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SUMMARY: Data reported by sensors in building automation and control systems is critical for evaluating the as-

operated performance of a facility.  Typically these systems are designed to support specific control domains, but 

facility performance analysis requires the fusion of data across these domains.  Since a facility may have several 

disparate, closed-loop systems, resolution of data interoperability issues is a prerequisite to cross-domain data 

fusion.  In previous publications, the authors have proposed an experimental platform for building information 

fusion where the sensors are reconciled to building information model elements and ultimately to an expected 

resource utilization schedule.  The motivation for this integration is to provide a framework for comparing the as-

operated facility with its intended usage patterns. While the authors’ data integration framework provides 

representational tools for integrating BIM and raw sensor data, appropriate computational approaches for 

normalization, filtering, and pattern extraction methods must be developed to provide a mathematical basis for 

anomaly detection and “plan” versus “actual” comparisons of resource use. This article presents a computational 

workflow for categorizing daily resource usage according to a resolution typical of human-specified schedules.  

Simulated datasets and real datasets are used as the basis for experimental analysis of the authors’ approach, and 

results indicate that the algorithm can produce 90% matching accuracy with noise/variations up to 55%.   
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1. INTRODUCTION 

Given the current emphasis on sustainability, there is a growing interest in monitoring various facets of building 

resource consumption.  Building monitoring and automation systems most commonly exist as closed-loop systems 

for security, fire safety, water, electrical, and HVAC (Heating, Ventilation, and Air-Conditioning). Without 

adequate planning or specific computational goals (e.g. calibrating an energy model), one is quickly overwhelmed 

by the volume and complexity of data.  Thus, data collected from such systems are most commonly used for specific 

problems such as fault detection, design optimization, and system calibration.  Ideally information from each system 

provides decision support for control of building life cycle cost through continuous commissioning (Liu et. al, 

2002), but this ideal requires substantial data integration aligned with a facility life cycle model. 

One of the fundamental requirements of a mature engineering process model is the comparison of planned versus 

actual results for cost, risk, and quality control. For facility engineering this implies that there must be a structured 

specification of building space requirements and a mechanism for detecting divergent system and occupant 

behaviours. Such a mechanism would have broad applicability for commissioning, energy efficiency, sustainability, 

diagnostics, maintenance, and a variety of other problems.   

For example, the U.S. federal government (a billion dollar player in the capital facility industry) is attempting to 

minimize its facility footprint based on the current utilization of its buildings.  Such information may not be 

objectively reported unless there are quantifiable metrics collected and maintained in the context of a mature 

engineering process.  Similarly, there are various mandates for institutional energy reduction and increased 

sustainability.  Often, these problems are addressed through design checklists and energy prediction models that may 

or may not accurately forecast how the building will be used. 

The authors are conducting research to realize life-cycle building control  through a model of data exchanges across 

the entire facility life-cycle and a computational approach for comparing expected and actual resource utilization.  

This article reports on progress towards the latter effort.  The authors hypothesize that application of telemetry noise 

filtering and a clustering algorithm can provide accurate results for comparing planned and actual daily resource 

utilization in the context of human-interpretable schedules.   

Experiments were conducted to test this hypothesis on an algorithm using simulated and real data and ultimately to 

determine the algorithm’s expected accuracy, sensitivity to noise, and its general applicability.  Results reveal that 

the authors’ approach can produce 90% accuracy for three types of waveform variation (intensity, frequency, and 

shift) at a cumulative signal to noise ratio of 55%. 

Before revealing the details of the adopted approach (Section 2), the experimental plan (Section 3), and the 

experimental results (Section 4), the proceeding subsections highlight related background knowledge and research 

efforts in architecture, engineering, and construction (AEC). 

1.1 Data Mining and Pattern Recognition 

One of the effective ways of filtering voluminous data is to discover recurring patterns in the raw data that may be 

reported to higher order analysis methods. Patterns in telemetry data may be detected using a variety of data mining 

approaches. Data mining is a mature and active area of research that typically includes the following phases:  

 Data dimension and noise reduction:  handles noise and normalizes scale, units, or other 

heterogeneous facets of the data. 

