(𝑠)}: set of total states where 𝑒 represents the elapsed time since last 
state transition 

𝑋!: set of bags over elements in 𝑋 

𝜆:  𝑆   → 𝑌!: output function generating external events at the output 

𝑡𝑎:  𝑅   →   𝑅!,!! : time-advance function 

The interpretation of a DEVS atomic model and relationships between model components are illustrated in 
Figure 1. 
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Fig. 1   DEVS atomic model semantics. 

This model contains information necessary to explicitly describe the following (Hu 2004): 

• The set of input ports through which external events are received. 
• The set of output ports through which external events are sent. 
• The set of state variables and parameters – two state variables are usually present:  𝑆 (phase) and 𝜎 

(sigma). The latter determines how long the system stays in the current phase in the absence of external 
events. 

• The time-advance function which controls the timing of internal transitions. 
• The internal transition function which specifies to which next state the system will transit after the time 

given by the time-advance function has elapsed. 
• The external transition function which specifies how the system changes state when an input is 

received. The effect is to place the system in a new  𝑆 (phase) and 𝜎 (sigma), thus scheduling it for a 
next internal transition. The next state is computed based on the present state, the input port, value of 
the external event, and the time that has elapsed in the current state. 

• The confluent transition function which is applied when an input is received at the same time that an 
internal transition is to occur. By default, the internal transition function is applied before applying the 
external transition function to the resulting state. 

• The output function which generates an external output right before an internal transition takes place. 

Within AEC/FM and in particular, in many construction systems, entities have to go through different processes. 
For instance, steel sections arriving on a jobsite on flatbed trucks must be lifted and erected by a crane at the 
installation location. As a result, modeling such interactions constitute an important part of almost any 
construction simulation model. The DEVS formalization of a single processor (e.g. crane) that receives different 
jobs (e.g. lifting schedule) is described by Equation (2). Each job has an associated processing time (either 
deterministic or probabilistic). Once that time is over, event “ready” is produced. 

𝑃𝑀 =< 𝑋, 𝑆,𝑌, 𝛿!"# , 𝛿!"# , 𝜆, 𝑡𝑎 >      Eq. (2) 

In this Equation, 

𝑋 = 𝑁𝐽 

𝑆 = 𝑁𝐽 ∪ ∅ ×𝑅! 

𝑌 = 𝑃𝐽 

𝑁𝐽 = 𝑗𝑜𝑏!, 𝑗𝑜𝑏!, 𝑗𝑜𝑏!,… , 𝑗𝑜𝑏!  

𝑃𝐽 = {𝑃 𝑗𝑜𝑏! |  𝑗𝑜𝑏! ∈ 𝑆  , 1 ≤ 𝑖 ≤ 𝑛} 

𝛿!"# 𝑛𝑗,𝜎!" = (∅,∞) 
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𝛿!"# 𝑛𝑗,𝜎!" , 𝑒, 𝑥 =
(𝑥,𝜎!) 𝑆 =   ∅

(𝑛𝑗,𝜎!" − 𝑒) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

𝜆 𝑛𝑗,𝜎!" = 𝑃(𝑛𝑗) 

𝑡𝑎 𝑛𝑗,𝜎!" = 𝜎!" 

According to the external transition function 𝛿!"#  of this atomic model, once a new job (modeled as an external 
event 𝑥) arrives at the processor (i.e. crane’s lifting station), the processor state is evaluated. If the processor is 
already busy with another job (𝑛𝑗), this new event is ignored. In reality, this is rarely the case as newly arrived 
jobs that cannot be immediately processed are often stored in the order they are received for future processing. 
To model this behavior, queues are added to the simulation as stand-alone DEVS components that precede high-
demand (and/or low-capacity) processors (e.g. crane). As an example, Figure 2 shows a road construction project 
where a queue is used in the real-world operations to hold multiple haulers to be served by a single excavator, 
one at a time. The arrival of a hauler in this queue can be described by a set of triples (𝑖𝑑,𝛼, 𝑝) where 𝑖𝑑 
represents the hauler identifier (e.g. license plate), 𝛼 is a placeholder for time (e.g. how long it takes to load that 
hauler), and 𝑝 is the position of the hauler in the queue. Also, assume that the queue has infinite capacity and no 
exit delay. In other words, as soon as it receives a “ready” signal from the excavator, it releases a hauler through 
an output event. The DEVS atomic model of this queue can be described by Equation (3), 

𝑄𝑀 =< 𝑋, 𝑆,𝑌, 𝛿!"# , 𝛿!"# , 𝜆, 𝑡𝑎 >      Eq. (3) 

In this Equation, 

𝑋 = 𝐻 ∪ {!𝑟𝑒𝑎𝑑𝑦!} 

𝑆 = 𝐻 ∪ ∅ ×{1} 

𝑌 = 𝐻 

𝐻 = ℎ𝑎𝑢𝑙𝑒𝑟!, ℎ𝑎𝑢𝑙𝑒𝑟!, ℎ𝑎𝑢𝑙𝑒𝑟!,… , ℎ𝑎𝑢𝑙𝑒𝑟!  

𝛿!"# ℎ,𝜎 = (ℎ,∞) 

𝛿!"# ℎ,𝜎, 𝑒, 𝑥 =
(𝑥,∞) 𝑥 ∈ 𝐻

(𝑆. 𝑓𝑖𝑟𝑠𝑡(  ), 0) 𝑥 = {!𝑟𝑒𝑎𝑑𝑦!} 

𝜆 ℎ,𝜎 = ℎ 

𝑡𝑎 ℎ,𝜎 = 𝜎 

 

Fig. 2   In a road projects, multiple clients (haulers) form a queue in front of a single processor (excavator). 
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According to this atomic model, the queue receives two different input types: haulers, and a “ready” signal. 
Haulers can arrive according to a deterministic or probabilistic pattern. The “ready” signal is transmitted from 
the excavator as soon as the load area is vacant (i.e. the hauler in service has just left the load area). The output 
of the queue will be a hauler which is sent to the load area to be served by the excavator. Possible states of the 
queue include haulers or “empty”. When there is no new hauler arriving into the queue, the internal transition 
function simply replaces the current time dimension (i.e. 1) with ∞ for all existing haulers in the queue. 
Consequently, the time-advance function advances the internal clock to ∞. This guarantees that these haulers are 
not revisited unless they are about to be released. As soon as a new input is detected, the external transition 
function checks if it is of hauler type. If so, then the model state is changed to this new hauler. If the input is a 
“ready” signal, however, the state changes to the first hauler in the queue as determined by the 𝑆. 𝑓𝑖𝑟𝑠𝑡(  ) 
function while the time dimension gets a value of 0 to guarantee that the hauler in front of the queue is 
immeidately released (no exit delay). This change in state causes an immediate internal transition which in turn, 
replaces the time dimension with the value ∞. However, before this internal transition takes place, the 𝜆 function 
outputs the selected hauler. Note that the implementation of the 𝑆. 𝑓𝑖𝑟𝑠𝑡(  ) function is not included in the above 
model, but in essense, this function selects the hauler that is located in front of the queue according to the queue 
descipline. For example, in a First-In-First-Out (FIFO) queue, the hauler with the minimum position in the queue 
must be selected. Therfore, the implementation will be as follows, 

