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SUMMARY: Data reported by sensors in building automation and control systems is critical for evaluating the as
operated performance of a facility. Typically these systems arengelstg support specific control domains, but

facility performance analysis requires the fusion of data across these domains. Since a facility may have several
disparate, closedoop systems, resolution of data interoperability issues is a prerequisiteogszdomain data

fusion. In previous publications, the authors have proposed an experimental platform for building information
fusion where the sensors are reconciled to building information model elements and ultimately to an expected
resource utilizatbtn schedule. The motivation for this integration is to provide a framework for comparing-the as
operated facility with its intended usage patterns.
representational tools for integrating BIM and raversor data,appropriate computational approaches for
normalization, filtering, and pattern extraction methods must be developed to provide a mathematical basis for
anomaly det ecerswniaadtducdopnpanm d sw n sThisoafticlepreseriswconapetational e .
workflow for categorizing dly resource usage according to a resolution typical of huspecified schedules
Simul ated datasets and real datasets are pwamch,ands t he b
resuts indicate that the algorithroan produe 90% matching accuracy wittoise/variations up to 55%.
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1. INTRODUCTION

Given the current emphasis on sustainabilityere is a growing interest in monitoring various facets of building
resource consumptionBuilding monitoring and automation systems most commonly existoagdloop systems

for security, fire safety, water, ekeical, and HVAC (Heating, Ventilation, and Ai€Conditioning) Without
adequate planning or specific computational goals (e.g. calibrating an energy model), one is quickly overwhelmed
by the volume and complexity of dat&hus, data collected from suchsggms are most commonly used for specific
problems such as fault detection, design optimizationsgstemcalibration. Ideally information from each system
provides decision support for control of building life cycle cthsbugh continuous commissioginLiu et. al,

2002) but this ideal requires substantial data integration aligned with a facility life myxdel

One of the fundamental requirements of a mature engineering process model is the comparison of planned versus
actual results for cost, risland qualitycontrol For facility engineering this implies thtitere must be atructured
specification of building space requirements and a meésmarfor detecting divergensystem and occupant
behavioursSuch a mechanismould have broad applicability faommissioning, energgfficiency, sustainability,
diagnostics, maintenance, and a variety of other problems.

For example,ite U.S. federal government (a billion dollar player in the capital facility industrgjtesnping to
minimize its facility footprint based on the current utilization of its buildingSuch information may nobe
objectively reported unless there are quantifiable icgtcollected and maintained in the context of a mature
engineering process.Similarly, there are various mandates fioistitutional energy reductionand increased
sustainability Often, these problems are addressed thralggiign checklistand energy prediction models that may
or may not accurately forecast how the building wilused.

The authors are conducting research to realizeclitde building controlthrough a model of data exchanges across

the entire facility lifecycle anda computational approach for comparing expectedamtdal resource utilization

This article reprts on progress towards the latter efforheTauthors hypothesize thegiplication oftelemetry noise

filtering and a clustering algorithm can provide accurate results for comparing planned and actual daily resource
utilization in the context of humaimterpretable schedules.

Experiments were conducted test this hypothesis on an algoritlusing simulated and real data and ultimately

determine thea | g o r expelsteddascuracy, sensitivity to noise, and its general applicability. Resultsthateal

the authorsd approach can produce 90% accuracy for thr
shift) at a cumudtive signal to noise ratio 05%6.

Before revealing the details of the adopted approach (SeBjiothe experimental plan (Sectid), and the
experimental results (Sectiah), the proceeding subsections highlight related background knowledge and research
efforts in architecture, engineering, and stoaction (AEC).

