

www.itcon.org - Journal of Information Technology in Construction - ISSN 1874-4753

ITcon Vol. 17 (2012), Mammen, pg. 239

A TRANS-DISCIPLINARY PROGRAM FOR BIOMIMETIC
COMPUTING AND ARCHITECTURAL DESIGN

SUBMITTED: July 2012

PUBLISHED: September 2012 at http://www.itcon.org/2012/15

GUEST EDITOR(S): Bhzad Sidawi and Neveen Hamza

Sebastian von Mammen, PhD

Department of Computer Science

University of Calgary

2500 University Dr. NW

Calgary, AB T2N 1N4

Email address: s.vonmammen@gmail.com

Joshua M. Taron

Faculty of Environmental Design (EVDS)

University of Calgary

2500 University Dr. NW

Calgary, AB T2N 1N4

Email address: jmtaron@ucalgary.ca

SUMMARY: In this article, we present the conceptual foundation and selected studio works of two iterations of

our trans-disciplinary university course program that integrates biomimetic computing and architectural design

for graduate students in Architecture. In particular, we first present the motivation behind and the

implementation details of a basic framework for self-organizing multi-agent computer simulations. Second, we

highlight its conceptual presentation to the students as well as its appropriation by the students through

examples of the students’ programmatic and material implementations in architectural design projects.

KEYWORDS: Biomimetic Design, Genertative Design, Computational Swarms, Multi-agent Systems, Self-

organization.

REFERENCE: Sebastian von Mammen, Joshua M. Taron (2012) A Trans-Disciplinary Program for Biomimetic

Computing and Architectural Design, Journal of Information Technology in Construction (ITcon), Vol. 17, pg.

239-257, http://www.itcon.org/2012/15

COPYRIGHT: © 2012 The authors. This is an open access article distributed under the terms of the Creative

Commons Attribution 3.0 unported (http://creativecommons.org/licenses/by/3.0/), which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

mailto:s.vonmammen@gmail.com
mailto:jmtaron@ucalgary.ca

ITcon Vol. 17 (2012), Mammen, pg. 240

1. INTRODUCTION

Multi-agent systems promote modeling of complex processes by researchers and designers without the need for a

profound background in Mathematics. Conceptual models can be directly translated into programming code and

the consequences of a previously theorized model can visually unfold, undergo rigorous analysis, and experience

iterative improvement. Agent-based modeling also empowers designers to apply a paradigm of self-organizing

systems: swarms of reactive software agents engaging in complex interactions, potentially even reproducing

constructive processes. Experiencing and investigating complex systems in nature is another important aspect

that promotes the outlined approach to design. Developmental processes in organisms, evolution, self-organizing

formations in cell populations or animal societies all serve as an invaluable source for inspiration and for

comprehending the ways decentralized, self-organizing, emergent multi-agent models can carry fruits for

research and design.

In this article, we briefly stress our approach to teaching and training the ideas of agent-based modeling and

related topics around complex biological systems. We will then present some of the programmatic and material

project works implemented by the students over the course of two iterations of our program.

In order to serve our trans-disciplinary program to the students, we have established a course setup between the

departments of Computer Science and Architecture. A Computer Science course on biomimetic computation

provides the theoretical foundation and programming know-how for developing agent-based software

simulations with a focus on developmental, generative, and interactive processes. This Computer Science course

has been offered to graduate students of all faculties. So far, students from Engineering, Computer Science, Art

and Architecture have successfully participated. The Architecture students have been given the opportunity to

subsequently or concurrently enroll in an Architecture research studio to apply and evolve their agent-based

models developed in the Computer Science course. An inspiring feedback cycle emerges from the trans-

disciplinary, theoretically founded and practically applied tandem of project-driven courses.

The contents and the coursework are closely attuned to maximize the opportunity for mutual synergetic

fertilization of skills and ideas. In the Computer Science course, students are first familiarized with basic

concepts of computational processes and algorithms using the Processing programming environment

(http://processing.org/). Units on coding basics culminate in live programming demos that apply the gathered

knowledge about basic data structures and process flow. Simple yet colorful simulation examples are crafted

from scratch in front of the class, thoroughly discussed and made available online for future reference

(http://www.vonmammen.org/biocaad2011/material/). Subsequent lecture units present biological examples of

concepts like developmental growth, self-organization and evolutionary processes. Corresponding programming

codes are presented in class. Finally, students’ projects commence, maturing from the initial proposals over

prototype implementations into original architectural design works (supported through the Architecture research

studio).

