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SUMMARY: Air pockets, one kind of concrete surface defects, are often created on formed concrete surfaces 
during concrete construction. Their existence undermines the desired appearance and visual uniformity of 
architectural concrete. Therefore, measuring the impact of air pockets on the concrete surface in the form of air 
pockets is vital in assessing the quality of architectural concrete. Traditionally, such measurements are mainly 
based on in-situ manual inspections, the results of which are subjective and heavily dependent on the inspectors’ 
own criteria and experience. Often, inspectors may make different assessments even when inspecting the same 
concrete surface. In addition, the need for experienced inspectors costs owners or general contractors more in 
inspection fees. To alleviate these problems, this paper presents a methodology that can measure air pockets 
quantitatively and automatically. In order to achieve this goal, a high contrast, scaled image of a concrete 
surface is acquired from a fixed distance range and then a spot filter is used to accurately detect air pockets with 
the help of an image pyramid. The properties of air pockets (the number, the size, and the occupation area of air 
pockets) are subsequently calculated. These properties are used to quantify the impact of air pockets on the 
architectural concrete surface. The methodology is implemented in a C++ based prototype and tested on a 
database of concrete surface images. Comparisons with manual tests validated its measuring accuracy. As a 
result, the methodology presented in this paper can increase the reliability of concrete surface quality 
assessment. 
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1 INTRODUCTION 
Concrete is one of widely used construction materials and has a long lifespan (PCA, 2006). However, errors are 
usually made during construction such as adding improper amounts of water to the concrete mix, inadequate 
consolidation, and improper curing (ODNR, 1999). These construction errors may result in all kinds of visible 
defects on the concrete surface. Air pockets, small regular or irregular cavities on the surface of the formed 
concrete usually less than 15 mm in diameter (ACI 201.1R-92 2005), are one of these defects. The existence of 
air pockets on the concrete surface impairs the normal function of concrete. For example, they may increase the 
concrete’s permeability. Moreover, they easily make an owner feel discontent about the quality of a finished 
product. For this reason, air pockets are an important factor in assessing the quality of the concrete surface and 
inspecting a concrete surface for air pockets is especially necessary for architectural concrete surfaces which are 
expected to have a high degree of visual uniformity. 

Currently, the primary inspection method is manual inspection performed by a qualified inspector with a wealth 
of knowledge and information (ACI 228.2R-98, 2005). This kind of manual inspection is generally the first step 
in the comprehensive assessment of a concrete structure (Perenchio, 1989). Its results can be used to differentiate 
the necessity of performing other inspections. If a manual inspection shows no sign of deterioration, any further 
actions are not necessary to take and the inspection for the next period can then be scheduled (Sitar, 2005). For 
example, in the case of assessing existing nuclear safety-related concrete structures, ACI 349.3R (2005) pointed 
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out that when concrete surfaces satisfy the diameter of air pockets less than 20 mm they are generally acceptable 
without any other assessments. 

However, manual inspection heavily relies on an inspector’s personal experience and knowledge, since the 
criteria that are used in evaluating the final product during inspection are always personally interpreted by 
inspectors based on their experience gained in previous inspection work. This way, the guide to cast-in-place 
architecture concrete practice (ACI 303R-04, 2005) requires the inspector to have previous experience in 
inspecting an infrastructure with equivalent complexity and scope. Also, the inspector is encouraged to gain the 
experience about the quality of the concrete used through observing the manufacturing of pre-bid samples (ACI 
303R-04, 2005). Heavy reliance on an inspector’s personal experience leads to subjective assessment, which 
makes inspection results not always reliable (Yu et al. 2007).  

Besides the subjective nature of manual inspection, inspection work performed manually also has other 
limitations. For example, manual inspection is time-consuming, especially if the inspected structure is complex 
(Bartel, 2001). The requirement of experienced inspectors also poses a big challenge for the construction 
industry, which is facing the pressing shortage of experienced and highly trained inspection personnel. The need 
for an experienced inspector costs owners or general contractors more in inspection fees, since fees for 
experienced inspectors are significant in comparison with fees for less-experienced inspectors.  