 Data set partitioning:  organizes data with similar characteristics  

 Data classification and labelling:  assigns incoming data to categories identified from historical data 

 Anomaly detection:  applies statistical inference and reasoning to identify novel occurrences  of data 

points 

Computational approaches for each phase are chosen according to the constraints of the problem. FIG 1 illustrates 

the computational methods available for each phase of data mining where right-most items are more 

computationally demanding.   Highlighted items are most relevant to the authors’ approach while non-highlighted 
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items represent related technologies.  While there is extensive research in all aspects of data mining, this article 

focuses  on the topics of noise reduction and clustering (relevant to multiple data mining phases).  

Interpolation (e.g., cubic splines) is a noise reduction method for supplying missing data in the data set (Vaseghi, 

2009). Essentially such an interpolation technique is used to smooth out jumps in the original data set. The cost of 

interpolation is O(n) where n is the size of the input data set.  

Discrete Fourier Transformation (DFT) is used to transform a time-domain input signal into its frequency-domain 

components. Using this transformation we can detect and eliminate unwanted frequency components. Taking the 

inverse DFT of the modified frequency-domain representation will yield a relatively less noisy data set. A naïve 

implementation of the DFT has a cost of O(n
2
) where n is the input data size. Using the Fast Fourier Transformation 

(FFT) algorithm (Cooley & Tukey, 1965) may reduce this cost to O(nlogn). However, in both the naïve and FFT the 

cost of the algorithm is directly proportional to n, the input data size. 

 

 

FIG 1:  Data Mining Approaches 

 

Clustering is used throughout the data mining process to detect similarities between data points.  In clustering, a 

score function measures similarity between two data points. Common approaches to score functions include a single 

linkage, complete linkage, and centroid comparison.  Each scoring function has variable performance depending on 

the characteristics of the dataset (Saitta, Raphael, & Smith, 2007). 

A popular method for data partitioning is k-means clustering (MacQueen, 1967). In this technique the data items are 

partitioned into k number of sets so that the resulting intra-cluster similarity is high but the inter-cluster similarity is 

low. The measure of similarity used in this technique is based on the different types of norms (such as, Euclidean, 

infinite, etc.) between the mean value of a cluster and the value of a particular data item in the cluster. Each of the 

mean values is considered a central value of that particular cluster. The number of partitions, k is selected by the 

user. The total cost of this technique is O(nkt), where n is the number of input data items, k is the number of 

intended partitions, and t is the number of iterations required to reach below a specified cluster threshold.   

A variant of the clustering algorithm is the hierarchical clustering (Day & Edelsbrunner, 1984) where clusters are 

progressively merged (bottom-up) or split (top-bottom). The main problem with this type of partitioning technique is 



ITcon Vol. 18 (2013), Bogen, et.al., pg. 102 

that a poor choice of the decision to merge or split the clusters cannot be remedied by backtracking. This results in 

poor partitioning of the input data items. To correct any particularly derogatory situation the whole process of 

merging must restart from the beginning. Another problem faced in hierarchical clustering is the scalability problem. 

This is because the algorithm must inspect a large number of data points to calculate a particular cluster means. The 

computation load directly depends on the number of cluster means that need to be calculated. As a result data items 

with wide variances will cause poor scalability in the algorithm.  

Fuzzy clustering is a portioning method (Cook, 2007) whereby a single data point may belong to more than one 

cluster. Each data point is assigned a set of membership level values. These values indicate the strength of the 

membership of the data point with each of the clusters. 