𝑆. 𝑓𝑖𝑟𝑠𝑡    = { ℎ!|ℎ! . 𝑝 = min ℎ! . 𝑝 , ℎ! ∈ 𝑆}      Eq. (4) 

Similiarly, for a Last-In-First-Out (LIFO) queue, the hauler with the maximum position in the queue must be 
selected. Therfore, the implementation will be as follows, 

𝑆. 𝑓𝑖𝑟𝑠𝑡    = { ℎ!|ℎ! . 𝑝 = max ℎ! . 𝑝 , ℎ! ∈ 𝑆}      Eq. (5) 

Definitions such as those described by Equations (4) and (5) are very powerful and flexible as they can be 
directly linked to hauler data collected from the field. In particular, the triples describing haulers can be created 
instantaneously using spatiotemporal data transmitted from the haulers. For instance, and depending on the 
situation, a hauler ID number (𝑖𝑑) can be the identifier code of a Global Positioning System (GPS) device 
mounted on the hauler, or even the hauler’s license plate number. Likewise, As soon as a hauler enters the 
queue, the maximum position number in the queue is incremented by 1 unit and the result is used to update the 
new hauler’s position number (𝑝) in the queue. Additionally, if the collected data from the queue in the real 
system indicates a change in discipline (e.g. from FIFO to LIFO) while the operation is ongoing, the 
implementation of the 𝑆. 𝑓𝑖𝑟𝑠𝑡(  ) function can be modified to reflect this change in the real system. 

4.2. Coupled DEVS Model 

At the operations level, multiple basic DEVS atomic models such as those described in Subsection 4.1 can be 
combined to form a coupled model that describes more complex operations involving larger numbers of entities 
or I/O ports. For instance, Figure 3 shows how atomic DEVS models of a queue and a single processor are 
connected to create a functional client-server system. 

 

Fig. 3   Coupled model representation of a queue and a processor. 

A coupled model specifies how to couple (connect) several component models to form a new model. The 
resulting model can itself be employed as a component in a larger coupled model, thus allowing modelers to 
create modular hierarchical simulation structures (Zeigler et al. 1976). A coupled DEVS model is defined by 
Equation (6), 

𝐷𝑁 =< 𝑋,𝑌,𝐷, 𝑀! , 𝐼! , 𝑍!,! >      Eq. (6) 
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In this Equation, 

𝑋: set of external input events 

𝑌: set of outputs 

𝐷: set of component names 

𝑀!: atomic model of component 𝑖 

𝐼!: set of influences for component 𝑖 

𝑍!,!: output translation function from component 𝑖 to component 𝑗 

Using this definition, a coupled model is capable of capturing the following information (Hu 2004): 

• The set of component models. 
• The influence(s) of each component model on the coupled model. 
• The set of input ports through which external events are received. 
• The set of output ports through which external events are sent. 
• The coupling specification that consists of the external input coupling (EIC) that connects the input 

ports of the coupled model to one or more of the input ports of the component models, the external 
output coupling (EOC) that connects the output ports of the component models to one or more of the 
output ports of the coupled model, and the internal coupling (IC) that connects output ports of 
component models to input ports of other component models. 

As an example, consider a building heating/cooling system. This real world complex system can be modeled as 
the coupling of six individual DEVS atomic models, as shown in Figure 4. In this Figure, the “outdoor climate” 
(OC) model has only one output (i.e. outdoor temperature). There is no input to this model. However, it is 
perceivable that outdoor temperatures are internally provided to the model, either through direct readings from 
the environment or by remotely connecting to an online database (e.g. weather service). 

 
Fig. 4   Coupling of six DEVS atomic models in a building air control system. 

This basic model is further enhanced by adding a “building envelope” (BE) model that encloses an indoor space, 
and an “indoor climate” (IC) model. Next, the heating system is added which can be activated at an indoor 
temperature of 70°F, and deactivated at 75°F. Using DEVS, this can be achieved by connecting a “sensor” (S) 
model and a “heater” (H) model. In this case, the output of the IC model becomes the input of the S model, and 
the output of the H model becomes a second input to the IC model. Finally, an occupant (O) model can be added 
to the coupled DEVS model. The occupant can (for instance, in response to indoor temperature variations) 
manipulate a window in the building envelope. This can be implemented in the coupled DEVS model by 
updating the BE model since opening or closing a window can change the properties of the building envelope. 
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4.3. Benefits of DEVS Formalism 

To the authors’ best knowledge, none of the existing AEC/FM simulators has the capability to tune a running 
simulation in response to changes in the external environment. Due to tight coupling between the network model 
and the simulation engine in such simulators, the capability to introduce changes in parameter values during 
execution is limited or non-existent. In all such platforms, design variables and system parameters are often 
hardcoded prior to simulating the network, and there is no support for changing parameters and component 
structures during simulation. This shortcoming among others has served as a major motivation behind the 
presented work. Despite recent advancements in data sensing and knowledge modeling, many construction 
simulation platforms still lack the ability to embrace such new technologies. As a result, the concept of real-time 
simulation which is quite commonly used in other domains such as manufacturing and computer science is still 
an alien concept in construction and several other AEC/FM domains. 

In contrast, DEVS allows for dynamic simulation control since it separates model, experimental frame, and 
simulator. This modularity facilitates the development of a simulation framework supporting run-time simulation 
tuning. The motivation behind providing “real-time” intervention is to support a rapid feedback cycle that allows 
experimentation with network parameters and structures. This can result in an effective system configuration. 
Furthermore, such instantaneous observation and control enable important transient situations to be recognized 
and considered which enhances the quality and timeliness of project-related decision-making tasks. Since every 
DEVS model is built upon DEVS formalism that itself is based on mathematical systems theory, the behavior 
expressed through DEVS can be translated to any other formalism. With the separation of the model from the 
simulator implementation, the advantage is that it supports formalism interoperability, and enables distributed 
simulation by allowing model components to be executed on single or multiple distributed platforms. 

