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SUMMARY: This paper presents a new method developed for schedule compression of non-repetitive 

construction projects. The method accounts for uncertainties associated with crash cost and it considers 

contractors’ judgment. It allows contractors to: (1) perform risk analysis for different schedule compression 

plans; and (2) perform different scenarios expressing vagueness and imprecision of estimated crash cost using a 

set of measures and indices.The method combines Fuzzy Set Theory and contractors’ judgment in setting 

priorities for the compression process of project schedules. The developed method is implemented in MS-Excel, 

and it can be easily used as an add-on utility to other scheduling software systems. To illustrate its capabilities, 

an example project drawn from the literature was analyzed. 
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1. INTRODUCTION 

Schedule compression is a challenging task, which project teams frequently face when there is a need to reduce 

durations of projects in an effort to meet contractual obligations, changing client needs, recover from delays 

experienced during project execution and/or to determine least cost project duration. The main challenge here is to 

reduce project duration with the least amount of extra cost (Moselhi and Alshibani, 2011). Schedule compression 

involves uncertainties which may arise from (Khodakarami et al., 2007): (1) uniqueness of projects; (2) 

variability (trade-off between performance measures like time, cost and quality); and (3) ambiguity (lack of 

clarity, lack of data, lack of structure and bias in estimates). Schedule compression is a process that requires 

additional resources. Therefore the risk associated with this process has to be taken into account (Shankar et al., 

2011). The literature reveals that considerable efforts were made in developing methods for schedule compression 

using different techniques: (1) heuristic procedures (Siemens, 1971; Moselhi, 1993); (2) mathematical 

programming (Henderickson, 1989; Pagnoni, 1990); (3) computer simulation (Wan, 1994); (4) simulation and 

genetic algorithms (Wei Feng et al., 2000; Ding, 2010; Zheng et al., 2004), (5) genetic algorithms and fuzzy set 

theory (Eshtehardian et al., 2008a; Eshtehardian et al., 2008b).  
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The main setback of heuristic-based methods is that the performance is problem-dependent, and good solutions 

are not guaranteed (Wei Feng et al., 2000; Ammar, 2010). As to mathematical programming, the main limitation 

is the excessive computational effort in view of the number of options to complete an activity and the large 

number of activities in actual projects. Computer simulation based methods, on the other hand, require dedicated 

simulation professionals (Hajjar and AbouRizk, 2002) and expert opinions in absence of numeric data (Chung, 

2007). Detailed descriptions of the main shortcomings of simulation were highlighted in literature (Hajjar and 

AbouRizk, 2002; Chung, 2007; Ferson, 2002; Shaheen et al., 2007). Also in simulation, the causal relationship 

between sources of uncertainty and project parameters is not modeled (Khodakarami et al., 2007).  

An alternative approach to deterministic and probabilistic methods is fuzzy set theory (FST). Fuzzy set theory, 

pioneered by Zadeh (1978), is useful for representing and modeling uncertainties, particularly in absence of 

historical data. Compared to simulation, modeling uncertainty using fuzzy set theory is computationally simpler, 

not very sensitive to moderate changes in the shapes of input distributions, and does not require the analyst to 

assume particular correlations among inputs (Shaheen et al., 2007). Fuzzy set theory has been used in the 

development of many applications in construction engineering including; pricing construction risk (Paek, 1993); 

project network schedule (Lorterapong and Moselhi, 1996); reliability assessment (Booker and Singpurwalla, 

2002); and range cost estimating (Shaheen et al., 2007). As to schedule compression models, fuzzy set theory is 

used along with simulation and/or genetic algorithm (e.g., Zheng and Thomas Ng, 2005; Eshtehardian, 2008a; 