1.2 Related Work in Architecture, Engineering, and Construction 

Sensor data fusion, analysis, and visualization is an active and frequent topic in the Architecture-Engineering-

Construction (AEC) research community (Shahandashti et al., 2011) for a variety of applications including:   non-

intrusive load monitoring (Bergés et al., 2008), mashups of open-source BIM and sensor data (Zach et al., 2012), 

Energy Analysis (Kim et al., 2011) (Ahmed et al., 2011) (Mail et al., 2012), Indoor localization (Pradhan et al.,  

2009), tracking of resources on construction sites (Song et al., 2006) (Park et al., 2012), structural health monitoring 

(Posenato, et al. 2008), deriving as-built geometry models from point cloud data (Tang et al., 2010), and deployment 

of integrated, campus-wide automation and monitoring systems (Rowe et al,. 2011).   Researchers are also 

quantifying the influences of occupant behaviour on facility resource consumption (Yu et al., 2011).   

Works such as those produced by Posenato et al. (2008) and Pradhan et al. (2009) offer experimental evidence for 

the utility clustering algorithms in AEC applications.  Posenato et al. (2008) presentation of an approach to long-

term monitoring of a complex structure provides sound evidence for the utility of clustering at a level of abstraction 

above specific structural models or modes of analysis.  Likewise, works by Kim et al. (2011) and Ahmed et al. 

(2011)  demonstrates the utility of data mining approaches for analysis of energy consumption data. 

Realizing the full potential of AEC sensor data analysis requires integration into a building life cycle populated by 

interoperable data sources and building information models.  Building performance modelling and simulation efforts 

such as those by Maile et al. (2012) and Bazjanac (2012) begin to fill research gaps in comparative performance 

analysis between design and commissioning. Enabling technologies such as the Monitoring System Toolkit (MOST) 

(Zach et al. 2012) and Sensor Andrew (Rowe et al. 2011) contribute technologies that reconcile disparate sensor 

technologies and building information models.   

2. APPROACH 

The authors have developed a life-cycle information exchange for the entire life of a facility (East, Love, & Nisbet 

2010). This life cycle information exchange model is based on the Industry Foundation Class (IFC) and the related 

Construction Operators Building information exchange (COBie) international building information model standards.  

This life-cycle information exchange model specifies the IFC/COBie data exchanges that may originate from a 

variety of perspectives such as HVAC, water, electric, production selection, design handover, etc.  Two elements 

particularly relevant to this article are:  (1) Building Programming information exchange (BPie), and (2) Building 

Automation Monitoring information exchange (BAMie) (East 2012 a,b). 

Building Programming information exchange provides specifications for expected resource use.  Building space 

planning is an early life cycle activity when the building may be identified in terms of various requirements for 

capacity, service, schedules, and conformance to relevant policies.  In some instances, design guides specify such 

requirements for a variety of facility and space types (Unified Facilities Criteria Program (UFC), National Institute 

of Building Sciences (NIBS), 2012).   

The Building Automation Monitoring information exchange is a draft model view definition that describes how the 

IFC model should be used to specify building automation system product information, physical and logical 

connections to other design elements, data point addressing, performance history, and device configuration.  In 
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short, this model view definition provides a necessary connection between sensor data about a building and various 

models of the building – geometrical, functional, structural, electrical, managerial, etc. 

Given the life cycle information exchange integration between facility requirements and sensor data, it is possible to 

compare expected and actual utilization of facility resources (East, Bogen, & Rashid, 2012). To this end, the authors 

developed and evaluated an algorithm that categorizes daily utilization data and may be compared to expected 

resource utilization schedules at an appropriate resolution.    Algorithm design decisions were based on 

considerations about resource utilization data and a general representation of expected/actual data. 

2.1 Resource Utilization Data Considerations 

When a facility is used its occupants execute various activities according to schedules that have a relatively low 

resolution when compared to the possible resolutions available in sensor data.  For example, the common occupant 

schedules for work shifts and meetings are not typically scheduled to occur and end on the 11
th
 minute, 30

th
 second 

of an hour.  Instead events and activities typically occur within quarter hour increments unless such activities require 

extraneous time precision.  Likewise, the target resolution of incoming sensor data for the authors’ work is fifteen 

minutes. While 15-minute data may be suitable for analysing schedules and resource consumption, it is not suitable 

for more intricate tasks such as fault detection or structural health analysis.   