As stated in Subsection 4.1, a DEVS atomic model has well defined states, state transition functions (triggered 
by external or internal events), time-advance function, and output function. From the design point of view, an 
atomic model can be viewed as a timed state machine. The transition from one state to another is triggered by 
external events (received from the input ports) or internal events (time outs generated internally). The model can 
generate output and send it out through its output ports. In the following Subsections, the DEVS simulation 
formalism of a quarry transport operation is presented, and its structure and behavior is discussed in detail. 

4.3.1. Quarry Transport Operations: Model Description 

In this conceptual scenario adopted from Wainer (2004), a rock quarry operation is modeled using DEVS 
formalism and both atomic and coupled models. Assume there is a large pile of ore that needs to be transported 
from a quarry location to a remote processing plant. For this purpose, multiple haulers and a shovel are used. 
The conceptual model structure is illustrated in Figure 5.  

 
Fig. 5   Conceptual model structure of the quarry transport operation. 
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As shown in this Figure, a generator (Gen) will create haulers. Each hauler will undergo a load service first. 
Since the load service processor (S1) needs certain time to finish the current loading job, before entering into the 
load service, hauler will have to wait at a designated load service queue (Q1). Only when S1 has finished the 
current job and sent a “done” feedback message to Q1, the first hauler lining up in Q1 will enter into S1. After 
finishing the load service, haulers will head to the unload service at the processing plant location. Similar to the 
load service, before entering into the unload service processor (S2), each hauler will have to first go through an 
unload service queue (Q2). Only when the current instance of unload service completes and a “done” feedback 
message to Q2, the first hauler lining up in Q2 can enter into S2 to receive an unload service. When a hauler 
unloads its payload, it will leave the system. This quarry transport operations consists of three top-level models: 
Gen, Load, and Unload. The Gen model is an atomic model that generates haulers and assigns a HaulerID to 
each hauler. Both Load and Unload are coupled models. Load is composed of Q1 (load service queue) and S1 
(load service processor), while Unload is made up of Q2 (unload service queue) and S2 (unload service 
processor). In total, there are five atomic models: Gen, Q1, S1, Q2, and S2 that are grouped into three types: Gen 
is a typical generator, Q1 and Q2 are of queue model type, and S1 and S2 are processor models. 

4.3.2. Quarry Transport Operations: Formalism of Atomic Models 

The function of Gen is to produce haulers. It has no input port and one output port called “go”. At the end of 
each time interval, Gen will produce a hauler and output HaulerID (= 1,2,…,n) through output port “go”. Gen 
will be in “active” state all the time. The formalism of the Gen atomic model is as follows. Note that in this 
formalism, Gen_time is the time interval between two consecutive hauler generations. 

𝐺𝑀 =< 𝑋, 𝑆,𝑌, 𝛿!"# , 𝛿!"# , 𝜆, 𝑡𝑎 > 

𝑋 =  

𝑌 = 𝐻𝑎𝑢𝑙𝑒𝑟𝐼𝐷  

𝑆 = 𝑎𝑐𝑡𝑖𝑣𝑒 × 𝐻𝑎𝑢𝑙𝑒𝑟𝐼𝐷  

𝛿!"# 𝑎𝑐𝑡𝑖𝑣𝑒,𝐺𝑒𝑛_𝑡𝑖𝑚𝑒 = 𝑎𝑐𝑡𝑖𝑣𝑒  

𝜆 𝑎𝑐𝑡𝑖𝑣𝑒,𝐺𝑒𝑛_𝑡𝑖𝑚𝑒 = 𝐻𝑎𝑢𝑙𝑒𝑟𝐼𝐷  

𝑡𝑎 𝑎𝑐𝑡𝑖𝑣𝑒 = 𝐺𝑒𝑛_𝑡𝑖𝑚𝑒 

Load, on the other hand, is a coupled model that provides load service. This model is used to load each hauler 
that is generated by Gen, and consists of two atomic models: Loadqueue (Q1) and Loadservice (S1). When the 
load service processor receives haulers produced by Gen, they must first enter into Q1 and then enter into S1 
only when S1 is in the “free” state. Load has one input port named arriveload and one output port named 
exitload. Q1 has two input ports and one output port. It maintains and constantly updates the HaulerID list 
corresponding to haulers waiting to be served by S1. Once the simulation is launched, Q1 will be in “passive” 
state and thus, ready to accept the first HaulerID from Gen. When it receives the first HaulerID through its input 
port arriveload, it will be activated after Prep_time and then sends the HaulerID to S1 through output port 
readygoload. Immediately, after, Q1 will return to “passive” state. Other incoming HaulerIDs from arriveload 
will not activate Q1 until it receives a feedback from its second input port loaddone, at which point Q1 will 
output the first HaulerID in its waiting list through its output port readygoload. S1 is used to execute load 
service. It has one input port called enterload and two output ports named exitload and readyaccept. First, S1 
will be initialized and ready to accept HaulerIDs from Q1. When it receives a HaulerID from Q1 through its 
input port enterload, it will become busy and take certain time to process the job. When the current hauler is 
loaded, S1 will send the HaulerID out through its output port exitload, and immediately alerts Q1 that the current 
task has been completed and therefore, a new job can be accepted through the output port readyaccept. At this 
point, the state of S1 has changed from busy to passive. 

Unload is another coupled model that provides unload service to haulers. It consists of two atomic models: 
Unloadqueue (Q2) and Unloadservice (S2). Haulers entering Unload are first held in Q2 and then enter into S2. 
Unload has one input port named arriveunload and one output port called exitunload. Q2 has two input ports 
arriveunload and unloaddone, as well as one output port readygounload. Its state transition and job process are 
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similar to those described above for Q1. S2 has one input port enterunload and two output ports exitunload and 
readyreceive. Its state transition and job process are similar to those described above for S1. The formalism of 
the Q1 and Q2 atomic models are as follows, 

𝐺𝑄 =< 𝑋, 𝑆,𝑌, 𝛿!"# , 𝛿!"# , 𝜆, 𝑡𝑎 > 

//𝑠𝑡𝑎𝑡𝑒  𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

𝑇𝑖𝑚𝑒  𝑠𝑖𝑔𝑚𝑎;  //  𝑡𝑖𝑚𝑒  𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 

𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝐿𝑖𝑠𝑡  𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠;  //  𝑙𝑖𝑠𝑡  𝑢𝑠𝑒𝑑  𝑡𝑜  𝑠𝑡𝑜𝑟𝑒  𝑤𝑎𝑖𝑡𝑖𝑛𝑔  𝐻𝑎𝑢𝑙𝑒𝑟𝐼𝐷𝑠 