Aiming to solve these problems, the goal of this paper is to present a methodology that can help inspectors 
quantitatively and automatically measure the impact of air pockets on the quality of the concrete surface. At first 
a high contrast, scaled image of the concrete surface is acquired from a fixed distance. Subsequently spot filters 
are then adopted to locate the position of air pockets. The number of air pockets is counted from filtering the 
image results and the size of air pockets is approximated based on the size of the filter and the level of the 
pyramid used. The impact of air pockets on the quality of the concrete surface is finally measured and quantified 
according to these calculated properties. The results in this paper show that the presented method can accurately 
detect air pockets with various sizes. Manual test results validated the effectiveness of the methodology. 

2 BACKGROUND 
Concrete is mostly composed of cement, water and aggregates (PCA, 2007a). Hardened concrete has certain 
properties that need to be in satisfactory condition: hydration, drying rate, strength, durability, permeability, 
volume stability and aesthetics (Wilson, 2006). Aesthetics is now gaining importance within the concrete 
construction industry. For architectural concrete, it is specified by the American Concrete Institute that the 
surface of the architectural concrete should be aesthetically compatible with minimal color and texture variations 
and minimal surface defects (ACI 303R-04, 2005). For structural concrete, similarly, the quality of its surface 
appearance has been raised to an important position due to the ever-increasing use of exposed structural concrete 
as an architectural building material (PCA, 2007b).  

Air pockets are one primary influence affecting the surface quality of concrete. They generally result from the 
inadequate consolidation of concrete or the incorrect use of vibrators (ACI 309R-96, 2005) (ACI 212.4R-04, 
2005). The existence of air pockets undermines concrete’s uniform appearance. Inspection of concrete surfaces 
in terms of air pockets is therefore necessary to guarantee the desired architectural appearance of buildings 
designed by the architect/engineer.  

2.1 Manual inspection  
The primary inspection method is manual inspection. A suitable manual inspection approach typically involves: 
1) walking through the inspection area; 2) gathering information on the design, construction and ambient 
conditions of the structure; 3) planning the complete investigation and 4) laying out a control grid for recording 
observations (ACI 228.2R-98, 2005). After inspection, the surface condition of the finished product is finally 
evaluated qualitatively (good, satisfactory and poor) for making a condition survey of concrete (ACI 201.1R-92, 
2005).  

One of the limitations of manual inspection is that assessment results are not always reliable and even prone to 
errors (Paterson, 1997). An on-site survey conducted by the Federal Highway Administration (FHWA) Non-
Destructive Evaluation Center (NDEVC) observed that routine manual inspections were completed with 
significant variability. 68 percent of the condition ratings varied within one rating point of the average (NDEVC, 
2001). In addition, many work hours are needed for inspectors to become familiar with the structure and to 
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gather necessary information about background, design and construction documents beforehand. It is especially 
true in assessing large volumes of concrete in a complex project. Moreover, considering the fact that the 
construction industry is facing a pressing shortage of an experienced and highly skilled inspection workforce, the 
requirement of experienced inspectors exacerbates this challenge. Prine (1995) pointed out that many 
experienced inspection personnel were given early retirement and either were not replaced or were replaced by 
entry level personnel with minimal experience and training. Lastly, owners or general contractors have to pay 
sizable inspection fees for hiring experienced inspectors, since the compensation of experienced inspectors is 
significant. The city of Lincoln (2007) in Canada, for example, pays an experienced inspector $30/hr and only 
about $21/hr for a less-experienced inspector. 