The Architecture research studio component of the endeavor provides an outlet through which these

computational processes can be tested at a variety of architectural scales and formations. By focusing on

complex processes in heterogeneous urban environments, multi-agent systems serve as both a tool for mapping

cities as well as for the production of architectural design techniques. In our case, students are assigned a

partially completed skyscraper in downtown Calgary as their site with the task of intervening in the typical

procedural construction/assembly processes necessary to complete the tower. The exercise challenges students

to use agent-based models to graft into an already ongoing procedural process thereby augmenting its formal,

visual and programmatic performance. The results of the studio are series of new tower iterations using agent-

based techniques developed and supported through the Computer Science course.

These agent-based designs provide the material results of the trans-disciplinary exercise, which are evaluated for

the purposes of improving the next iteration of the experiment. Methods are discussed that might allow students

to improve upon previous years’ achievements and thus increase the intensity and intelligence of the models

themselves over the course of time.

ITcon Vol. 17 (2012), Mammen, pg. 241

2. PROGRAMMING NATURE

Computation happens through manipulating data. Traditionally, sequences of instructions that determine how

certain data are manipulated are subsumed under high-level commands, generally referred to as procedures,

functions, macros, or methods. Methods can be associated with specific data objects that combine various kinds

of information, e.g. symbolic strings, numeric data, or other data objects. A repeatedly occurring example would

be a Person object, for instance person1 with the attributes name = “Susan”, age = 32 and gender = female. The

execution of a method in respect to a Person object could, for instance, update Susan’s age to 33.

Similar to subsuming instruction sequences, objects and their associated methods can be inherited by other

object classes. An Employee class, for example, could expand the attributes and methods of the Person object

class. This object-oriented programming approach represents the state-of-the-art programming paradigm in

software engineering. It is of great value because the programmer can immediately understand and work with

complex code objects and use them for creating his own software. A comprehensive introduction to object-

oriented programming is provided by (Booch et al, 2008).

2.1. Agent-based programming

Agent-based programming is an extension of the object-oriented approach. It turns passive data objects into

active agents that act in accordance with their behavior, their situation and their available data (Wooldrige,

2009). One speaks of Multi-Agent Systems (MAS), if there are multiple agents at work. The programmer endows

the agents with behaviors and properties in such a way that they work efficiently together and accomplish

computationally challenging tasks. Potential benefits of MAS can be high robustness as failures in parts of the

system can be compensated by intact agents or high efficiency as tasks can be performed in parallel and be

assigned with respect to the involved agents’ specializations.

MAS lend themselves naturally for designing biomimetic computational models, in which systems of molecules,

cells, organs, organisms, or societies are retraced. Individuals in these systems act based on their own agenda and

contribute to the emergence of high-level processes or designs (Camazine et al, 2003). The structural properties

and the behaviors of living organisms have evolved to yield streamlined, adaptive metabolic processes to occupy

and exploit ecological niches. The agent-based modeling approach allows the designer to directly map

physiological properties and biological behaviors to computational representations. The only limitations are the

knowledge and creativity of the designer on the one hand, and computational power on the other hand.

2.2. Swarms

MAS can be designed in many ways. One can, for instance, implement a centralized controller agent that

oversees the ongoing processes and concerts the activities of the remaining agents as it sees fit. Inspired by

biological systems such as social insect societies, one can alternatively attempt to configure the agents in such a

way that a centralized control is not required. A system of such decentralized agents brings a number of

advantages: (1) it is generally more robust against failure as there is no crucial, central part that can go missing.

(2) The computational cost for coordinating the agents is reduced by the agents making locally informed

decisions. (3) If the task at hand can be divided into independent subtasks, they can be accomplished faster as

there are no holdups. Besides such computationally intriguing properties of decentralized systems, there are

other aspects that reach even further. For instance, they support the idea of simulating biological self-

organization, where a system can reach self-maintaining states independent of its initial configuration (Banzhaf,

2004). In general, one can say that a decentralized system is a system whose agents can act freely, whereas any

kind of control infrastructure introduces varying degrees of limitations in respect to the possible interaction

processes. Of course, depending on the system, a rigid control infrastructure might actually be vital, like the

coordination of our motor-sensory activity through the central nervous system. Along these lines, we would like

to underline that control infrastructures are the results of self-organizing processes themselves. Therefore,

decentralized MAS, or swarms, seem to be the least biased, most direct, and thus, most profound approach to

computational modeling.