𝐼𝑛𝑡  𝑝𝑖𝑑;  //  𝐻𝑎𝑢𝑙𝑒𝑟𝐼𝐷 

𝐼𝑛𝑡  𝑓𝑖𝑛𝑖𝑠ℎ;  //  𝑑𝑒𝑓𝑎𝑢𝑙𝑡  𝑖𝑠  0.    𝑊ℎ𝑒𝑛  𝑡ℎ𝑒  𝑠𝑒𝑟𝑣𝑖𝑐𝑒  𝑑𝑜𝑛𝑒  𝑖𝑡  𝑐ℎ𝑎𝑛𝑔𝑒𝑠  𝑡𝑜  1  𝑎𝑛𝑑  𝑚𝑒𝑠𝑠𝑎𝑔𝑒  𝑖𝑠  𝑠𝑒𝑛𝑡   

//𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 

𝑠𝑖𝑔𝑚𝑎 = 𝑃𝑟𝑒𝑝_𝑡𝑖𝑚𝑒;  //  𝑤ℎ𝑒𝑛  𝑡ℎ𝑒  𝑞𝑢𝑒𝑢𝑒  𝑖𝑠  𝑟𝑒𝑎𝑑𝑦  𝑡𝑜  𝑎𝑐𝑐𝑒𝑝𝑡  𝑡ℎ𝑒  𝑛𝑒𝑥𝑡  ℎ𝑎𝑢𝑙𝑒𝑟 

𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠. 𝑒𝑚𝑝𝑡𝑦()  //  𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒  𝑡ℎ𝑒  𝑞𝑢𝑒𝑢𝑒  𝑎𝑠  𝑒𝑚𝑝𝑡𝑦 

𝑓𝑖𝑛𝑖𝑠ℎ = 0;  //  𝑠𝑒𝑟𝑣𝑒𝑠  𝑎𝑠  𝑎  𝑓𝑙𝑎𝑔   

//𝑓𝑜𝑟𝑚𝑎𝑙  𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 

𝑋 = 𝑎𝑟𝑟𝑖𝑣𝑒𝑙𝑜𝑎𝑑, 𝑙𝑜𝑎𝑑𝑑𝑜𝑛𝑒  

𝑌 = 𝑟𝑒𝑎𝑑𝑦𝑔𝑜𝑙𝑜𝑎𝑑  

𝑆 = 𝐻𝑎𝑢𝑙𝑒𝑟𝐼𝐷 × "𝑝𝑎𝑠𝑠𝑖𝑣𝑒", "𝑎𝑐𝑡𝑖𝑣𝑒"  

𝛿!"# 𝑎𝑐𝑡𝑖𝑣𝑒, 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 = 𝑝𝑎𝑠𝑠𝑖𝑣𝑒, 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠  

𝛿!"# 𝑎𝑟𝑟𝑖𝑣𝑒𝑙𝑜𝑎𝑑, 𝑙𝑜𝑎𝑑𝑑𝑜𝑛𝑒, 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠, 𝑓𝑖𝑛𝑖𝑠ℎ, 𝑝𝑖𝑑  

{ 

𝑖𝑓  𝑖𝑛𝑝𝑢𝑡  𝑖𝑠  𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑  𝑡ℎ𝑟𝑜𝑢𝑔ℎ  𝑎𝑟𝑟𝑖𝑣𝑒𝑙𝑜𝑎𝑑 //  𝑛𝑒𝑤  ℎ𝑎𝑢𝑙𝑒𝑟  ℎ𝑎𝑠  𝑎𝑟𝑟𝑖𝑣𝑒𝑑 

{ 

𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠. 𝑝𝑢𝑠ℎ_𝑏𝑎𝑐𝑘(𝑚𝑠𝑔. 𝑣𝑎𝑙𝑢𝑒 )  ;//  𝑎𝑑𝑑  𝑛𝑒𝑤  ℎ𝑎𝑢𝑙𝑒𝑟  𝑡𝑜  𝑡ℎ𝑒  𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠  (𝐹𝐼𝐹𝑂)   

𝑖𝑓  𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠. 𝑓𝑖𝑟𝑠𝑡   𝐴𝑁𝐷  𝑓𝑖𝑛𝑖𝑠ℎ == 0 //  𝑓𝑜𝑟  𝑡ℎ𝑒  𝑣𝑒𝑟𝑦  𝑓𝑖𝑟𝑠𝑡  ℎ𝑎𝑢𝑙𝑒𝑟 

{ℎ𝑜𝑙𝑑(𝑎𝑐𝑡𝑖𝑣𝑒,𝑃𝑟𝑒𝑝_𝑡𝑖𝑚𝑒);  //  𝑝𝑟𝑜𝑐𝑒𝑠𝑠  𝑡ℎ𝑒  ℎ𝑎𝑢𝑙𝑒𝑟  } 

𝑖𝑓  𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠. 𝑐𝑜𝑢𝑛𝑡   𝐴𝑁𝐷  𝑓𝑖𝑛𝑖𝑠ℎ == 1 //  𝑓𝑜𝑟  𝑎𝑙𝑙  ℎ𝑎𝑢𝑙𝑒𝑟𝑠  𝑎𝑓𝑡𝑒𝑟  𝑡ℎ𝑒  𝑓𝑖𝑟𝑠𝑡  𝑜𝑛𝑒 

{ℎ𝑜𝑙𝑑(𝑎𝑐𝑡𝑖𝑣𝑒,𝑃𝑟𝑒𝑝_𝑡𝑖𝑚𝑒);  //  𝑝𝑟𝑜𝑐𝑒𝑠𝑠  𝑡ℎ𝑒  ℎ𝑎𝑢𝑙𝑒𝑟  } 

} 

𝑖𝑓  𝑖𝑛𝑝𝑢𝑡  𝑖𝑠  𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑  𝑡ℎ𝑟𝑜𝑢𝑔ℎ  𝑙𝑜𝑎𝑑𝑑𝑜𝑛𝑒 //  𝑠𝑒𝑟𝑣𝑒𝑟  𝑖𝑠  𝑟𝑒𝑎𝑑𝑦 

{ 

𝑖𝑓  𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠. 𝑐𝑜𝑢𝑛𝑡    //  𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠  𝑖𝑠  𝑛𝑜𝑡  𝑒𝑚𝑝𝑡𝑦 
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{ℎ𝑜𝑙𝑑(𝑎𝑐𝑡𝑖𝑣𝑒,𝑃𝑟𝑒𝑝_𝑡𝑖𝑚𝑒);  //  𝑝𝑟𝑜𝑐𝑒𝑠𝑠  𝑡ℎ𝑒  ℎ𝑎𝑢𝑙𝑒𝑟  } 

𝑖𝑓  ! 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠. 𝑐𝑜𝑢𝑛𝑡    //  𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠  𝑖𝑠  𝑒𝑚𝑝𝑡𝑦 