Eshtehardian, 2008 b). The later methods consider only cost in the schedule compression process. This paper 

presents a multi-objective method to circumvent the above stated limitations in schedule compression of 

construction projects. The developed method accounts for cost, contractors’ judgment and for the uncertainties 

associated with the direct cost of crashing activity durations. The use of FST, as presented in this paper, is 

particularly suited for the problem at hand due to two main reasons. Firstly, crashing durations of project 

activities is frequently carried out during construction subjected to the unique conditions of each project 

environment. As such, there is no historical data for each and every activity being considered for crashing. This 

is contrary to cost planning of the original projects’ scope of work prior to construction; where historical data 

may exist to support the use of probabilistic methods. Secondly, FST facilitates the direct utilization of expert 

knowledge that applies to the unique conditions of each project at hand through the use of membership functions 

that best suit these unique conditions.  

2. PROPOSED METHOD 

The proposed method integrates contractors’ judgment and crashing cost in setting up priorities for crashing 

activities on each critical path in projects’ network schedules. Contractors’ judgement accounts for their 

experience, while crashing cost accounts for the risk associated with the additional direct cost needed to 

compress critical activities. The priority assigned to each activity on the critical path is a joint priority; calculated 

using judgment-based priority and cost-based priority. Relative weights are assigned to contractors’ judgment 

and crashing cost. The risk associated with crashing cost is modeled using fuzzy set theory. The developed 

method is automated in a computer application developed in MS-Excel, which interacts with Microsoft Project 

2010 during the schedule compression process. Microsoft project is used to perform critical path method (CPM) 

analysis, which identifies critical path(s) of the project under consideration while the developed MS-Excel 

application is used to carry out the required calculations of the proposed method. Based on fuzzy set theory, 

crashing costs of critical activities are modeled by fuzzy numbers as described subsequently.  

In view of the constraints and unique conditions associated with crashing activity durations to accelerate project 

delivery, it was deemed helpful to account for risk and uncertainties in performing the compression process. The 

developed method is applicable during the execution phase of the project, i.e., after the contract has been signed 

and commencement of construction on jobsite. As such, normal cost and normal duration of project activities are 

considered to have crisp value as stipulated in the contract documents. The main components and the sequential 

operations in the computational process of the developed method are shown in Fig. 1. The steps of computations 

required for the application of the proposed method can be summarized as follows: 

1) Perform CPM analysis of the project under consideration using Microsoft Project (or any scheduling 

software that can identify the critical path(s)). 
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2) Export the generated schedule data to the developed MS-Excel application.  

 

FIG. 1: The flow chart of the proposed method  

 

3) Identify the number of existing critical path(s) “N”, and the number of activities on the identified critical path(s) 

“M”. Input the compression data for activities on the generated critical path(s) in the MS-Excel application 

by the user. This data includes normal cost, normal duration and crashed duration for each critical activity. 

4) Model uncertainties associated with crash cost of activities using fuzzy numbers similar to that shown in 

Fig. 2. It should be noted that “a” and “d” are the lower and upper bounds of the estimated crashed cost, 

which have membership f(x) = 0.0 , while “b” and “c” are the lower and upper modal values of the 

estimated crashed cost, which have full membership (i.e., f(x) = 1.0).  
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FIG. 2: Trapezoidal fuzzy number  

 

5) Defuzzify the fuzzy estimate defined in Step 3 using the centre of area (COA) method (Shaheen et al., 

2007), which represents the expected value using Equation (1): 

(1)

 
 

6) Calculate and tabulate the "Cost Slope" of activities on the critical path(s) knowing the expected value of the 

crashed cost and the activity crashed duration as shown in Fig. 3 (A).  

 

 

FIG. 3: (A) Fuzzy crashed direct cost, (B) Time-Cost Trade-Off 

 

7) Assign priority (
CSi

P  ) for each activity on each critical path based on their respective cost slope calculated in 

Step 6 above. The activity with the least cost slope is assigned a priority of 5 and the activity with the 

highest cost slope is assigned a priority of 1 and the rest can be assigned accordingly.  