ITcon Vol. 17 (2012), Mammen, pg. 242

2.2. Development

Ultimately, living organisms are biochemical structures that drive their own development, maintenance, and

reproduction. These seemingly distinct objectives can all be reduced to systematic metabolic processes; these are

the construction and destruction of products ranging from simple molecules to large molecular chains to cells

and complex tissues. From this perspective, processes describe the flow of state changes, whereas structures

refer to materializations that persist for a perceivably long period of time. Even this careful attempt to distinguish

processes from structures emphasizes the role of the observer and it forces us to accept that structure and process

are two closely interwoven aspects of life.

Computational swarms can retrace developmental processes, if their interactions yield persistent structures.

Swarm agents can create structures in numerous ways. They can, for instance, become part of a larger structure

like simulated molecules in Artificial Chemistries (Dittrich, Ziegler and Banzhaf, 2001). They can deposit

building blocks when building their nests like wasps (Karsai and Penzes, 1993), or hollow out tunnels and

chambers like ants (Hölldobler and Wilson, 1999).

Due to the swarm agents’ degrees of freedom, it is a challenge to assign them behaviors and properties that make

them interact in a productive, coordinated fashion (Bonabeau, Dorigo and Theraulaz, 1999). The structures built

by a swarm, however, provide meaningful evidence of the swarm’s productivity (Jacob and von Mammen,

2007), which can serve to find swarm configurations that yield desirable designs, for instance by means of

evolutionary computation (Jacob and von Mammen, 2008).

3. HANDS-ON CODE

We can only assume that a small group of students has been exposed to programming or 3D modeling before

enrolling in our trans-disciplinary program. As a result, we have to guide them through the very first steps of a

programming curriculum to arrive at the point where they are empowered to read and manipulate programming

code or to be motivated to design and implement programs from scratch.

Visual programming environments like Grasshopper/Rhino, Quartz Composer, or Max/MSP provide high-level

interfaces that make it easy to compose intriguing programs by hiding implementation details that are usually

unimportant for the designer. These environments can offer simple interfaces because they constrain the way

designers think, i.e. by forcing them to follow a functional programming paradigm.

Therefore, in addition to the advantages of these visual development environments, we teach the students in

Processing (Aesthetics and Computation Group, 2010), an environment that empowers them with the

expressiveness of the established, object-oriented Java programming language. Understanding programming in

terms of a generic programming language at the level of algorithmic instruction sequences and memory

manipulation allows one to naturally understand other languages and high-level interfaces as well. Furthermore,

it enables the programmer to break out of an imposed programming paradigm, and in the case of our trans-

disciplinary discourse, create the programming infrastructure for agent-based models and simulations.

3.1. Surface as architectural and mathematical territory

Architectural form serves as a common territory where both visual and agent-based programming techniques can

be deployed. While students are being introduced to algorithmic approaches in the Computer Science course,

the Architecture studio runs through a series of 3D modeling exercises enabling students to tackle architectural

problems of scale, massing and circulation while allowing students to become familiar with non-linear geometric

relationships within those visual environments such as points, curves, surfaces and manifold spaces (relying on a

NURBS geometry representation). The results are designed not just for producing spaces for human inhabitation,

but more so for the purpose of defining explicit mathematical territories for the students’ yet-to-be-developed

biomimetic code to inhabit and further articulate.

The exercises continue to evolve in complexity by employing tactics of object instancing, duplication and formal

reproduction. This is particularly useful in partially previewing problems and opportunities afforded by MAS.

Principles of transformation, gradient change and morphological part-to-part behaviors in these architectural

explorations establish programmatic strategies and aesthetic sensibilities that influence and inform students’

Computer Science projects.