Scheduling of resources (by persons) is also typically done in binary units where resources are active/inactive, 

available/not available.  In contrast, raw sensor data is typically continuous values derived from analog control 

voltages.  Likewise, the measured resource may be subject to variations that are inherent to human behaviour.  For 

example, consider a light level sensor in a conference room that has been scheduled for team meetings between 

3:00pm and 5:00pm, Monday through Wednesday.  If meetings occur on all days it is unlikely that they will start 

and finish precisely according to schedule.  Also, during a longer meeting, there is more chance of variability in the 

frequency of resource use over the entire meeting – e.g. if the meeting involves multi-media presentations then 

lighting may be dimmed, or if it is a long meeting then people are likely to take extended breaks and turn off the 

lights. 

These variations of humans, resource systems, and sensors may be considered as noise when compared to expected 

resource schedules.  When designing the algorithm the authors considered the following categories of noise 

(illustrated in FIG 2): 

 Intensity Noise: This type of noise occurs when the sensor output varies from its nominal expected 

value.   

 Shift Noise: This type of noise occurs when an expected event occurs earlier or later than expected. 

 Frequency Noise:  This type of noise occurs when the occurrence of utilization indicators fluctuate 

over the duration of expected resource use. 

 

 

FIG 2:  Examples of Intensity, Shift, and Frequency Noise 
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2.2 Reference Patterns 

The authors created an initial set of reference patterns that were used during development testing and in later 

experiments (Section 3).  These patterns specify the binary consumption pattern of a resource for an 8 hour 

workday, 9 hour workday, 10 hour workday, 12 hour work day, 15 hour workday, 18 hour workday, 21 hour 

workday, Constant use, Constant non-use, 3 peak workday, 2 peak workday. FIG 3 illustrates example reference 

patterns for an 8 hour workday, a 2 peak workday with a lunch break, a 3 peak workday, and a 12 hour workday.  

When compared with actual resource waveforms these patterns represent the usage characteristics of long duration 

use electrical devices such as lighting system, desktop computers, or exhaust fans. Typically, these devices stay 

operational (on) for long intervals during facility occupancy and remain inoperative (off) otherwise.  

 

 

FIG 3:  Example Daily Reference Patterns 

2.3 Noise Reduction and Pattern Detection Algorithms 

The authors have developed an approach that implements the first two phases of data mining (data dimension/noise 

reduction and data set partitioning) to extract patterns in observed telemetry comparable to the reference patterns 

(Section 2.2). FIG 4 illustrates the organization of the different components of the processing workflow where 

various noise and variations are filtered and data is categorized into patterns.  The blocks in the upper portion of FIG 

4 operate on intensity noise while the blocks in the lower portion of FIG 4 operate on frequency and intensity noise.  

The following subsections describe these approaches in more detail. 

2.3.1 Intensity Noise Reduction 

The intensity noise reduction algorithm consists of three steps: (1) Fast Fourier Transformation (FFT), (2) Spectral 

Subtraction, and (3) Inverse Fast Fourier Transformation. The Fast Fourier Transformation algorithm closely 

follows the one described by Cooley and Tukey (1965) and implemented by Press et al.(2007). The Fast Fourier 

Transformation is a  popular algorithm that implements discrete Fourier transformation.  
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Spectral Subtraction is a technique that has been used primarily for noise reduction in audio signals. One of the 

issues in the application of Spectral Subtraction for audio is that even though the signal’s original noise contents are 

reduced, the technique causes the introduction of a different type of noise in the data. This noise is manifested as 

rumbling in the background of the audio signal. This disturbance may become a problem in audio signal processing 

because it may interfere with audio communication. However, the rumbling is of less concern in resource usage 

signals since in this case we are concerned only with detecting the transient pulses in the signal.  