1.1 Data Mining and Pattern Recognition

One of the effective ways of filtering voluminous data is to discover recurring patterns in the raw data that may be
reported to higher order analysis methods. Patterns in telemetry data may be detagtadvariety oflata mining
approachesData mining is a mature and active area of research that typically includes the following phases:

1 Data dimension and noise reductionhandles noise and normalizes scale, units, or other
heterogeneous facets bktdata

i Data set partitioningorganizes data with similar characteristics

1 Data classification and labellingassigns incoming data to categoigentified fromhistorical data

1 Anomaly detection:appliesstatistical inference and reasoning to identify naedurrencesof data
points

Computational approaches for each phasxhosen according to the constraints of pneblem.FIG 1 illustrates
the computational methods available for each phase of data mining wheremogthtitems are more
computationally demandingHi ghl i ght ed it ems ar e approahwhile mhhghightd t o t h
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items represent relateadchnologes While there is extensive research in all aspects of data mithirsgarticle
focusesonthe topics of noise reduction and clustering (relevant to multiggke daing phases).

Interpolation(e.g., cubic spliness a noise reduction methddr supplying missing data in the data set (Vaseghi,
2009). Essentially sucaninterpolation technique is used to smooth out jumps in the original data set. The cost of
interpolation iSO(n) wheren is the size of the input data set.

Discrete Fourier Transforntgon (DFT) is used to transform a tirtdmain input signal into its frequendpmain

components. Using this transformation we can detect and eliminate unwanted frequency components. Taking the
inverse DFT of the modified frequendpmain representation Wwijield ar el ati vely |l ess noi sy d
implementation of the DFT has a cosi@(i?) wheren is the input data sizélsingthe Fast Fourier Transformation

(FFT) algorithm (Cooley & ukey, 1965) may reduce this cost@¢nlogn) However, inboth he napupve and FF
cost of the algorithm is directly proportionalripthe input data size.

-~
Outlier
Anomaly Clustering Detection
detection (Grubb Test)
- . Support
Data D_?;:;l;n Clustering SZZSS:ZFS Vector
classification Machines
- . Discrete
Correlation Association Ep|50de Fourier
Analysis Discovery
Transform
PR Neural K-means Hierarchical Fuzzy
Data set partitioning Networks Clustering Clustering Clustering
Data dimension reduction Discrete
Clustering Featu_re Interpolation Fourier
selection
Transform

Computational Cost

FIG 1: Data Mining Approaches

Clustering is used throughout the data mining process to detect similarities between data points. In clustering, a
score function measures similarity between two gaiats Commonapproacheto score functions includesangle

linkage, complete linkagend centroid comparison. Each scoring function has variable performance depending on
the characteristics of the dataset (SaR@phael, & Smith2007).

A popular method for data partitioningkaneans clusteringMacQueen, 1967). In this technique theta items are
partitioned intok number of sets so that the resultintra-cluster similarity is high but thiater-cluster similarity is

low. The measure of similarity used in this technique is based on the different typasns{such asEuclidean

infinite, etc.) between the mean value of a cluster and the value of a particular data item in the cluster. Each of the
mean values is considered a central value of that particular cluster. The number of pattiiseected by the

user. The total i of this technique i©(nkt) wheren is the number of input data itenis,is the number of
intended partitions, ands the number of iteratianrequired to reach belowspecified cluster threshald

A variant of the clustering algorithm is tiéerarchical clustering(Day & Edelsbrunner, 1984) where clusters are
progressivelymerged(bottomup) orsplit (top-bottom). The main problem with this type of partitioning technique is
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that a poor choice of the decision to merge or split the clusters cammneimedied by backtracking. This results in

poor partitioning of the input data items. To correct any particularly derogatory situation the whole process of
merging must restart from the beginning. Another problem faced in hierarchical clustering sabditscproblem.

This is because the algorithm must inspect a large number of data points to calculate a particular cluster means. The
computation load directly depends on the number of cluster means that need to be calculated. As a result data items
with wide variances will cause poor scalability in the algorithm.

Fuzzy clustering is a portioning meth¢@ook, 2007) whereby a single data point may belong to more than one
cluster. Each data point is assigned a set of membership level values. Theséndidass the strength of the
membership of the data point with each of the clusters.