2.2 Sensor-based automated inspection 
In order to overcome the limitations of manual inspection, sensor-based automated inspection is therefore 
proposed and investigated to facilitate inspectors to do inspection work. Images are acquired from digital 
cameras or infrared scanners operated by inspectors personally or by mobile robots. Concrete surface defects 
(cracks, coating rusts, air pockets etc.) in these images can then be automatically detected through wavelet 
transform, Fourier transform, filter convolution and other methods. The features of these surface defects, such as 
the size of cracks, the orientation of cracks, the diameter of air pockets, are extracted from detection results to 
assess the target that need to be inspected quantitatively. 

2.2.1 Infrared Imaging 

Infrared imaging is used to detect near surface anomalies by sensing the temperature of the concrete surface. 
Since anomalies in the concrete result in temperature differences in local areas, these anomalies can be identified 
through measuring variations in temperature. Due to its ability to detect large surface area in a short period of 
time, infrared imaging is a successful inspection method (Starnes et al. 2003). Many researchers explored the 
possibility of using infrared thermography for concrete surface inspection. Halabe et al. (2005) established 
surface temperature-time curves. These temperature-time curves can be used to detect embedded near surface 
defects with different types and sizes. Tommy et al (2004) mapped the temperature contours over the surface of 
the structure so that an appropriate measure of the delamination of external walls and moisture ingress can be 
provided. Hu et al, (2002) detected the extent of air blisters according to the fact that concrete or cement paste 
has higher thermal conductivity than air. In their results, the location of air blisters could be identified remotely 
as far away as 20 m. The limitations of infrared imaging are that infrared scanners are expensive and operators 
need to be specially trained. Even so, identification results are still easily influenced by environments (ACI 
228.2R-98, 2005). For example, clouds slow heat transfer on the concrete surface, while wind and surface 
moisture reduce surface temperature gradients. In addition, the existence of brush marks, rubber, or oil residues 
on the surface also affect its final measurement.  

2.2.2 Visual Imaging 

Visual imaging is used to analyze concrete surface defects from images generally captured by CCD (Charged 
Couple Device) cameras. The digital camera industry is improving fast; even consumer cameras can now 
produce images as high as ten-mega-pixel pictures. So, these digital images can provide detailed information 
regarding the color or gray-scale attributes of large sized concrete surfaces. The presented inspection procedures 
based on visual imaging are then able to distinguish a flaw from the rest of the surface and moreover determine 
size, shape, location, and color attributes of the defect. 

For detecting cracks, Yu et al (2007) proposed a system for inspecting and measuring cracks in concrete 
structures. Their measurement error of the system can be below 10%. Tung et al (2006) developed a mobile 
manipulator imaging system equipped with binocular cameras for the automation of bridge crack inspection. The 
geometric information about cracks can be retrieved with two parallel CCD cameras and the maximum 
measurement error was 3.5 mm when the focus of the camera was set at 500 mm. Lecompte (2006) presented an 
application of using two cameras for the detection of cracks at the surface of a realistically sized concrete beam 
and revealed the uncertainty on the measured results is +/- 0.07 pixels. Sinha and Fieguth (2006) introduced the 
development of a statistical filter for the detection of cracks in buried concrete pipes. The proposed method 
improved experimental results compared to the conventional detection techniques such as Canny’s edge 
detection (Canny, 1986) and Otsu’s thresholding (Otsu, 1979). Pynn et al (1999) carried out the identification of 
cracks off-line in the developed Highways Agency Road Research Information System (HARRIS) to distinguish 
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the level (high or low) of roads’ cracking. Their method was tested in more than 1000 images and its 
performance show satisfactory results for highway maintenance planning purpose. 