{𝑓𝑖𝑛𝑖𝑠ℎ = 1; } 

} 

} 

𝜆 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠, 𝑟𝑒𝑎𝑑𝑦𝑔𝑜𝑙𝑜𝑎𝑑  

{ 

𝑠𝑒𝑛𝑑(𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠. 𝑓𝑟𝑜𝑛𝑡 );  //  𝑠𝑒𝑛𝑑  𝑡ℎ𝑒  𝑓𝑟𝑜𝑛𝑡  ℎ𝑎𝑢𝑙𝑒𝑟  𝑜𝑢𝑡   

𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠. 𝑝𝑜𝑝_𝑓𝑟𝑜𝑛𝑡 ;  //  𝑚𝑜𝑣𝑒  𝑓𝑜𝑟𝑤𝑎𝑟𝑑  𝑜𝑡ℎ𝑒𝑟  ℎ𝑎𝑢𝑙𝑒𝑟𝑠  𝑖𝑛  𝑡ℎ𝑒  𝑞𝑢𝑒𝑢𝑒 

𝑖𝑓  𝑓𝑖𝑛𝑖𝑠ℎ == 1 

{𝑓𝑖𝑛𝑖𝑠ℎ = 1; } 

} 

𝑡𝑎 "𝑎𝑐𝑡𝑖𝑣𝑒" = 𝑡 𝑜𝑢𝑡𝑝𝑢𝑡  

𝑡𝑎 "𝑝𝑎𝑠𝑠𝑖𝑣𝑒" = 𝑡 𝑛𝑒𝑥𝑡  𝑑𝑜𝑛𝑒  𝑚𝑒𝑠𝑠𝑎𝑔𝑒 − 𝑡(𝑙𝑎𝑠𝑡  𝑠𝑡𝑎𝑡𝑒  𝑐ℎ𝑎𝑛𝑔𝑒  𝑓𝑟𝑜𝑚  𝑎𝑐𝑡𝑖𝑣𝑒  𝑡𝑜  𝑝𝑎𝑠𝑠𝑖𝑣𝑒) 

The formalism of the S1 and S2 atomic models are as follows. In each server, when the task at hand is 
completed, the state changes from busy to passive. 

𝐺𝑆 =< 𝑋, 𝑆,𝑌, 𝛿!"# , 𝛿!"# , 𝜆, 𝑡𝑎 > 

//𝑠𝑡𝑎𝑡𝑒  𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

𝐼𝑛𝑡  𝑝𝑖𝑑;  //  𝐻𝑎𝑢𝑙𝑒𝑟𝐼𝐷 

//𝑓𝑜𝑟𝑚𝑎𝑙  𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 

𝑋 = 𝐻𝑎𝑢𝑙𝑒𝑟𝐼𝐷  

𝑌 = 𝐻𝑎𝑢𝑙𝑒𝑟𝐼𝐷  

𝑆 = 𝐻𝑎𝑢𝑙𝑒𝑟𝐼𝐷 × "𝑝𝑎𝑠𝑠𝑖𝑣𝑒", "𝑏𝑢𝑠𝑦"  

𝛿!"# 𝐻𝑎𝑢𝑙𝑒𝑟𝐼𝐷) = ("𝑏𝑢𝑠𝑦",𝐻𝑎𝑢𝑙𝑒𝑟𝐼𝐷  

𝜆 "𝑏𝑢𝑠𝑦",𝐻𝑎𝑢𝑙𝑒𝑟𝐼𝐷 = 𝐻𝑎𝑢𝑙𝑒𝑟𝐼𝐷 

𝑡𝑎 "𝑏𝑢𝑠𝑦",𝐻𝑎𝑢𝑙𝑒𝑟𝐼𝐷 = 𝐻𝑎𝑢𝑙𝑒𝑟𝐼𝐷. 𝑠𝑒𝑟𝑣_𝑡𝑖𝑚𝑒  //  𝑡𝑖𝑚𝑒  𝑛𝑒𝑒𝑑𝑒𝑑  𝑡𝑜  𝑠𝑒𝑟𝑣𝑖𝑐𝑒  𝑎  ℎ𝑎𝑢𝑙𝑒𝑟 

𝑡𝑎 "𝑝𝑎𝑠𝑠𝑖𝑣𝑒" = ∞ 

4.3.3. Quarry Transport Operations: Formalism of Coupled Models 

As discussed in Subsection 4.3.2, Load and Unload, are both coupled models that provide load and unload 
services, respectively. Recalling Equation (6), the formalism for these two coupled models can be written as 
follows, 

𝐿𝑀 =< 𝑋,𝑌,𝐷, 𝑀! , 𝐼! , 𝑍!,! > 
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𝑋 = {𝐻𝑎𝑢𝑙𝑒𝑟𝐼𝐷} 

𝑌 = {𝐻𝑎𝑢𝑙𝑒𝑟𝐼𝐷} 

𝐷 = {𝑄1, 𝑆1} 

𝑀 = {𝑄𝑀, 𝑆𝑀} 

𝐼 𝑄1 = {𝑆1} 

𝐼(𝑆1) = {𝑄1, 𝑆1} 

𝑍 𝑄1 = {𝑆1} 

𝑍 𝑆1 = {𝑄1} 

𝑍 𝑆1 = {𝑆1} 

 

𝑈𝑀 =< 𝑋,𝑌,𝐷, 𝑀! , 𝐼! , 𝑍!,! > 

𝑋 = {𝐻𝑎𝑢𝑙𝑒𝑟𝐼𝐷} 

𝑌 = {𝐻𝑎𝑢𝑙𝑒𝑟𝐼𝐷} 

𝐷 = {𝑄2, 𝑆2} 

𝑀 = {𝑄𝑀, 𝑆𝑀} 

𝐼 𝑄2 = {𝑆2} 

𝐼(𝑆2) = {𝑄2, 𝑆2} 

𝑍 𝑄2 = {𝑆2} 

𝑍 𝑆2 = {𝑄2} 

𝑍 𝑆2 = {𝑆2} 

In addition, as shown in Figure 5, the quarry transport operation itself is a coupled model made of one atomic 
model (Gen) and two coupled models (Load and Unload). The formalism for the quarry transport operation 
model can be thus written as follows, 