ITcon Vol. 17 (2012), Mammen, pg. 243

3.2. Getting started with swarm programming

Processing is widely used in architecture and art (Erdman and Lee, 2010; Kokkugia, 2010; Reas, 2010). Writing

a program, or sketch in Processing lingo, can be as simple as typing a drawing command such as

line(0,0,100,100); into its editor window and clicking the play button (Fig. 1(a)). Comprehensive documentation

and references are accessible through Processing’s menu. Fig. 1(b) shows a simple interactive Processing sketch

that, when started, changes the simulation window size to 170 by 80 pixels, sets its background color to black

(color value: 0) and sets the paint color to white (value: 255). For as long as this sketch is running, a circle of

radius 5 will be drawn where the mouse pointer hovers over the simulation window—resulting in a squiggly line

in the given example.

(a)

(b)

FIG. 1 (a) Processing offers an easy-to-use editor and various predefined drawing commands such as line(). (b)

Code inside the setup() method is executed when the simulation is started. draw() is executed repeatedly until

the simulation is stopped.

Fig. 2 shows a basic swarm-programming infrastructure in Processing code. In its setup() method, new Agent

objects are created. Their locations are set to somewhere on the canvas (dimensions: width x height). The newly

created Agent objects are stored in a list called swarm. The draw() method iterates through this swarm list,

executes each swarm agent’s act() method and renders it as a circle on the canvas. In the given example, one

agent may react to all the others, i.e. the whole swarm informs each agent’s actions. As a result, the swarm list is

used as the interactionCandidates parameter of the agents’ act() method. Instead of changing its or its partner’s

state, the agents in the given example only indicate potential interactions by drawing a line to their potential

interaction partners. In the given case, all other agents within a distance of 15 units are considered for

interaction.

The example shown in Fig. 2 has two purposes. First, it shows how a very generic swarm-programming

infrastructure can be created. Second, it indicates the potential interactions by drawing lines between subsets of

agents. Extensions to the Agent class in respect to its attributes and its act() method infuse the model with

meaning. The designer/programmer has to decide what the agents represent, e.g. construction modules,

ITcon Vol. 17 (2012), Mammen, pg. 244

inhabitants, or physical currents, what their relationships are, which control instances and constraints should be

applied, and how emerging processes and structures inform each other.

FIG. 2 The complete Processing code of a basic swarm-programming infrastructure. The draw() method

executes the act() method of a list of Agent objects.

4. EXPLORATIONS OF BIOMIMETIC DESIGN: ITERATION 1 (2010)

The students in our program are asked to develop a sense for dynamic swarm systems and explore how they can

impact the creation of architecture. In this section, we identify continuing trends across two years of studios that

have emerged through the application of biomimetic code.

4.1. Sentient surfaces

Julie Brache and Michael Scantland worked on an extension of the previous programming example. Agents

serve as the vertices of a mesh and their neighbor relations translate into the mesh topology. Movements of

agents can thus dynamically reconfigure the surface. Fig. 3 shows a basic setup of an according simulation of

sentient surfaces. Fig. 4 depicts exploration states of the emerging mesh dynamics.

(a)

ITcon Vol. 17 (2012), Mammen, pg. 245

(b)

(c)

FIG.3 In sentient surfaces, agents serve as mesh vertices and their movements reconfigure the structures. (a) A

single agent drags its neighbors out of the mesh. (b) Conceptual illustration of perception thresholds between

two sentient surfaces. (c) Attracting and repelling forces among the agents result in rough surface

configurations.

(a)

(b)

FIG. 4 Behavior studies of sets of dynamic swarm surfaces. (a) Repelling field conditions between a pair of

swarm surfaces yield erratic, frayed structures. (b) One agent shoots through several swarm surfaces.

Scantland and Brache’s 2010 studio project paralleled the sentient surface investigation through the deployment

of a nodal network distributed throughout the tower site. While addressing a different frequency and scale of

modulation in the studio project, displacement of interior spaces and replacement of exterior structure formed an

integrated relationship between differential programs. Fig. 5(a) diagrams the responsive relationship between

exterior structure, interior space and building envelope generated by grafting the two systems together. Fig. 5(b)

illustrates the exterior view of the tower as the nodal network weaves through the building.

ITcon Vol. 17 (2012), Mammen, pg. 246

(a)

(b)

FIG.5 (a) Grafting Strategy (b) Exterior Perspective

4.2. Creating space through diversity

Ryan Palibroda approached the organization of land occupation from a 2D perspective. Agents keep pushing

each other in accordance with their preferences until a steady state is reached (Fig. 6).