8) Define priority based on contractor’s judgment (
CJi

P ), also, on a scale from 1 to 5. These priorities can 

account for his experience and preference, such as crashing early activities rather than those that will be 

performed later, those that are less risky or those that have their needed recourses in-place.  

9) Assign relative weights and generate joined priority (
CSi

P +
CJi

P ), using Equation (2) below: 

 

i CSi CS CJi CJ
PI P W P W             (2) 

 

2 2
2(c - b)(b - a) + (b - c) + (b - a)(d - a) + (c - b)(d - a) + (d - a)

EV Trapezoidal = a +
3(c - b + d - a)
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In which;  

CSi
P is the priority assigned to activity based on the cost to compress or crash the i

th
 activity one unit time; 

CJi
P the priority assigned to activity i based on the contractor’s experience and judgment. 

CS
W  , 

CJ
W  are the 

weights assigned to cost and contractor experience, respectively.  

10) Crash first the activity that has the highest combined priority. If more than one activity have the same 

combined priority, then crash the one that exists on more than one critical path. If not, crash the activity that 

finishes earlier. In the event of having more than one critical path with no common activities, simultaneously 

crash the activity that has the highest priority on each path. 

11) Calculate the project fuzzy total cost at each crashed duration using Equation (3) below. Fig. 4 illustrates 

the mathematical calculation of project total fuzzy cost. As can be seen from Fig. 3(B), the project fuzzy 

total cost at any time (di) is calculated using the following equation:  
n

1 1 1p 1pic pic pic pic di cc cc cc cc di iPdc
i 1

FTC [a, a, a, a] [a a a a ] ([a , b , c , d, , , ] )


  
   

(3)
  

In which; 

FTC  is project fuzzy total cost at (di); 

pdca  is project fuzzy direct cost;  

pica1  is project fuzzy indirect cost at (di); 

cc
a  is fuzzy crash cost of activity(i) at time (di). 

i  is number of activities to be crashed at time (di); 

 

 

FIG. 4: Calculation of fuzzy total cost 

 

12) Repeat the above steps until the target project duration is met, the least cost project duration is found or 

until no further crashing is possible. 

13) Record at each increment of time reduction, project direct, indirect and total costs and the associated 

duration. Plot project cost against its duration. 

14) Analyze the generated output, and perform risk analysis for the cost of the selected schedule compression 

plan using the indices and measures described below (see also the calculations and analyses presented in 

the numerical example). 

3. INTERPRETATION OF FUZZY OUTPUTS  

A number of measures and indices were introduced to interpret the results obtained based on fuzzy set theory. 

The possibility measure (PM), as introduced by Zadeh (1978), intends to evaluate the degree of belonging to the 

membership of a fuzzy number. According to Kaufmann and Gupta (1985), the PM is the law of possibility 

which is a unique concept in fuzzy set theory, and it can be applied to evaluate the occurrence possibility of 

different events. The most possible and plausible variable in a fuzzy number is the one that has a possibility 

measure of 1.0; i.e., has a membership value of 1.0. In the proposed method, the possibility measure is applied to 

evaluate the possibility of achieving a certain cost for each selected schedule compression plan. It is also applied 

to evaluate the possibility of having the cost of a compression plan falling within a defined range or being at a 

given crisp value, as described later in the project example. It should be noted that in applying the possibility 

measure no consideration is given to the size of the intersection area generated from the membership function 

that represents the tested event and the function that represents the targeted event (see Fig. 6). This may lead to 
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high possibility value while the intersection area is small. The possibility measure in certain circumstances does 

not provide an insightful assessment of the compatibility between the two fuzzy events referred to earlier 

(Lorterapong and Moselhi, 1996).  