𝑄𝑎𝑢𝑟𝑟𝑦 =< 𝑋,𝑌,𝐷, 𝑀! , 𝐼! , 𝑍!,! > 

𝑋 =  

𝑌 = {𝐻𝑎𝑢𝑙𝑒𝑟𝐼𝐷} 

𝐷 = {𝐺𝑒𝑛, 𝐿𝑜𝑎𝑑,𝑈𝑛𝑙𝑜𝑎𝑑} 

𝑀 = {𝐺𝑀, 𝐿𝑀,𝑈𝑀} 

𝐼 𝐺𝑀 = {𝐿𝑀} 

𝐼(𝐿𝑀) = {𝑈𝑀} 

𝑍 𝐿𝑀 = {𝐺𝑀} 
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𝑍 𝑈𝑀 = {𝐿𝑀} 

𝑍 𝑈𝑀 = {𝑈𝑀} 

 
5. MODEL ARCHITECTURE, INTEROPERABILITY, AND SCALIBIILTY 

As stated earlier, most simulation and data collection systems for AEC/FM projects are often developed for a 
specific purpose and phase of a constructed facility. In facility operations and building systems, for example, 
energy modeling and simulation tools (e.g. eQuest) are typically used during the design phase with no potential 
to extend their use for decision-making during the building operation phase. Similarly, building automation 
systems are designed to provide a platform to manage building systems (e.g. HVAC and lighting) during the 
operation phase of the facility. In contrast to segmented simulation models with limited scope of use, the design 
and implementation benefits and added values of coupling individual simulation elements at operations level 
were discussed in Subsection 4.2 through an illustrative example of a building heating/cooling system (Figure 5). 
The resulting coupled model architecture enabled the creation of a flexible model architecture that consisted of 
individual entities and the contextual relationships between them (e.g. input and output data dependency, 
hierarchical relationships) in support of the building heating/cooling operation. 

In general, couplings can be used to establish connections between output and input ports to enable 
interoperability between models. Within this framework, a system that exhibits inter-communication as well as 
hierarchical relationships between its entities can be conveniently modeled using DEVS coupled modeling. A 
good example of such systems is prefabrication shops (e.g. steel shape manufacturing) where raw materials go 
through several workstations according to a fabrication sequence to eventually be transformed into a final 
product (Sadeghi and Robinson Fayek 2008). Such systems can be essentially modeled as multi-agent coupled 
systems consisting of two agents: a leader and a follower, that communicate directly with one another. The 
follower agent itself can be decomposed into a series of internal sensors, controller, and actuators. In case of a 
steel shape fabrication shop, the sensors can detect temperature or vibrations. 

At a broader scheme, and within the context of a project or facility life cycle, it can be inferred that coupling can 
result in robust model architectures that are built upon multiple models or other coupled models each defining 
different subsystems, or may have developed in various platforms for different purposes. Each model has its own 
input, output, and transition functions. Within the FM domain, for instance, researchers have discussed that the 
capability of using data available through the building automation system in energy simulation models has the 
potential to improve decision-making and reduce energy use in buildings (Kamat et al. 2013; Menassa et al. 
2014; Wetter 2011). As AEC/FM projects become more complex, these individual and decoupled systems will 
soon turn obsolete and provide little value (if any) to a decision-maker whose goal is to explore solutions across 
the entire facility life-cycle with a high level of detail and confidence. One solution is to develop very large and 
complex simulations. In this case, the fidelity of such models will be a major concern mainly because model 
developers have expertise in only a few specific parts of the domain to be modeled. One approach to address 
these issues is to allow distributed systems to communicate with each other and exchange required data without 
altering the core environment in which these systems run. This concept, typically known as distributed and 
remote component-based computing, has been gaining traction in several areas such as manufacturing, defense, 
and space mission control (Reid 2000; Steel 2000). 

Another practical case in simulation coupling is from the transportation domain where modelers have been 
leveraging large-scale complex simulation programs, such as CORridor SIMulation (CORSIM) and 
TRansportation ANalysis SIMulation System (TRANSIMS), to design highway and traffic signal systems, and 
conduct regional transportation system analyses (Owen et al. 2000; Nourzad and Pradhan 2013).  The majority 
of the contemporary traffic simulation systems (e.g. TRANSIMS) are based on stochastic cellular automata 
approach.  Such simulation programs typically model the movement of vehicles based on geometric conditions 
of a road network, control conditions (e.g. traffic signals), and behavior of drivers on road. The cellular automata 
approach divides each road segment into a finite number of cells, and incorporates particle-hopping theory where 
a vehicle moves from one cell to another cell based on a set of transition rules. An example of a transition rule is 
shown in Figure 6 where a vehicle can change lane if another vehicle is not next to it in its adjacent lane. In this 
Figure, the center vehicle hops to the next lane based on particle-hopping theory and transition rule. The inputs 
to such programs usually include road network data, spatial distribution of households in a given region, and 
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control conditions captured by sensors. As will be discussed in Section 5, one of the challenges associated with 
performing large-scale traffic simulations has been the lack of interoperability among input data sources. For 
example, traffic network data are available in different proprietary and open-standard formats, and sensor data 
are typically stored in vendor-specific proprietary format.  

 

Fig. 6   Example of cellular automata to model vehicle movements	  based on particle-hopping theory and 
transition rules. 

Several methods provide frameworks, sets of functional rules, and common interfaces for integrating separate 
and disparate simulation models and systems into larger more inclusive simulations for decision-making. 
Examples include Distributed Interactive Simulation (DIS), Ptolemy II, and High Level Architecture (HLA). A 
common characteristic of these and similar systems is that they provide a unified methodology to facilitate and 
synchronize data exchange across multiple separate simulation models and data acquisition systems. In the 
following Subsections, HLA is introduced as an example of such simulation coupling formalisms. 

5.1. High Level Architecture (HLA) 

In this Subsection, a detailed account of the HLA as a potential framework for use in AEC/FM simulation 
applications is provided. HLA has gained a significant interest in AEC/FM mainly because its underlying 
architecture simplifies the system development process and allows different components of the system to be 
easily reused in other applications. This is mainly due to the widespread knowledge and clear understanding of 
how the Run Time Infrastructure (RTI), the software that implements the HLA interface specification, works 
(Steel 2000). Recently, some researchers presented examples of how HLA applications can support decision-
making in AEC/FM environments (e.g. Kamat et al. 2013; Menassa et al. 2014). The main goal of using HLA is 
to enable scalability, extensibility, interoperability, and shared model development for complex multidisciplinary 
problems, and to allow reuse and assembly of multiple (existing) models as part of a larger, interdependent, and 
complex simulation, while reducing software development and implementation costs (Kuhl et al. 1999; Reid 
2000). 