(a)

(b)

FIG. 6 (a) Agents of a specific type form clusters as they push agents of other types away. (b) Opposing forces

between different agent types result in organically shaped high-density areas.

ITcon Vol. 17 (2012), Mammen, pg. 247

Ryan Trefz also experimented with different agent types (Fig. 7). In addition to repelling forces, Trefz relied on

the whole array of boid urges to inform his agents’ flight: alignment, cohesion, separation (Reynolds, 1987).

Differently configured agents can be distinguished through size and hue.

(a)

(b)

FIG. 7 Cluttering and clustering flocking formations to inform a dynamic architecture inspired by Craig

Reynolds’ boids (1987) and Nicholas Reeves’ Mascarillons (2005).

Trefz and Palibroda collaborated in studio to produce a tower whereby the building exterior operated like a solar

landscape. While the exterior borrowed tactics from Palibroda’s displaced fields (Fig. 6(a)), interior spaces were

formed by tracing flocking positions into structural networks (Fig. 8(b)).

(a)

(b)

ITcon Vol. 17 (2012), Mammen, pg. 248

FIG. 8 (a) Hotspots embedded within the building facade operate as attractors for (b) interior conditions that

trace the position of flocking particles through space.

4.3. Carving structures

Chris Vander Hoek explored subtractive generation of architectural spaces. In his project, commuting swarms

(Fig. 9(a)) carve out cubic volumes that recursively decompose into eight smaller cubes on collision with a

swarm individual (Fig. 9).

(a)

(b)

(c)

FIG. 9(a, b) Commuting swarms carve out cubic volumes. Upon collision between a swarm individual and a

volume, it recursively decomposes into eight cubes until it completely disappears. (c) Future city optimized for

mid-air traffic flow.

In his studio project, he used the same particle swarm to generate a 3D voronoi extrusion from the building base

in order to extend the interiority of the tower into the adjacent plaza (Fig. 10(a)). Physical explorations focused

on fabrication and assembly techniques that subtract from adjacent spaces.

ITcon Vol. 17 (2012), Mammen, pg. 249

(a)

(b)

FIG. 10 (a) Aerial perspective (b) Sectional study model carves away from the subterranean parking lot below

the site.

4.4. Procreating particles

Jonathan Choo and Fadilah Hamid applied their knowledge of agent-based modeling in a simulation written in

MEL, the embedded scripting language of the Maya rendering software. A predefined space is populated with

agents (Fig. 11(a)) that attract and repel each other (Fig. 11(b)) and procreate on collision. The inter-agent

relations translate into a smooth surface with hollow spaces (Fig. 11(c) and Fig. 12).

(a)

ITcon Vol. 17 (2012), Mammen, pg. 250

(b)

(c)

FIG. 11 (a) Slowly a predefined volume is populated with agents (represented as spheres). (b) Attracting agents

are colored in bright red. (c) A smooth mesh encloses the interacting agents.

(a)

(b)

FIG. 12(a) An architectural site is redefined by interacting particles. (b) The interior space of the resulting

space.

ITcon Vol. 17 (2012), Mammen, pg. 251

5. EXPLORATIONS OF BIOMIMETIC DESIGN: ITERATION 2 (2012)

A second set of architectural research studio explorations (Integrative Intelligence) took place in 2012 that

continued the original line of biomimetic investigations. More precisely, the studio sought to find new

application for agent-based processes within the historic Pruitt-Igoe site which were submitted (mid-term) to the

Pruitt-Igoe Now competition (http://www.pruittigoenow.org/). The selection of work included in this section

demonstrates the continuing developments of the biomimetic investigations initiated between the authors,

particularly as they relate to material experimentation that were not tackled in 2010’s architectural research

studio.

5.1. Decay swarms

Jodi James advances the simulation and projection of sentient surfaces into her 2012 studio project whereby

growth and decay are mobilized against one another across building surfaces both internal and external (Fig. 13).