 

 

FIG 4:  Architectural view of the authors' noise reduction and pattern classification approach 

2.3.2 Pattern Extraction and Dataset Partitioning 

Frequency and shift variations are addressed by application of an unsupervised k-means clustering algorithm. In this 

approach, each clustered data point is a one day waveform of 15-minute resolution data. Cluster analysis can 

recognize patterns without any a priori knowledge about the distribution or organization of data. Essentially, the 

outliers are clustered into separate classes based on their dissimilarities from one another. The clustering algorithm 

is augmented by an initial population of expected patterns for common office building daily work schedule. 

Significant deviations from these patterns will result in the creation of a new cluster.  However, the clustering 

algorithm can also create categories without an initial population of patterns.   

The function of the algorithm is controlled via a classification threshold.  This threshold establishes the maximum 

distance between two data points in the same cluster.  The distance between the clusters is calculated by the root 

mean squared (RMS) or the geometric distance between the daily patterns.  RMS is a common, relatively simple 

classification threshold that serves as a baseline approach for this study. The distance is calculated according to 

Equation 1, where, ai and bi are individual data points of the daily patterns a and b, respectively. N is the number of 

samples in a data point. In this case, N is 96 (24 hours * 4 sensor readings per hour). 
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If the minimum RMS distance between a data point and any existing cluster is above the threshold then an average 

distance measure is calculated and used for a “last chance” match.  If the minimum average distance measure 

between the data point and existing pattern is greater than the threshold then a new cluster is created. Equation 2 

provides a specification of the average distance measure where, ai and bi are individual data points of the daily 

patterns a and b, respectively and N is the total number of samples in a data point. 
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3. EXPERIMENTAL SETUP 

The authors sought to determine the accuracy of the computational approach, its ability to deal with noise, the 

influence of model parameters, and ultimately its performance on real resource utilization data from facility sensors. 

These goals were partitioned into two experimental stages:  (1) Identifying the solution space with simulated data, 

and (2) Comparing cluster performance on real facility utilization data.   

3.1 Identifying the Solution Space with Simulated Data  

The initial goal of the experiments is to approximate the “breaking points” of the algorithm by observing its 

performance under controlled conditions.  First, the daily reference patterns were organized into weekly schedules, 

and weekly schedules were distributed among the months of the year.  Expected weekly and daily pattern sequences, 

stored in XML documents, were used as criteria for determining accuracy – if the algorithm matches a data point 

occurrence to the expected data point classification then the occurrence is expected and the algorithm produced an 

accurate result, otherwise the result is unexpected and the algorithm produced an incorrect result. 

An experimental data generator was implemented to introduce specified noise amounts into the reference patterns.  

The noise generators were executed sequentially as follows: 

1. Frequency Noise: the utilization values (0 or 1) are flipped, and the number of points flipped is equal to the 

ceiling value of the quantity [(Noise %) * (the number of data points in a day)].  For example, a 90% 

frequency noise amount means that 87 of the 96 binary data points will be flipped, and the index of these 

points are randomly selected. 

2. Intensity Noise: the signal to noise ratio specifies a standard deviation that is applied to all raw data points.  

For example, for 30% intensity noise, each raw data point is multiplied by a random number between 0 and 

0.30.    

3. Shift Noise: the start of the peak period in the data is offset proportional to the duration of the activity 

period.  For example, 25% shift noise of an 8 hour workday starting at 6am means that the start or end time 

may be shifted by up to 2 hours/ (8 15-minute periods). 

Performance results were collected for all combinations of intensity, frequency, and shift noise for 5% increments – 

9,261 combinations total.  For each combination of noise parameters the cumulative accuracy was calculated over a 
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2-year period for cluster thresholds 0-100% in 5% increments. For debugging purposes, the accuracy of each 

individual daily pattern was recorded. 

3.2 Comparison of Simulated and Real Data 

The goal of this stage of the experiments is to determine the applicable accuracy of the algorithm and determine 

realistic noise levels.  Since an expected resource utilization schedule is not available for this building, performance 

results were approximated by aggregating experimental results from the first stage of the experiment (Section 3.1) 

with results collected from real sensor data.   