1.2 Related Work in Architecture, Engineering, and Construction

Sensor datdusion, analysisand visualization is an active and frequent topiahie ArchitectureEngineerimg-
Construction (AECYesearch communitgShahandashgt al, 2011)for a variety of applications including:norn
intr usi ve | oad mo n 2008y nashgps ¢f Bpeaowd® 8IM and semdor. dafdachet al, 2012)
Energy Analysis (Kimet al, 2011) (Ahmedet al, 2011) (Mail et al, 2012) Indoor localization (Pradhaet al,
2009), tracking ofesource®n construction sitesSpnget al, 2006)(Park et al.2012) structural health monitoring
(Posenatoet al.2008),deriving asbuilt geometry models from point cloud d4feang et al.2010) and deployment
of integrated,campuswide automation and mowiting systems (Rowet al. 2011). Researchers are also
guantifyingthe influences of occupant behaviour on facility resource consmmfYu et al, 2011).

Works such as those produced Bgsenateet al.(2008) and Pradhaet al.(2009) offer experimental evidence for
the utility clustering algorithmsn AEC applications. Posenatcet al. (2008) presentation afn approach tdong-
term monitoring of a complex structure provides souadidence for the utility o€lustering at a level of abstraction
above specific structural models or modes of analykigewise, works by Kimet al. (2011) and Ahmedet al.
(2011) demonstratethe utility of data mining approaches fanalyss of energy consumption data.

Realizing the full potential oAEC sensor data analysisquires integration into a building life cycle populatad
interoperable data sourcasdbuilding informationmodels Building performancenodellingand simulation efforts

such as those by Mailet al. (2012) and Bazjanac (2012) begin to fill research gaps in comparative performance
analysisbetween design and commissionigpabling technologies such tee Monitoring Sytem Toolkit (MOST)
(Zachet al.2012) and Sensor Andrew (Rowe¢ al. 2011) contribute technologies thegconcile disparate sensor
technologies and buildingformation models

2. APPROACH

The authos have developed life-cycle infaomation exchangeof the entire life of a facility(East, Love, & Nisbet

2010) This life cycle information exchange model is based on the Industry Foundation Class (IFC) and the related
Construction Operators Building information exchange (COBIe) international building informratidel standards.

This life-cycle information exchange model specifies the IFC/COBie data exchanges that may originate from a
variety of perspectives such as HVAC, water, electric, production selection, design handover, etc. Two elements
particularly elevant to this article are: (1) Building Programming information exchange (BPie), and (2) Building
Automation Monitoring information exchangBAMie) (East 2012 a,b).

Building Programming information exchange provides spetifioa for expected resouraese Building space

planning is an early life cycle activity when the building may be identified in terms of various requirements for
capacity, service, schedules, and conformance to relevant policies. In some instances, design guides specify such
requrements for a variety of facility and space types (Unified Facilities Criteria Program (UFC), National Institute

of Building Sciences (NIBS), 2012).

The Building Automation Monitorig information exchange is a draft model view definitibat describes dw the
IFC model should be used to specify building automation system product information, physical and logical
connections to other design elememtata point addressing, performance history, and device configuration.
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short, this model view definitioprovides a necessary connection between sensor data about a building and various
models of the building geometrial, functional structural electrical,managerial, etc.

Given thelife cycle information exchangategration between facility requiremsrdnd sensor data, & possible to
compare expected and actual utilization of facil@égourcesEast,Bogen, & Rashid2012. To this end, the authors
developedand evaluated@n algorithm that categorizes daily utilization data and may be compared to expected
resource utilization schedules at an appropriate resolution Algorithm design decisions were based on
considerationabout resource utilization data and a general reptason of expected/actual data.

2.1 Resource Utilization Data Considerations

When a facility is used its occupants execute various activities according to schedules that have a relatively low
resolution when compared to the possible resolutions availakEnsor dataFor example, theammon occupant
schedules for work shifts and meetings are not typically scheduled to occur and end dhrtiweutd, 38" second

of an hour. Instead events and activitigsically occur within quarter hour increments es$ such activities require
extraneous time precisiorLikewise, the target resolution of incoming sensor datar t h ework is fifteemr s 6
minutes.While 15minute data may be suitable for analysing schedules and resource consumption, it ishiet suita

for more intricate tasks such as fault detection or structural health analysis.