FIG.13 Swarm-generated growth and decay model

Using a combination of swarming and grafting definitions previously developed by Taron, James reprogrammed

the material, structural and programmatic organization of a large-scaled historical housing project, transforming

it into a self-contained, self-regulating society (Figs. 14-16).

http://www.pruittigoenow.org/

ITcon Vol. 17 (2012), Mammen, pg. 252

FIG.14 Parametric Grafting Diagram (internal)

FIG.15 Axonometric Program Diagram

ITcon Vol. 17 (2012), Mammen, pg. 253

FIG.16 Sectional Program Diagram

Through material experiments, James was able to combine CNC milled high density foam with the precise

application of acetone to produce the kind of surface effects produced through her computational simulations

(Fig. 17).

FIG.17 Dense Foam Decay Tests

These tests when taken further, were able to articulate large territories of decayed built space (Fig. 18).

ITcon Vol. 17 (2012), Mammen, pg. 254

FIG.18 Project Model

James’ project allows for innovative new ways to not only make new buildings but also new methods for

modifying existing structures. This is becoming an increasingly important territory for research as the reuse of

existing buildings offers distinct advantages when it comes to sustainability and life-cycle assessment.

5.2. Spherical aggregations

Erin Faulkner de Gordillo’s project focuses on particle simulations that produce forms similar to Choo and

Hamid’s Procreating Particles (Figs. 11 and 12) but goes further to emphasize the possibility for their material

mass production. The aesthetic similarities to Choo and Hamid are most evident in the general project imaging

(Fig. 19).

FIG.19 Project Render

ITcon Vol. 17 (2012), Mammen, pg. 255

However, investigations moved very quickly toward ways in which spherical particles could aggregate and

intersect materially such that the spatial geometry could be achieved. Toward this end, de Gordillo gravitated

toward flat stock and laser cutting in order to run tests. These tests were initiated using a 2-dimensional logic

that would embed 3-dimensional connection strategies in order to form spatial conditions (Fig. 20). This project

lends itself particularly well to stress the transition from local, micro-interactions toward macro-assemblies.

FIG.20 Part-to-whole Assembly Diagram

Tests were procedurally tracked as the individual assembly grew and aggregated (Figs. 21 and 22). The complex,

emergent form tasks the designer with extensive explorations of generated perspectives.

FIG.21 Aggregate Assembly Sequence

FIG.22 Final Model Image

ITcon Vol. 17 (2012), Mammen, pg. 256

De Gordillo’s work, while interesting in its own right, is perhaps most interesting in the fact that the parts

themselves contain the logic for assembly without specifying exactly what form may come. This may provide

the best insight into how future agent-based systems will be assembled: absent a dimensioned building envelope,

but rather a series of parts that can be organized and reorganized to yield [re]configurable spaces, programs and

form.

6. PROGRAM EVALUATION AND FUTURE WORK

After two iterations of our trans-disciplinary program, we have been able to identify and correct some of its

weaknesses and exploit some its strengths. Success manifested through the combination of algorithmic and

biological foundations offered through the Computer Science course while the Architecture research studio

provided a space for exploration and application of those techniques in the context of the built environment.

Problems developed in the studio were in turn framed as means for evolving the projects in the Computer

Science course. We found that enthusiasm was renewed on both fronts with the constant unfolding of new

problems, innovative solutions and range of applications.

In the first iteration of the program, the Computer Science projects did suffer from starting only after a number

of weeks of introductory coding exercises were completed. As such, the students’ projects did not have the full

term to evolve and develop. We amended this issue in the second iteration by employing instructor-generated

podcasts of basic lessons (http://www.youtube.com/user/svonmammen). At the same time, coding basics were

conceptually taught in class; however, programming training was provided on-demand in addition to the lectures

in order to free up time and let the student projects start early in the term. Obliging each student to pursue his

own project (as opposed to group-projects of two) turned out to be another major improvement in terms of

personal motivation and creativity.

The Architecture research studio did provide an appropriate moment in the curriculum to engage in

computational biomimicry (in the last term of a six-term graduate program) given a developed knowledge during

their first two and a half years of graduate education. However, the Computer Science course is seen as

introductory and would certainly serve as a valuable skill to have earlier in a graduate curriculum (Architecture,

Computer Science or otherwise). A looser but perhaps more profound connection might exist between the

Computer Science course and an Architecture studio positioned earlier in a graduate program, thus giving

students more opportunities to experiment with and develop their coding skills as they continue through school.

Different from the Computer Science course, the students worked in groups of two, also for the second

interation.