HLA provides a framework, a set of functional rules, and common interfaces that guide the integration of several 
simulators, also known as federates into one large simulation. This approach is especially suited for situations 
where game-like situations arise in which numerous “actors” need to be part of the simulation and interact with 
other actors, while maintaining the flexibility to enter and exit the simulation. Recalling the road construction 
project shown in Figure 3, a large simulation can model the interplay between several excavators, loaders, 
haulers, and traffic information to coordinate the digging, loading, hauling, and dumping processes involved. In 
Menassa et al. (2014), HLA was used to model the interplay between energy models (in this case DOE2) and an 
agent-based model designed to model occupant energy use behavior. In this work, the benefits of using an agent-
based model for modeling individual occupant energy use behavior was further extended to include that behavior 
into the energy model which would otherwise assume uniform occupant energy use characteristics. General rules 
governing the development of complex, interoperable simulations capable of running across multiple computers 
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in a distributed network environment using HLA, is described in the IEEE 1516 standard. The most important 
terms used in an HLA compliant model are defined below (Reid 2000): 

1) Federate is a representation of an individual simulation model or data collection system which is a 
standalone component. HLA integrates these federates into a larger collaborative simulation. 

2) Federation consists of two or more integrated federates. A session in which a federation is running is 
referred to as federation execution. 

3) Federation Object Model (FOM) is a common object model that describes the data shared between 
federates in a federation. It specifies every class of object and interaction known to the federation. 
Every object is defined by a list of all attributes it includes while every interaction is defined by 
parameters. An object in this sense is a storage device for data created by the different federates during 
federation execution, and typically available for the duration of the simulation or deliberately destroyed 
prior to exiting the simulation. 

4) Simulation Object Model (SOM) is the object model that describes the data that an individual federate 
shares with the federation and other interaction information. FOM defines all classes of an object, and 
any SOM that wishes to publish or subscribe to an object must define that object. 

5) Runtime Infrastructure (RTI) is the software that runs the federation execution, and allows for the data 
sharing and interactions between all federates in the federation. The RTI software must conform to the 
HLA specifications and provide simulation facilitation services (e.g. time and data synchronization). 

There are three primary components to the HLA specification: the HLA rules (IEEE 1516), the HLA interface 
specification (IEEE 1516.1), and the Object Model Template (OMT) (IEEE 1516.2). An HLA compliant model 
enforces HLA rules when defining a federate (i.e. single simulation model, live participant, or incoming data 
stream) or federation (i.e. collection of multiple running and interacting models, participants, or several data 
streams). The HLA interface specification defines the functional modes of interaction between multiple federates 
and the framework’s RTI. The OMT prescribes standards for defining HLA object modeling information, which 
includes the data to be handled by the RTI when a simulation federate executes, the objects and interactions 
responsible for managing the federation execution, and the documentation describing functionality for each 
simulation federate. The HLA thus provides standard specifications and rules to build a large-scale distributed, 
scalable, extensible, and interoperable federation by combining smaller federates. Examples of complex 
AEC/FM processes that can be modeled under this HLA mindset are numerous. For instance, Kamat et al. 
(2013) and Menassa et al. (2014) illustrated that it is possible to conceive a building energy simulation 
federation where a set of models developed for their own purpose (e.g. occupant behavior analysis, HVAC 
system analysis) can be composed into a set of interacting, coupled simulations for a global objective. 

Similar examples from construction phase operations (i.e. excavation, pile driving, vertical construction, and 
highway construction) can benefit from the HLA capabilities to improve decision-making. For example, 
Taghaddos et al. (2008) used HLA to couple several agent-based simulation models that represented various 
aspects of a project in an effort to provide a resource-driven process of simulation and optimization for large-
scale projects. Azimi et al. (2011) used HLA to develop an automated and integrated project monitoring and 
control framework project managers to take immediate corrective measures and avoid potential problems due to 
deviations encountered on steel fabrication projects. Finally, AbouRizk et al. (2011) discussed the Construction 
Synthetic Environment (COSYE) as a new approach based on HLA framework developed for modeling and 
simulating construction operations. 

5.2. Developing High Level Architecture (HLA) Simulations for AEC/FM 

Implementing and customizing an HLA-based simulation federation for AEC/FM applications requires a 
carefully designed approach since HLA does not exist as readily consumable software that can be used in a plug-
and-play environment. Thus, a simulation model developer should: 1) develop a conceptual understanding of the 
problem to be modeled, its different components (i.e. federates), and the expected data exchanges and 
interactions between these federates during federation execution; 2) investigate the requirements for creating an 
HLA-based simulation framework; and 3) establish the necessary computing infrastructure. As far as the specific 
design of the software infrastructure is concerned, several implementations of the HLA RTI are available that 
can be evaluated and compared by the model developer for their scalability, platform-independence, 
development state and continuity, and cost (Liu et al. 2006). Among all services provided by an RTI 
implementation, communication between processes is the most fundamental capability for distributed 
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simulation. Within a whole distributed simulation system (i.e. federation), each sub-simulation process (i.e. 
federate) interacts locally with an RTI Ambassador process (RTIA). The RTIA will always “listen” to both the 
federate and the RTI Gateway (RTIG), which is the centralization point in the architecture that manages the 
creation and destruction of the federation execution, as well as the publication and subscription of data. When a 
message is received from a given RTIA, the RTIG delivers it to the interested RTIAs. Overcoming the challenge 
of making all constituent simulation models HLA-compliant will thus make it conceivable to construct a larger 
coupled simulation system using the constituent federates as building blocks. There are still significant 
challenges in HLA simulation. For example, Liu et al. (2006) found it useful to store the specifications of all the 
HLA objects in a database and then allow users to control their mappings to the federates before the start of a 
simulation. This allows the same model to map to simulations with just one federate on a single computer to a 
simulation with multiple federates. However, in practice, there can be constraints that limit the mappings, 
because of data privacy concerns. 

6. INPUT-OUTPUT DATA REPRESENTATION 

The available multimodal data sources for simulation consist of a hierarchy of knowledge, information, and data 
contained in their digital representations. As shown in Figure 7, different formalisms (i.e. model representations) 
are currently used to store and query such multimodal data sources.  

 

Fig. 7   Level of abstraction of different models 

According to the National Institute of Standards and Technology (NIST), an information model is defined as “a 
representation of concepts, relationships, rules, constraints, and operations to specify data semantics for a 
chosen domain of disclosure” (IAI 2011; Eastman et al. 2008). In general, the terms information model and data 
model are used interchangeably; however there is a difference between them. An information model provides 
formalism without constraining how that description is mapped to an actual implementation in software. 
Examples of information model are building and bridge information models. There may be many mappings of 
the information model. Such mapping is called a data model. A data model details how to take real world 
objects and make them interpretable to a computer system. Data models focus more on data structure, units, 
format, and the mechanisms for indexing and storing the data sets. On the other hand, knowledge model is 
aimed at storing and capturing heuristic knowledge in a formal way to simulate intelligence. Examples of 
knowledge models are semantic network model and mental reference model. 