Researchers at Penn State University shared approximately eight months of data collected in a commercial office 

building instrumented for an extensive Department of Energy funded research grant.   This data serves as the real 

data that was compared to the simulated results discussed in Section 3.1.   

The following five data points were selected from the dataset:  (1) whole building electrical consumption, (2) 

lighting systems electrical consumption, (3) main office lighting level sensor, (4) air-handling unit electrical 

consumption, and (5) cooling-unit electrical consumption.   

These data points were consumed by the noise reduction/pattern matching algorithm and given an initial set of daily 

reference patterns.  Clustering results were recorded for cluster thresholds from 1 to 100% in 1% increments.  The 

goal of this activity was to determine the minimum cluster threshold that produces no more than one generation of 

variant clusters.  

This minimum threshold identifies a compromise between precision and complexity – i.e. the algorithm should 

discriminate between reference patterns, but not overwhelm the user with hundreds of slightly variant anomalies.  It 

is assumed that real buildings and their resources will have their own unique variant of our reference patterns, and 

the algorithm should provide sufficient allowances for the discovery of those patterns.  Then, any deviations beyond 

the first generation of variants may be considered anomalous.   

After collecting clustering results from the real sensor data, results were collected from the artificial data using the 

minimum thresholds discovered from the real data.  Then the simulated data results were filtered to eliminate noise 

levels that result in more than one variant for any reference pattern and produce an accuracy of 90% or greater.  The 

noise levels and accuracy results of the remaining data points represents the expected noise and accuracy of the 

algorithm on data points comparable to those in the real sensor data points.   

4. EXPERIMENTAL RESULTS 

Results from the experiments reveal that accuracies (matches to reference or 1
st
 generation variants) of 90% and 

greater may be achieved through various combinations of noise where frequency noise is between 0-30%, intensity 

noise is 0-40%, and shift noise is 0-5%.  More detailed analysis of each experimental stage is presented in the 

following sub-sections. 

4.1 The Solution Space (Simulated Data) 

The data obtained in the experiments was analysed to estimate the accuracy of the detection capability of the pattern 

detection algorithm. The accuracy is calculated using Equation 3 where d’ is the number of expected patterns 

successfully matched in the test data, and d is the number of total data points (days) in the data set.  This strict 

measure of accuracy is used to determine the points when noise distorts a reference pattern enough to create a new 

cluster or match to another cluster. 

d

d
accuracy

'

  

Equation 3  
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First, the entire solution space is illustrated by creating a 3D surface chart (FIG 5 ) where the x-axis (horizontal) 

represents noise combinations ranked by accuracy from largest to smallest.  The y-axis represents the cluster 

threshold and the z-axis (vertical) represents accuracy.  The accuracy peak between 90-100% is a light shaded area 

in the top left of the chart between the x-axis values 0-715. 

Surface charts are also provided for each isolated noise element from 0 to 100% in 5% steps.  Intensity noise has the 

least influence on accuracy while shift noise has the highest influence on accuracy.  FIG 6 illustrates accuracy for 

intensity noise, FIG 7 illustrates accuracy for only frequency noise, and FIG 8 illustrates accuracy for only shift 

noise.   

 

FIG 5:  Accuracy for all simulated noise levels and all cluster thresholds 

 

Given a minimum to moderate amount of noise the accuracy typically increases as the cluster threshold increases.  