Scheduling of resources (by persons) is also typically done in binary units where resources are active/inactive,
available/not available. In contrast, raw sensor datgpigally continuous values derived froamalogcontrol

voltages. Likewise, the measured resource may be subject to variations that are inherent to human behaviour. For
example,consider a light level sensor in a conference room that has been sdhieduleam meetings between

3:00pm and 5:00pm, Monday through Wednesday. If meetings occur on all days it is unlikely that they will start
and finish precisely according to scheduldso, during a longer meeting, there is more chance of variability in the
frequency of resource use over the entire medtimyg. if the meeting involves multhedia presentations then

lighting may be dimmed, or if it is a long meeting then people are likely to take extended breaks and turn off the
lights.

These variations diumans, resource systems, and sensors may be considered as noise when compared to expected
resource schedules. When designing the algorithm the authors considered the following categories of noise
(illustrated inFIG 2):

1 Intensity Noise This type of noise occurs when the sensor output vames its nominal expected
value.

Shift NoiseThis type of nois@ccurs when an expecteslentoccurs earlier or later than expected.
Frequency Noise:This type of noise occurs when the occurrence of utilization indicators fluctuate
over the duration of expected resource use.

f
f

Signal Noise Amplitude Shift Frequency
Examples Noise Noise Noise

= J1I1:I1
= w1 M

FIG 2: Examples ofntensity Shift, and Fequency Noise
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2.2 Reference Patterns

The authors created an initial set of reference patterns that were used during development testing and in later
experiments (Section 3).These patterns specify the binary consumption pattern of a resource &rhaar

workday, 9 hour workday, 10 hour workday, 12 hour work day, 15 hour workday, 18 hour workday, 21 hour
workday, Constant use, Constant agse, 3 peak workday, 2 peak workdeyG 3 illustrates example reference
patterns for an 8 hour workday, a 2 peak workday with a lunch break, a 3 peak workday, and a 12 hour workday.
When compared with actual resource wavefothese patterns represent thisage characteristics of lodgiration

use electrical devices such as lighting system, desktop compatershaust fans. Typically, these devices stay
operational (on) for long intervals during facility occupancy and remain inoperative (off) otherwise.

Example Daily Reference Patterns

® 12 Hour Workday 02 Peak Dining 3 Peak Workday  ® 8 Hour Workday

oomA Wz

1 -

true)
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— Workday
g S

“.? 3 Peak Workday
2

g

b 7 2peak Dining

S

=]

12 Hour

Workday
0 11'm‘m‘mmwm‘r/

1 5 9 131721252933374145495357616569 737781858993
Time: Ordinal 15 Minute Period

FIG 3: Example Daily Reference Patterns

2.3 Noise Reduction and Pattern Detection Algorithms

The authors have developed an approach that implements the first two phases of data mining (data dimension/noise
reduction and data set partitioning) to extrpatterrs in observed telemetrgomparable to the reference patterns
(Section 2.2) FIG 4 illustrates the organization of the different compuseof the processing workflow here

various noise and variations are filtered and data is categorized into pafthmblocks in the upper portion BfG

4 operate on intensity noise while thetks in the lower portion dfIG 4 operate on frequency and intensity noise.

The following subsections describe these approaches in more detail.

2.3.1 Intensity Noise Reduction

The intensity noise reduction algorithm consists of three steps: (1) Fast Fourier Transfo(RRatipri2) Spectral
Subtraction, and (3) InversEast Fourier TransformationThe Fast Fourier Transformatioalgorithm closely
follows the one describedy Cooley and Tukey (1965) and implemented by PetsH(2007). TheFast Fourier
Transformationis a popularalgorithmthatimplements discrete Fourier transformation
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Spectral Subtractiois a technique that has been used primarily for noise reduicti@audio signal One of the
issues in the application of Spectral Subtraction for audio i®thae n t hough t he signal 6s
reduced, the technique causes the introduction of a different type of noise in th€hitaoise ismanifestedas
rumbling in the background of the audio sigritis disturbance may become a problem in audio signal processing
becausdt may interfere withaudio communicatianHowever,the rumbling is of less concern in resource usage
signak since in tlis case we are concerned only with detecting the transient pulses in the signal.