The agreement Index (AI), which was introduced by Kaufmann and Gupta (1985), on the other hand, can be 

used to compliment the possibility measure. The agreement index measures the ratio of the intersection area 

between the two fuzzy events with respect to the area of the event being assessed. For example, assuming that A 

and B are two events, the agreement index of A with respect to B; AI (A, B) is defined as:   

   

  (   )  
        

      
          (4) 

 

The area of intersection can be determined from partial integration given the four numerical values for a 

trapezoidal fuzzy number [a,b,c,d]. Also, fuzziness (F) and ambiguity (AG) measures were introduced to 

describe vagueness and lack of precision, respectively. The fuzziness measure (F(A)) used in this paper is based 

on that developed by Klir and Folger (1988), and it can be calculated using the following equation: 

 

 

b b

a aF(A) (1 | 2 ( ) 1 | | 2 ( ) 1 |       A x dx b a A x dx       (5) 

  
The ambiguity measure can be calculated as follows (Shaheen et al., 2007): 
 

 

AG(µ)Trapezoidal ( ) / 2 [( ) ( )] / 6     c b d c b a       (6)  
 

 

For a crisp number and a fuzzy uniform number, the fuzziness measure equals zero because the lack of 

distinction between a fuzzy uniform number or a crisp number and their complements is zero. The variance of 

fuzzy numbers introduced by van Dorp and Kotz (2003) is used in the developed method to provide a measure of 

how far from the expected value the tested numbers lie. The variance of a trapezoidal fuzzy number (a,b,c,d) is 

calculated as:  

 

 

   

0.5
(b a) 1 1 12 2

a b b
(d c b a) 6 3 (d c b a)
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3 (d c b a) 3 6

2
(EVtrapezoidal)
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  
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
    

  



  
  
  
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 
 
 
 

     (7)  

 
 

And its standard deviation can also be used to measure the variation of the fuzzy output from the expected value. 

The standard deviation for trapezoidal fuzzy number (a,b,c,d ) can be calculated using Equation (8): 

 

2( ) c b
(a, b, c, d)

4

  
 

d a
         (8) 

 

It is important to note that the measures described in Equations (5) to (8) can be used in assessing the uncertainty 

associated with project cost, in terms of its imprecision and vagueness. Tables 2 to 4 provide an illustrative 

example of comparative results generated under different scenarios.  
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4. APPLICATION OF THE DEVELOPED METHOD TO NON-REPETITIVE 

PROJECTS  

This example project was drawn from the literature (Ahuja, 1984) and was analyzed to demonstrate the use of 

the developed method and to illustrate its essential features. The project schedule consists of 13 activities 

connected through eight events, as shown in Fig. 5. The schedule compression data is shown in Table 1. The 

project has a normal duration of 70 days and a direct normal cost of $6600. Indirect cost is estimated to be $1000 

over the first 60 days and runs at a rate of $100 per day till the end of the project duration. 

 

 

FIG. 5: Example project CPM network 

 
The developed method was applied to analyze three possible scenarios for schedule compression: 

[1] The first scenario is the base case scenario in which the target is to identify the least cost schedule, 

while the cost and the contractor’s judgement are both considered but uncertainties associated with the 

crash cost are neglected. The cost is set to be more important than contractor’s experience and their 

importance is set to 0.3 and 0.7, respectively.  

[2] The second scenario is identical to the first scenario, except for the consideration of the uncertainties 

associated with crash costs of critical activities and for performing risk analysis on the selected 

compression plan.  

[3] The third scenario is set to determine the least cost compression plan that meets targeted project 

duration of 67 days, under the same conditions of scenario 2.  