However, this is not true for shift noise.  The algorithm by default checks distances between reference patterns and 

the test pattern using the RMS distance measure. This distance measure is especially discriminating for shift noise, 

but average distance measure is less discriminating for shift and frequency noise.  This is due to the fact that average 

distance measure tracks the shape of the wave forms and is able to detect similar shaped wave-forms even in the 

presence of time shifts (shift noise) and missing data points (frequency noise).  Table 1 and Table 2 provide a cross 

reference of distances between the reference patterns for RMS and average distances respectively.  Note that average 

distances are typically less than RMS distances.  If the cluster threshold is large enough then the RMS distances will 

provide a match in which case accuracy begins to decline for shift noise.  
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FIG 6:  Accuracy in presence of only intensity noise 

 

FIG 7:  Accuracy in the presence of only frequency noise 
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FIG 8:  Accuracy in the presence of only shift noise 

 

Table 1:  RMS distances between reference patterns (less than 0.10 highlighted) 
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Table 2:  Average distances between reference patterns (less than 0.10 highlighted) 

 

By examining the plots for individual noise elements a large portion of the solution space peak was scooped by 

filtering for shift noise less than or equal to 10%, frequency noise less than or equal to 55%, and intensity noise less 

than or equal to 100%.  FIG 9 illustrates the resulting accuracies for the remaining (after filtering) noise 

combinations and cluster thresholds. 

 

FIG 9:  Accuracy for shift noise ≤ 0.10, frequency noise ≤ 0.55, and intensity noise ≤ 1.00 

4.2 Real Data Results 

Various facets of the real data were examined to ensure quality of the underlying data, to observe clustering 

performance, and collect data for comparative analysis.  The minimum cluster thresholds that produced no more 

than one cluster variant for any reference pattern are between 6 and 9% for the 5 data points.  Table 3 summarizes 

the clustering performance of the algorithm on the 5 real data points for the minimum cluster threshold that produces 
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no more than one generation of cluster variants.  For each data point, the following information is listed:  the cluster 

threshold, total number of variant clusters derived, distinct count of observed daily patterns, the number of data 

points, and the ratio of variant clusters to total data points.   

It was unexpected that the main office lighting level sensor ranked with the lowest variation as its readings are 

subject to the variation of a relatively small population when compared to lighting for the entire building.  One 

possible explanation is that the pattern of ambient light from windows may provide some regularity to the data – 

assuming that it is not an overcast day.  It was, however, expected that the cooling and air handling units would have 

substantial variation due to seasonal temperatures changing between February and September, and this is reflected in 

the reported statistics. 

Table 3:  Cluster Counts for Real Data Sorted by % of Variant Cluster Occurrences 

DataPoint Cluster 

Threshold 

Total 

Variant 

Clusters 

Distinct 

Cluster 

Occurrences 

Day 

Count 

% Variant 

Clusters 

Office Light Level 9% 1 7 170 17.06% 

All Lighting 

(electric) 

6% 3 9 211 20.85% 

Air Handling Unit 

(electric) 

6% 2 10 211 27.96% 

Whole Building 

(electric) 

7% 2 8 211 38.86% 

Cooling Unit 

(electric) 

7% 2 11 211 60.19% 

 

Examining the plots of various daily sequences provides additional insight about the variation of data and the 

algorithm’s performance while also providing indicators for the quality of the data. FIG 10 illustrates main office 

lighting data and the matched reference pattern from April 20-24, 2012.  This sequence of five of the seven distinct 

clusters occurring in these data points.  Note the difference in time between the start of the 12 hour reference pattern 

peak and the start of its corresponding raw data.  This is an example of the algorithm allowing for a margin of 

variability of shift noise, and likewise, the variation in amplitudes is an example of intensity noise. The data in FIG 

10 seems to indicate that the office was not occupied on April 23 and 24.   

The all lighting (electric) data illustrated in FIG 11 also indicate there was decreased lighting consumption on April 

23 and 24.  Essential lighting for hallways, stairwells, lobbies, and exterior likely accounts for the two 8-hour variant 

patterns matched on those days. If this technology was fielded it would be necessary for practitioners to annotate 

such variants if they are common recurrences – e.g. 32 of the 211 days of all lighting data points are clustered to the 

8 hour variant.   