Signal Processing for Intensity Noise Elimination Telemetry
Processing

Fast Fourier
Transform

Spectral

Subtraction =AY

(FFT)
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|
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|
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| . )
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|
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Duration and
Frequency Noise
Management
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Detection
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Classification

L -
| N
A 'M i
Daily Weekly Monthly
Noisy Signal Noisy Signal (Shift
(Intensity Noise) and Frequency Noise)

Classified patterns

FIG 4: Architectural view of the authors' noise reduction and pattern classification approach
2.3.2 Pattern Extraction and Dataset Partitioning

Frequery and shiftvariations areaddressetby application of an unsuperviséemeansclusteringalgorithm In this
approach, each clustered data point is a one day waveform-winife resolution dataCluster analysis can
recognize patterns without any a priknowledge about the distribution or organization of data. Essentially, the
outliers are clustered into separate classes based owiggimilarities from one anothefhe clustering algorithm

is augmented byan initial population ofexpected patternfor common office building daily work schedule
Significant deviations from these patterns will result in the creation of a new clustarever, the clustering
algorithm can also create categories without an initial population of patterns.

The function of the algorithm is controlled \@eclassificationthreshold. This threshold establishes the maximum
distance between two data points in the same cludtbe distance betweethe clusters izalculated bythe root
mean squaredRMS)or the geometric distancketween the daily patterndRMS is a common, relatively simple
classification threshold that serves as a baseline approach for this Bhedgistance is calculated according to
Equationl, where,a; andb; areindividual data points of the daily patteragndb, respectivelyN is thenumber of
samples in a data poinh this caseN is 96(24 hours * 4 sensor readings per hour)
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If the minimumRMS distance between a data point and any existing cluster is above the threshold then an average

di stance measure is calculated and wused for a Al ast C
between the data point and existing pattern &atgr than the threshold then a new cluster is creBtpgation2

provides a specification of the average distance meadueeeya and b; are individual data points of the daily

patternsa andb, respectively andll is the total number of samples in a data point.

- [T5 @y
rms= |8 (& <)

Equationl

1.
avg=—g |(a- b)
N -
Equation2

3. EXPERIMENTAL SETUP

The authors sought to determine the accuracy of the computational approach, its ability to deal with noise, the
influenceof model parameters, and ultimately its performance orresalrce utilizatiorata from facility sensors
Thesegoals were partitioned into two experimental stages: (1) Identifying the solution space with simulated data,
and (2)Comparingclusterperformance on real facility utilization data

3.1 Identifying the Solution Space with Simulated Data

The initial goal oft he experiments is to approximate the Abreaki
performance under controlled conditiornBirst, the daily reference patterns were organized into weekly schedules,

and weekly schedules were distributed among tbeths of the yearExpected weekly andaily pattern sequences,

stored in XML documents, were used@geria for determining accuradyif the algorithm matches a data point

occurrence to the expected data point classification then the occurrencedsedapd the algorithm produced an

accurate resulbtherwise the result is unexpected and the algorithm produced an incorrect result.

An experimental data genéwa was implemented to introduce specified noise amautasthe reference patterns.
The nase generators were executed sequentially as follows:

1. Frequency Noisghe utilization values (0 or 1) are flipped, and the number of points flippegli to the
ceiling valueof the quantity [(Noise %* (the number of data points in a day)For exanple, a 90%
frequency noise amount means that 87 of the 96 binary data points will be flipped, and the index of these
points are randomly selected.

2. IntensityNoise:the signal to noise ratio specifies a standard deviation that is applied to all raw dé&ta poi
For example, for 30% intensity nojssach raw data point is multiplied by a random number between 0 and
0.30.

3. Shift Noise:the start of the peak period in the data fisei proportional to the duration of the activity
period For example, 25%hdft noise of an 8 hour workday starting at 6am means that the start or end time
may be shifted by up to 2 hou(& 15minute periods

Performanceesults were collected for all combinationsimtensity frequency, and shift noise for 5% incremeints
9,261 combinations totalFor each combination of noise parameters the cumulative accuracy was calculated over a
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2-year period for cluster thrhelds 0100% in 5% increments. For debugging purposes, tharacg of each
individual daily pattern was recorded

3.2 Comparison of Simulated and Real Data

The goal of this stage of the experiments igsléberminethe applicable accuracy of the algorithm arededmine
realistic noise levelsSince an expected resoungdization schedule is not available for this building, performance
results were approximated by aggregatixgerimental results from the first stage of the experiment (Section 3.1)
with results collected from real sensor data.