 
  

 

 

TABLE 1: Schedule compression data 

Act.  

no 

Act. 

status 

Normal 

duration 
(d) 

Crash 

duration 
(d) 

Normal 

cost 
$ 

Crash 

cost 
$ 

CS 

Trapezoidal representation of crash 

cost 

a b c d 

1 Non Crash 5 5 150 0 ---- - - - - 

2 Non-Crash 10 10 200 0 ---- - - - - 

3  5 2 250 60 20 - - - - 

4 Non-Crash 15 15 900 0 ---- - - - - 
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5  5 1 750 400 100 350 400 450 500 

6  10 8 1000 250 125 240 250 250 260 

7 Crushable 10 7 300 240 80 230 235 240 260 

8  19 11 400 560 70 550 580 580 600 

9 Crushable 10 8 500 100 50 90 110 130 150 

10  19 15 600 300 75 280 300 300 320 

11* Crushable 10 4 700 510 85 500 520 520 540 

12  12 10 600 200 100 180 200 220 240 

13* Crushable 10 9 250 50 50 40 50 70 80 

Total    6600 2670      

Outputs 

Scenario 1 

In this scenario, activity crash costs are taken as crisp numbers (see Table 1, column 6). The cost slope for each 

of the activities considered for compression is first calculated, and then activity crashing priorities are assigned 

(1 to 5) based on their respective cost slopes as described earlier. The contractor then assigns, based on his 

judgment, a priority value of 5 to activity 13 as favorable activity to be compressed first although it does not have the 

lowest cost slope, and he also assigns relative weights, as stated earlier, to these two priorities (i.e., cost and 

experience) to reflect the relative importance of each. In this example, applying Equation (2), the overall priority of 

activity (13) = 4.7, therefore, this activity is to be compressed first. This process continues until the least cost 

strategy plan is found. The method predicted the optimum project duration at 68 days and the project minimum 

total cost at $ 8500.  

 

 

FIG. 6: Fuzzy cost for least cost acceleration plan (scenario 2) 
 

 

 

Scenario 2  
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Fuzzy total project cost 
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PM = Cc- a 
 b - a 

a b C d 

C > $8527.5 

Cc 
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In this scenario, the method predicted the optimum project duration to be 68 days and the expected value of the 

project minimum total cost to be $8519.43. The fuzzy total cost is {8505,8515,8525,8533} dollars (Fig. 6). The 

most possible and plausible total project cost of that compression plan, as expressed by the fuzzy number shown 

in Fig. 6, is somewhere between $8515 and $8525. The possibility measure is applied to evaluate the possibility 

of having a targeted crisp value for that schedule compression plan. For example, the possibility of the project 

total cost of the selected compression plan being $8512.50 is equals to 0.75. The following two possibilities were 

also examined: 

 

 

FIG. 7: Comparison of the results 

 

 What is the possibility of the cost of the generated schedule compression plan falling between $8527.50 and 

$8530? 

 What is the possibility of the cost of the generated schedule compression plan being exactly $8527.50? 

 

In addressing the first question, the project cost is considered against the first event, which is expressed as 

{8527.5, 8527.5, 8530, 8530} and then against the project compression cost in the second event; expressed as 

{8527.5, 8527.5, 8527.5, 8527.5}. As for the first case, the elements which are included in the intersection range 

along with their associated degrees of memberships are: {8527.5|0.68, 8527.5|0.68, 8530|0.37, 8530|0.37}. In 

this case, the possibility that the project compression cost falls between 8527.5 and 8530 dollars is 0.68. 

Similarly, the possibility of having the cost of the compression plan exactly $ 8527.5 is 0.68 for the intersection 

of the two membership functions in this case is {8527.5 |0.68, 8527.5 |0.68, 8527.5 |0.68, 8527.5 |0.68}. The 

possibility measure pertinent to the two events takes its value from the maximum membership function value 

resulting from the intersection area of the two events involved. It is important to note that the possibility measure 

does not consider the size of their intersection area, which may lead to high value of a possibility measure while 

the intersection area is small. It is interesting here to observe that while the possibility measure in the two cases 

analyzed above is identical (i.e., PM=0.68), their respective areas of intersection are not. The Agreement Index, 

on the other hand, accounts for that area of intersection and is designed to provide complimentary information to 

the possibility measure. Tables 2 and 3 depict a comparison between the outputs of the developed method and 