To further improve the reliability of crack detection results, Fujita et al (2006) presented image pre-processing 
for crack detection to remove irregularly illuminated conditions, shading, blemishes and divots in concrete 
images. Their method was effective for detecting cracks with noisy concrete real images. Abdel-Qader et al 
(2003) once compared the effectiveness of crack detection based on four edge-detection techniques: fast Haar 
transform, fast Fourier transform, Sobel, and Canny. It was revealed that the fast Haar transform is the most 
reliable by testing a sample of 50 concrete bridge images. Yitzhaky and Peli (2003) proposed a method of 
selecting edge detection threshold which could automatically select appropriate thresholds for edge detection. 
Based on this method, an automated procedure for detecting cracks through edge analysis of images was 
proposed by Hutchinson and Chen (2006) so that cracks along concrete members could be located with 
minimum human intervention. 

In addition to cracks, coating rusts can also be detected and assessed. Lee et al (2005) proposed and evaluated 
several rust recognition methods in different environmental conditions. These proposed methods are divided into 
two categories: artificial intelligence based and statistical analysis based. Lee et al (2006) then developed an 
automated processor to determine whether rust defects exist in a given digital image by processing its digital 
color information. In their proposed method, it was found that three variables (MEAN in red, DIFF in green and 
DIFF in blue) had a significant impact in recognizing the existence of bridge coating rust defects. 

Most of current existing surface detection methods cannot be applied directly in detecting air pockets, since they 
do not consider the distinct characteristics of air pockets. For this reason, Suwwanakarn et al (2007) proposed 
three circular filters to detect air pockets on the surface of concrete. One filter with a large size (11x11) is used to 
detect large air pockets while the other two filters with a smaller size (5x5) were used to detect small air pockets. 
The fixed sized filters can guarantee detection results with high precision (the number of air pockets correctly 
detected over the number of air pockets detected), since high response from filtering an image is always 
expected where the air pocket exists and its size is similar to the size of the filter. The utilization of the fixed 
sized filters created a major limitation; only air pockets with the same size as the filters’ can be accurately 
detected. Air pockets with a different size than the sizes of the fixed sized filters cannot be recognized, as shown 
in Figure 1(a). So, the recall ratio (the number of air pockets detected over the real air pockets on the surface) is 
low. 

   

   
(a)                                                                                     (b) 

Figure 1: Detecting air pockets:  (a) undetected air pockets using one filter with the fixed size and (b) faked air 
pockets detected around the boundary of other concrete surface defects  (Suwwanakarn et al 2007) 

In addition, air pocket detection results using the method presented by Suwwanakarn et al (2007) are easily 
influenced in places where the boundary of other concrete surface defects exists. From Fig. 1(b), it is seen that 
false air pockets are detected along the edges of the concrete spalling with abruptly changing intensity values. 
Moreover, applying different filters also brings inconvenience to users. Generally, for one filter, a threshold is 
given for defining high responses (shown as white regions in Fig. 1(a)) in its convolving result with an image. 
This threshold is related to the detection results of air pockets. For example, Suwwanakarn et al (2007) gave a 

ITcon Vol 13 (2008), Zhu and Brilakis, pg. 89 

 



high response threshold. The larger the value of the threshold is, the more air pockets that are detected. No 
matter what their relationship is, the threshold is specific to the filter, since different filters have different 
convolving results even within the same image. So, if different filters are applied, users have to specify the 
threshold for each filter. 

3 OVERVIEW OF THE APPROACH 
For the sake of overcoming limitations of the method presented by Suwwanakarn et al (2007), a new approach is 
proposed here. The whole approach is mainly divided into four steps, as illustrated in Fig. 2. Before detecting air 
pockets, every image has to be initially adjusted to reduce image noise, since images taken with digital cameras 
always pick up noise and the existence of noise compromises the level of details in digital photos. Salt and 
pepper noise is a form of noise typically seen on these images. This type of noise only affects a small number of 
image pixels and represents itself as randomly occurring white and black. Based on this characteristic, the 
median filter is adopted here. The median filter is a non-linear digital filtering technique and good at removing 
noise with high spatial frequency from an image (Gregory, 2005). Moreover the median filter does not create 
new unrealistic pixel values. For this reason, the medial filter can preserve image details, such as causing 
relatively little blurring of sharp edges in the image (Zou and Dunsmuir, 1997). Examples have been shown that 
the median filter around 3x3 in size can reduce noise at the expense of a slight degradation in image quality 
(HIPR, 2000). The result of removing noise with the median filter is illustrated in Fig. 3.  After removing noise 
in the image, the spot filter and the pyramid are applied to locate potential air pockets. Then, properties of air 
pockets, such as the number, the size and the total area of air pockets are calculated. The visual impact of air 
pockets to the quality of the concrete surface is produced quantitatively based on these properties.  