Researchers at Penn $tainiversity shared approximately eighmonths of data collected in a commercial office
building instrumented for an extensive Department of Energy fureleshrchgrant. This data serves as the real
data that was compared to the simulated results disdus Section 3.1.

The following five data points were selected from the dataset: (1) whole buildingicaleconsumption, (2)
lighting systems electrical consumption, (3) main office lighting level sensor,aif)andling unitelectrical
consumptio, and (5)ooling-unit electrical consumption.

These data points were consumed by the noise reduction/pattern matching algorithm and given an initial set of daily
reference patternsClustering results were recorded for cluster thresholds from 1 to 100% in 1% increfieats.

goal of this activity was to determine the minimum cluster threshold that produces no more tganevaéon of

variant clustes.

This minimum threshold iddifies a compromise between precision and complekitye. the algorithm should
discriminate between reference patterns, but not overwhelm the user with hundreds of slightly variant anbmalies.
is assumed that real buildings and their resources aaé lheir own unique variant of our reference patterns, and
the algorithm should provide sufficient allowancestfar discovery of those patterns. Then, any deviations beyond
the firstgeneration ofariants may be considered anomalous.

After collecting clustering results from the real sensor data, results were collected frartifitial data using the
minimum thresholdsliscovered from the real datd’ hen the simulated data results were filtered to eliminate noise
levels that resulin more than one vait for any reference pattern and produce an accuracy of 90% or giEager.
noise levels and accuracy results of the remaining data points represeexpehted noise and accuracy of the
algorithm on data points comparable to thiosthe real sensor dapmints

4. EXPERIMENTAL RESULTS

Resultsfrom the experiments reveal that accuraci@atches to reference of' §eneration variants)f 90% and
greater may be achieved through various combinations of noise where frequency betse&&n 80%, intensity
noise is 840%, and shift noise is-B%. More detailed analysis of each experimental stage is presented in the
following subsections.

4.1 The Solution Space (Simulated Data)

The data obtained in the experimnewasanalysedo estimae the accuracy of the detection capability of the pattern
detection algorithm. Thecauracy is calculated usingquation3 whered s the number ofxpectedpatterns
successfullymatched in the test datand d is the number of total data points (days) in the data 3éis strict
measure of accuracy is used to determine the points whendistisesa reference pattern enough to create a new
cluster or match to another cluster.

accuracy= %

Equation3
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First, the entire solution space is illustratedcbyating a 3D surface chdRIG 5) where the »xaxis (horizontal)
represents noise combinations ranked by accuracy from largest to smallestaxifieepresents the cluster
threshold and the-axis (vertical) represents aceay. The accuracy peak between-900% is a light shaded area
in the top left of the chart between th@xis values &15.

Surface charts are also provitfer each isolated noise element from 0 to 100% in 5% stepsnsity noise has the
least influece on accuracy while shift noise has the highest influence on accli&®g.illustrates accuracy for
intensity noiseFIG 7 illustrates accuracy for only frequency noise, &h@ 8 illustrates accuracy for only shift
noise.

Accuracy for all simulated noise levels and all cluster thresholds

09-1
0.8-0.9

0.7-0.8

m0.6-0.7

m0.5-0.6

®0.4-0.5

m0.3-04

m0.2-03
®0.1-0.2
m0-0.1

Cluster
Threshold

Noise Combination (sorted from highest to lowest accuracy)