Inspection of seasonal performance of the whole building and the chiller unit reveals an expected correlation 

between summer months and chiller unit consumption, and ultimately, chiller unit consumption and total electric 

consumption.  FIG 12 and FIG 13 illustrate this correlation for the whole building and chiller unit energy 

consumption on days from February, March, and July.  Note that the correlation between chiller unit and total 

electric consumption is strongest during the summer months. 



ITcon Vol. 18 (2013), Bogen, et.al., pg. 113 

 

FIG 10:  Sequence of pattern matches for main office lighting level 

 

FIG 11:  Sequence of pattern matches for all lighting (electric) 
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FIG 12: Whole building (electric) matches from Feb., March, July 

 

FIG 13:  Chiller unit example pattern matches from Feb., March, July 
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4.3 Comparing Real and Simulated Data 

After deriving the minimum cluster thresholds for the real data points (see Table 3), additional data was collected 

using simulated data.  The reference pattern population was trimmed to exclude patterns not occurring in the real 

data - constant high, 3 peak, and 2 peak days.  The criteria for an expected match were extended to include matches 

on first generation variants.   

Once accuracy values were obtained for all noise settings, the noise settings producing more than 1 variant for any 

reference pattern or producing accuracy less than 90% were eliminated.  Examining the data left for the lower and 

upper bounds of the real data cluster thresholds (6% and 9% respectively) provide an approximation of the noise 

level boundaries that may produce accurate results on the real data points – and for similar facility data points.   

FIG 14 illustrates the results for the lower bound, 6% cluster threshold, and FIG 15 illustrates the results for the 

upper bound,  9% cluster threshold.  While various combinations of noise produce accurate results, the range for 

individual noise components is 0-40% intensity  noise, 0-30% frequency noise, and 0-5% shift noise.  The maximum   

sum of total noise is 55%.   

 

 

FIG 14:  Noise configurations producing accuracy >= 90% for 6% cluster threshold (minimum for real data) 

5. CONCLUSIONS AND DISCUSSION 

K-means clustering is sufficiently accurate for comparing expected and actual resource consumption schedules when 

combined with a series of pre-processing noise reduction algorithms:  Fast Fourier Transform, Spectral Subtraction, 

and Inverse Fast Fourier Transform.  The approximation of accuracy between artificial and real data provides a 

prediction of noise levels in the real data as well as an approximation of expected accuracy. While the algorithm was 
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evaluated for a multitude of artificial noise conditions, the artificial noise seems unrealistically disruptive when 

compared to the relatively clean recurring patterns observed in the real sensor data.   

The artificial data experiments revealed quite a lot of poor performance on various configurations of noise, but this 

does not necessarily indicate poor overall performance.  The noise configurations were enumerated as a necessary 

measure to determine the amount of disruption that was necessary to create variant clusters and incorrect matches. 

Since the injection of noise is random, it essentially creates new patterns that could be closer to another reference 

pattern than its original noise-free ancestor.  Such possibilities are compounded by a diverse population of reference 

patterns that included pairs that were far and close to one another – thus raising the potential for incorrect mappings.   

While the experiments and approach focused on evaluation of noise-reduction and clustering, the adopted approach 

provides rudimentary classification and anomaly detection capabilities – e.g. if more than two consecutive weeks 

exhibit unexpected behaviour then a smart resource utilization system may prompt a facility manager to 

acknowledge or deny an alert.  When thinking of energy consumption it is common to think of alarms being raised 

when consumption is over a specific threshold.  Flagging anomalies based on expected schedules of use means that 

alarms may also be raised when rooms and resources are underutilized. 

 

 

FIG 15:  Noise configurations producing accuracy >= 90% for 9% cluster threshold (maximum for real data) 

The proposed approach is beneficial because it requires low resolution, unit-neutral data that is not likely to place 

additional constraints on the sampling programs of installed building automation and monitoring systems – 

reprogramming of data logging equipment may be cost prohibitive in some circumstances. However, further 

research must be performed to demonstrate the authors’ full facility life-cycle control concept.  These computational 

methods must be evaluated in the context of a real-facility described by the authors’ life-cycle information exchange 

model. 
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