those generated by Ahuja et al. (1984) and Moselhi (1993). It can be seen from Table 3 that the developed 

method, unlike the other two methods used in the comparison, provides more useful information to the decision 

maker about the generated compression plan. The developed method offers contractors effective tools to evaluate 

the possibilities of not exceeding targeted cost of a given schedule compression plan and of having a plan that 

meets a defined targeted cost. The latter is not possible to determine using any heuristic or probability-based 

method. The generated possibility measure, agreement index, expected value, fuzziness measure, variances and 

ambiguity measure provide useful information to describe the uncertainty associated with the cost of the 

generated compression plan.  

 Ahuja  
Developed Model-Fuzzy (0.7, 0.3) EV 
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TABLE 2: Comparison of the Results of Scenario 2 
Method Input distribution Output distribution Total cost EV  

Ahuja et al. (1984) Crisp Crisp 8500 8500  

Moselhi (1993) Crisp Crisp 8490 8490  

Developed Method Trapezoidal Trapezoidal (8505,8515,8525,8533) 8519.43  

 

TABLE 3: Evaluation of Different Measures applied to Scenario 2 

Method Possibility 

C >8527.5 

Possibility 

C=8525 

Is possibility of 

C=8530 is > that C=8525? 

F(A) AG Vari(Trape) σ 

Ahuja et al. (1984) NA NA NA 0 NA NA 0 

Moselhi (1993) NA NA NA 0 NA NA 0 

Developed 

Method 

0.098 e 1.0 f No f 9 8 6.08 16.5 

e agreement index f possibility measure Vari(Trape): variances measures C = total project cost of  

       compression plan 

Scenario 3 

In this scenario, the developed method is used to predict the cost of compressing project schedule to a targeted 

duration of 67 days. The predicted project fuzzy total cost is presented in Fig. 8. The method predicts the 

expected total project cost of the targeted schedule compression to be $8587.33. Applying the possibility 

measure reveals a 0.82 possibility that the cost of project schedule compression will be at $8580 and that the 

most possible and plausible compression project cost is somewhere between $8582.33 and $8592.33. The results 

obtained using the developed method are summarized in Table 4. 

 

FIG. 8: Fuzzy cost of the compression plan (target= 67 days) 

 
TABLE 4: Summary of the method outputs 

Scenario Plan Cost Uncertainty $ EV F(A)) AG Vari(trape) σ 

1 8500.00 NA 8500.00 0 0 NA 0 

3 
8505,8515, 

8525,8533 
Yes 8519.43 9 8 6.08 16.5 

4 
8569,8582.33, 

8592.33,8605.67 
Yes 8587.33 13.33 11.11 7.76 20.83 

P
o

ss
ib

ili
ty

 (
P

s)
 

Total cost 

Ps= C-a 
 b-a 

d c b a 

 C 
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5. SUMMARY AND CONCLUDING REMARKS 

This paper presents a new method developed for schedule compression of non-repetitive construction projects. 

The method accounts for contractors’ judgment in addition to cost slope by generating combined priorities for 

activities to be compressed. The method accounts for uncertainties associated with crash cost of critical activities 

using fuzzy set theory (FST). A construction project network schedule drawn from literature was analyzed to 

demonstrate the use of the developed method and to illustrate its capabilities. The results prove that (1) the 

developed method can produce more practical compression plans that meet the level of possibility measures set 

by the user, and (2) FST based methods can be used effectively for schedule compression; accounting for 

uncertainties in a much easier and faster way than probabilistic based models and addressing scenarios 

probabilistic methods cannot address. This is due to the fact that unlike probabilistic methods the developed 

method doesn’t require data gathering, also it has the ability to respond to the possibility of an event occurring at 

any specified date. The method is capable of generating direct solutions and of facilitating the use of experience 

and knowledge of members of project teams by requesting them to define suitable fuzzy membership functions 

to the operations at hand.  
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