FIG 5: Accuracy for all simulated noise levels and all cluster thresholds

Given a minimum to moderate amount of noise the accuracy typically increases as the cluster threshold increases.
However, this is not true for shift re@. The algorithm by default checks distances between reference patterns and
the test pattern using the RMS distance measure. This distance measure is especially discriminating for shift noise,
but average distance measure is less discriminating forastiffrequency noiseThis is due to the fact that average
distance measure tracks the shape of the wave forms and is able to detect similar shajiednearen in the
presence of time shifts (shift noise) and missing data points (frequency nb&sgl and Table2 provide a cross
reference of distances between the refergratterns for RMS and average distances respectively. Note that average
distances are typically less than RMS distances. If the cluster threshold is large enough then the RMS distances will
provide a match in which case accuracy begins to declineifonsfse.
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Accuracy

Intensity Noise Accuracy

Noise Level

Cluster Threshold
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FIG 6: Accuracy in presence of onlytensitynoise
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FIG 7: Accuracy in the presence of only frequency noise
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Shift Noise Accuracy (modified distance measure)
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FIG 8: Accuracy in the presence of only shiftise

Tablel: RMS distances between reference pattéess than 0.10 highlighted)

10Hr 12Hr 15Hr 18Hr 21Hr 2PD 2PND 3P 8Hr 9Hr ConstH  |ConstL
10Hr 0.00 0.29 0.46 0.58 0.68 0.57| 0.64 0.56 0.29 0.20 0.76 0.65
12Hr 0.29 0.00 0.35 0.50 0.61 0.49| 0.57 0.48 0.41 0.35 0.70 0.71
15Hr 0.46 0.35 0.00 0.35 0.50 0.53] 0.44 0.43 0.54 0.50 0.60 0.80
18Hr 0.58 0.50 0.35 0.00 0.35 0.64 0.57 0.48 0.65 0.61 0.49 0.87
21Hr 0.68 0.61 0.50 0.35 0.00 0.73] 0.67 0.60 0.74 0.71 0.34 0.94
2PD 0.57 0.49 0.53 0.64 0.73 0.00] 0.58 0.51 0.59 0.60 0.80 0.60
2PND 0.64 0.57 0.44 0.57 0.67 0.58| 0.00 0.57 0.70 0.67 0.75 0.66
3P 0.56 0.48 0.43 0.48 0.60 0.51] 0.57 0.00 0.63 0.60 0.68 0.73
8Hr 0.29 0.41 0.54 0.65 0.74 0.59| 0.70 0.63 0.00 0.20 0.81 0.59
9Hr 0.20 0.35 0.50 0.61 0.71 0.60] 0.67 0.60 0.20 0.00 0.78 0.62
ConstH 0.76 0.70 0.60 0.49 0.34 0.80] 0.75 0.68 0.81 0.78 0.00 1.00
ConstL 0.65 0.71 0.80 0.87 0.94 0.60] 0.66 0.73 0.59 0.62 1.00 0.00
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Table2: Average distances between reference pattéess than 0.10 highlighted)

10Hr 12Hr 15Hr 18Hr 21Hr 2PD 2PND 3P SHr 9Hr ConstH  [ConstL
10Hr 0.00] 0.08 0.21 0.33 0.46 0.07 0.01 0.10 0.08 0.04 0.57 0.43
12Hr 0.08] 0.00 0.13 0.25 0.38 0.16 0.07 0.02 0.17 0.13 0.49 0.51
15Hr 0.21) 0.13 0.00 0.13 0.25 0.28 0.20 0.10 0.29 0.25 0.36 0.64
18Hr 0.33 0.25 0.13 0.00 0.13 0.41 0.32 0.23 0.42 0.38 0.24 0.76
21Hr 0.46) 0.38 0.25 0.13 0.00 0.53 0.45 0.35 0.54 0.50 0.11 0.89
2PD 0.07| 0.16 0.28 0.41 0.53 0.00 0.08 0.18 0.01 0.03 0.65 0.35
2PND 0.01] 0.07 0.20 0.32 0.45 0.08 0.00 0.09 0.09 0.05 0.56 0.44
3P 0.10] 0.02 0.10 0.23 0.35 0.18 0.09 0.00 0.19 0.15 0.47 0.53
8Hr 0.08] 0.17 0.29 0.42 0.54 0.01 0.09 0.19 0.00 0.04 0.66 0.34
9Hr 0.04] 0.13 0.25 0.38 0.50 0.03 0.05 0.15 0.04 0.00 0.61 0.39
ConstH 0.57 0.49 0.36 0.24 0.11 0.65 0.56 0.47 0.66 0.61 0.00 1.00
ConstL 0.43] 0.51 0.64 0.76| 0.89 0.35 0.44 0.53 0.34 0.39 1.00 0.00

By examining the plots for indidual noise elements a large portion of the solution space peak was scooped by
filtering for shift noise less than or equalt6%, frequency noise less than or equab®6, and intensity noise less

than or equal to 100%. FIG 9 illustrates the resultingaccuracies for the remaining (after filtering) noise
combinations and cluster thresholds.