We view the premise of decentralized control in both Computer Science and Architecture as fundamental to the

advancement of our own research and in both disciplines at large. By producing a pedagogical framework

whereby swarms, natural systems and Architecture operate within an interchangeable space, each can inform the

others in unique and useful ways; envisioning biomimetic code as Architecture, Architecture as nature, and

nature as codified milieu. While the courses reinforce one another by structuring the exchange of information

between one another, less resolved are the structures that might produce continuity and evolution from one year

to the next. By archiving code packages developed in previous course iterations, incoming students have shown

to carry on and develop those definitions further, hybridize multiple definitions together or if nothing is attractive

to them, start something from scratch, thus broadening the “gene pool”. The code developed in a given term has

the chance to “go on living” after a course iteration has ended which stands metaphorically for our approach to

trans-disciplinary teaching and research.

Another line of continuation might make a selection of previously developed definitions available to an

Architecture research studio with the charge that they design with/make use of them in an architectural capacity.

This is already a model in use whereby swarm code developed by Taron is released to Architecture students for

use as a generative design tool. Interoperability between agent-based models and analytical software could also

prove useful in fostering emergent performative capabilities of these models whereby swarms would generate

fitness values through evolutionary feedback loops. von Mammen has been part of another trans-disciplinary

project for the past three years to develop according modelling languages and computational frameworks

(http://lindsayvirtualhuman.org/). This looks to be a promising trajectory as analytical tools such as finite

element analysis; computational fluid dynamics and energy performance software have come into the

mainstream of architectural design process.

http://www.youtube.com/user/svonmammen
http://lindsayvirtualhuman.org/

ITcon Vol. 17 (2012), Mammen, pg. 257

ACKNOWLEDGEMENTS

We would like to thank the Faculty of Environmental Design (EVDS), the Faculty of Arts and the Department of

Computer Science of the University of Calgary for their support---special thanks go to Dr. Christian Jacob, Dr.

Carey Williamson, Dr. Richard Levy, and Prof. Gerald Hushlak. We would also like to thank our motivated and

talented students for shaping the program and for their invaluable contributions.

REFERENCES

Aesthetics and Computation Group, MIT Media Lab (2010). Processing online at: http://processing.org.

Banzhaf W. (2004). Artificial Chemistries – Towards Constructive Dynamical Systems in Solid State

Phenomena 97-98: 43-50.

Bonabeau E., Dorigo M. and Theraulaz G. (1999). Swarm Intelligence: From Natural to Artificial Systems,

Oxford University Press.

Booch G., Maksmichuk R., Engle M., Young B., Conallen J. and Houston K. (2008). Object-oriented analysis

and design with applications, 3rd edition, Addison-Wesley Professional.

Camazine S., Deneubourg J.-L., Franks N. R., Sneyd J., Theraulaz G. and Bonabeau E. (2003). Self-

Organization in Biological Systems, Princeton Studies in Complexity, Princeton University Press.

Dittrich P., Ziegler J. and Banzhaf W. (2001). Artificial Chemistries – A Review in Artificial Life 7:225-275.

Erdman D. and Lee C. (2010). online http://davidclovers.com/.

Hölldobler B. and Wilson E.O. (1990). The Ants, Springer Berlin-Heidelberg.

Jacob C. and von Mammen S. (2007). Swarm Grammars: Growing Dynamic Structures in 3D Agent Spaces in

Digitial Creativity 18:54-64.

Karsai I. and Penzes Z. (1993). Comb Building in Social Wasps: Self-organization and Stigmergic Script in

Theoretical Biology 161,4:505-525.

Kokkugia (2010). online http://kokkugia.com/.

Reas, C. (2010). online http://reas.com/category.php?section=works.

Reynolds C. (1987). Flocks, Herds, and Schools: A Distributed Behavioral Model, SIGGRAPH Conference

Proceedings 4:25-34, ACM Press.

Von Mammen S. and Jacob C. (2008). Evolutionary Swarm Design of Architectural Idea Models, Genetic and

Evolutionary Computation Conference (CECCO), 143-150, ACM Press.

Wooldrige M.J. (2009). An Introduction to MultiAgent Systems, 2nd edition, John Wiley & Sons Ltd.

http://processing.org/
http://davidclovers.com/
http://reas.com/category.php?section=works