Several researchers within the AEC domain have emphasized the importance of fusing different types of 
knowledge, information, and data models for the development of simulation frameworks (Akhavian and 
Behzadan 2014, Pradhan and Akinci 2012).  The experts view that future data fusion frameworks need to 
incorporate “deep” problem domain knowledge in order to achieve the problem solving proficiency of human 
analysts, and for this purpose, knowledge, information, and data models will play an increasingly important role 
towards the development of successful, robust, and context-sensitive algorithms and frameworks (Akinci et al. 
2008).  The fusion of different knowledge, information, and data models brings about the issue of 
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interoperability which refers to the capability to communicate and transfer knowledge, information, and data 
among different models in a manner that does not require the user to necessarily have much knowledge about the 
unique characteristics of these models. The following Subsections will describe the differences in knowledge, 
information, and data models, and the recent interoperability standardization efforts in three different domains of 
knowledge modeling, information modeling, and data modeling. 

6.1. Knowledge Modeling 

Realizing interoperability as being an important issue, several international standards organizations such as the 
World Wide Web Consortium (W3C) has initiated efforts to develop standards on knowledge representation 
languages and frameworks. Different standards such as Resource Description Framework (RDF), Web Ontology 
Language (WOL), and DARPA Agent Markup Language (DAML) supported by the U.S. Defense Advanced 
Research Projects Agency (DARPA), and DAML+OIL have been developed and currently extended for 
knowledge modeling (Fensel et al. 2001; Fensel 2002; W3C 2010). These standards are eXtensible Markup 
Language (XML) based knowledge representation languages. Some standards, such as DAML+OIL, are an 
extension of two standards (i.e. DAML and OIL).  The purpose of developing these standards is to allow 
machines to automatically understand the meaning (or semantics) of knowledge available on the World Wide 
Web (WWW).  Similar efforts are carried out by a variety of consortiums in information modeling domain as 
discussed in the following Subsection. 

6.2. Information Modeling 

A variety of AEC and geospatial consortiums have focused on developing information modeling standards to 
enable seamless information transfer and interoperability among software systems within each domain.  For 
example, the International Alliance for Interoperability (IAI) is specifying standards such as BIM and Bridge 
Information Modeling (BrIM) for the AEC community (IAI 2011; Eastman et al. 2008).  Similarly, Open 
Geospatial Consortium (OGC) has been carrying out similar standardization efforts such as the Geography 
Markup Language (GML) and Sensor Markup Language (SensorML) for the geospatial community (OGC 
2010).  Recently, the interest in inter-domain interoperability between AEC and geospatial domains has spurred 
new standardization efforts such as the Industry Foundation Class (IFC) 2x3G specification (IAI 2011) which is 
aimed at integrating BIM and Geographic Information system (GIS) information models (Akinci et al. 2008).  
While these efforts have focused on enabling information exchange between various information modeling 
platforms, they have not yet addressed issues related to differences in data modeling capabilities between them.   

6.3. Data Modeling 

The OGC has also been working on a number of data model standardization efforts such as Geography Imagery 
Encoding specification, Symbology Encoding Implementation specification, and Filter Encoding specification 
(OGC 2010). Similarly, the National Institute of Standards and Technology (NIST) has been leading multiple 
data modeling standardization efforts related to exchange file formats such as the STEP format (Eastman et al. 
2008).  Such standards have solely focused on data modeling domain.   

6.4. Interoperability Challenges 

Although data, information, and knowledge models have different roles, the mutual dependencies of data, 
information, and knowledge need to be taken into consideration for performing data-driven simulations. It is 
important to understand how data, information, and knowledge should be characterized so that their differences 
and other relationships that may influence the performance of the resulting simulation model can be properly 
identified and unified. For instance, in order to generate realistic traffic simulations for better understanding of 
traffic congestion, different types of knowledge, information, and data models are required. For example, real-
time positions of different types of vehicles could be obtained from GPS devices carried by drivers. The 
transmitted positional information, instead of being stored in proprietary formats, can use open standard formats, 
such as sensorML. Similarly, the road network structure can be encoded using GML instead of proprietary 
vendor-specific geospatial formats. In fact, at present one of the main obstacles to data-driven simulation is not 
the shortage of raw data; rather it is the lack of interoperability among heterogeneous data models that yields 
unreliable and/or inadequate amount of quality data that can be readily used inside simulations. The main 
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advantage of leveraging existing open standard specifications for different models is to minimize such 
interoperability problems. 

7. SUMMARY AND CONCLUSIONS 

This paper reported on the latest findings of an ongoing collaborative project being conducted by the Simulation 
Taskforce of the Visualization, Information Modeling, and Simulation (VIMS) Committee of the American 
Society of Civil Engineers (ASCE), and aim to lay the foundation for future research and implementation efforts 
in AEC/FM domain-specific real-time simulation systems. It is widely accepted that simulation allows a 
decision-maker to make informed decisions related to design, planning, execution, and maintenance practices of 
AEC/FM systems.  The conventional human-centered decision-making process has critical limitations in terms 
of performing what-if scenario analyses due to the inability of properly incorporating real time data which can 
provide valuable nuggets of information. The goal of this paper was to investigate the underlying challenges 
associated with modular design, data interfaces and translation, and simulation model development and 
validation. Several examples from different AEC/FM domains including construction, building energy, and 
transportation were used throughout the paper to highlight the role and importance of the presented discussions. 

In particular, this paper presented details about Discrete Event Simulation Specification (DEVS) as a powerful 
simulation formalism that can streamline the mathematical formulations describing input-output relationships in 
a real system, high-level architecture (HLA), as well as data-information-knowledge representation and 
interoperability challenges associated with simulating AEC/FM systems. First, the process of creating atomic 
(single) and coupled models using DEVS formalism was described. Next, the HLA compliant model was 
presented through discussions about concepts such as federate, federation, federation object model, simulation 
object model, and real-time infrastructure. Finally, the input-output representation section provided the concept 
of hierarchy of knowledge, information, and data contained in multi-modal data sources that could be used in 
simulations, as well as the interoperability challenges associated with such data sources.  

The materials presented in this paper provided fundamental knowledge about three important aspects of 
simulation modeling that would otherwise take much longer to comprehend from the sparse literature. This will 
serve as basis to encourage future research and investigation of domain specific real-time simulation systems for 
AEC/FM. A thorough understanding of these three aspects (i.e. model formalism, model architecture, and data 
representation) is of utmost importance since in simulation modeling, one needs to know how entities function 
and interact (goal of formalism), how model components are assembled to create complex simulations (goal of 
model architecture), and how data is interpreted and transferred between different parts of a simulation model 
(goal of data representation). Ultimately, the discussions presented in this paper are sought to lay the foundation 
for future research and implementation efforts in AEC/FM domain-specific real-time simulation systems. 
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