Accuracies for Shift Noise < 0.10, Frequency Noise < 0.55, and Intensity
Noise < 1.00
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FIG 9: Accuracy for shift naie00.10, frequency noig®0.55 and intensity nois®1.00

4.2 Real Data Results

Various facets of the real data were examined to ensure quality of the underlying data, to observe clustering
performance, and collect data for comparative analy$ise minimum dlister thresholds that produced no more

than one cluster variant for any reference pattern are between 6 and 9% for the 5 datdl pblassummarizes

the clustemg performance of the algorithm on the 5 real data points for the minimum cluster threshold that produces
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no more than ongeneration of cluster variant&or each data point, the following information is listed: the cluster
threshold, total number of xant clusters derived, distinct count of observed daily patterns, the number of data
points, and the ratio of variant clusters to total data points.

It was unexpected that the main office lighting level sensor ranked with the lowest variatisrreeslings are
subject to the variation of a relatively small population when compared to lighting for the entire builiirg.
possible explanation is that the pattern of ambient light from windows may provide some regularity to the data
assuming thiit is not an overcast dayt was, however, expected that the cooling and air handling units would have
substantial variation due to seasonal temperatir@sgingbetween February and September, and this is reflected in
the reported statistics.

Table3: Cluster Counts for Real Datdorted by % of Variant Clusté@ccurrences

DataPoint Cluster Total Distinct Day % Variant

Threshold  Variant Cluster Count Clusters
Clusters Occurrences

Office Light Level 9% 1 7 170 17.06%

All Lighting 6% 3 9 211 20.85%

(electric)

Air Handling Unit 6% 2 10 211 27.96%

(electric)

Whole Building 7% 2 8 211 38.86%

(electric)

Cooling Unit 7% 2 11 211 60.19%

(electric)

Examining the plots of various daily sequences provides additional inslightt the variation of data and the

al gor it h moé swhilp also fprovidimpaimdicagors for the quality of the d&¥G 10 illustrates main office

lighting data ad the matched reference pattern from Apri{22) 2012. This sequence of five of the seven distinct
clusters occurring in these data points. Note the difference in time between the start of the 12 hour reference pattern
peak and the start of its corresuling raw data. This is an example of the algoritdlowing for a marginof

variability of shift noise andlikewise, the variation in amplitudes is an examdléntensitynoise.The data irFIG

10 seems to indicate that the office was not occupied on April 23 and 24.

The alllighting (electric) datallustrated inFIG 11 also indicate there was decreased lighting consumptiofpril

23 and 24 Essential lighting for hallways, stairwells, lobbies, and extdikety accounts for the two-Bour variant
pattens matched on those daykthis technology was fielded it would be necessary for practitioners to annotate
such variants if they are common recurrericesy. 32 of the 211 days of all lighting data points are clustered to the
8 hour variant.

Inspecton of seasonal performance of the whole building and the chiller unit reveals an expected correlation
between summer months and chiller unit consumption, and ultimately, chiller unit consumption and total electric
consumption. FIG 12 and FIG 13 illustrate this correlation for the whole building and chiller unit energy
consumptionon days from February, March, and Julilote that the correlation between chiller unit and total
electric consumptiois strongest during the summer months.
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Main Office Lighting Level, April 20-24, 9% Cluster Threshold, 10 hr, 12
hr, 8 hr, Constant Low Variant, Constant Low Match Sequence
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FIG 10: Sequence of pattern matches for main office lighting level

FIG 11: Sequence of pattern matches for all lighting (electric)
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