 

Locate air pockets 

Assess visual impact of air pockets 

Count the number 
of air pockets  

Approximate the area of air pockets  

Adjust the pictures (remove noise, enhance contrast, etc.) 

Calculate the size 
of air pockets  

 
Figure 2: Overview of the approach 

 
                                

                                  

 
Figure 3: Removing noise with the median filter 
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4 AIR POCKETS-BASED CONCRETE SURFACE ASSESSMENT 

4.1 Air pocket detection filter  
To identify air pockets in the image, the unique characteristic of the air pocket had to be considered at first. 
Usually, the shape of an air pocket on a concrete surface looks like a spot with the inverse intensity value. The 
intensity value of the air pocket in the image is changing from the dark at the center of the air pocket to the 
bright at the air pocket’s perimeter, until having the same intensity as concrete as shown in Fig. 4.  

        
(a)                                          (b) 

Figure 4: One air pocket: (a) One air pocket in gray-scale image and (b) its intensity value of one section 

According to this characteristic of the air pocket in the image, two texture filters that measure spottiness of an 
image are used as candidate detection filters (Malik and Perona, 1990). Specifically, the first spot filter is formed 
with a weighted sum of three concentric, symmetric Gaussian filters with weights 1, -2, and 1, and corresponding 
sigmas 0.62, 1 and 1.6, while the other one is given by a weighted sum of two concentric symmetric Gaussians, 
with weights 1 and -1, and corresponding sigmas 0.71 and 1.14. Their 3D shapes are illustrated in Figure 5. 

 
(a)                                                                       (b) 

Figure 5: Two kinds of spot filters: (a) the filter composed with three Gaussian filters and (b) the filter composed 
with two Gaussian filters 

When both of two spot filters are applied into images composed of all kinds of air pockets, response values of 
images to these two filters is retrieved. One example is shown in Fig. 6, where Fig. 6(a) is the image taken by a 
camera and the response values of the image to these two spot filters are illustrated separately in Fig. 6(b) and 
6(c). White regions in these two figures indicate that the tested image has strong responses to the applied filter in 
these places. It is found that those places which had high response values “happened” to be where air pockets 
existed. This way, air pockets on the concrete surface can be located through finding high response values in 
images like Fig. 6(b) and 6(c). 
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(a)                                                    (b)                                                     (c) 

Figure 6: Response values of convolving filters; (a) Original image; (b) Response values to the first filter and (c) 
Response values to the second filter  

4.2 The pyramid of an image 
If just one filter is applied directly into the image, only air pockets, having the similar size with the filter, can be 
accurately detected and represented, as mentioned before. Air pockets having the dissimilar size with the filter 
on the concrete surface cannot be detected and represented accurately. For example, one small actual air pocket 
is represented by a big detection air pocket (Fig. 7(a)) or by two, three or even four small detection air pockets 
(Fig. 7(b)). These errors would lead to approximating the size of air pockets incorrectly. Moreover, it would 
lower down the filter’s detection precision and recall ratio, since faked air pockets are introduced in detection 
results.  

  

                        

- Actual air pockets - Detection representations 
 

(a)                                                                         (b) 

Figure 7: Two kinds of detection failure; (a) failure to detect small air pockets and (b) failure to represent big 
air pockets 

In order to overcome this limitation, the pyramid of an image is introduced. The pyramid is a hierarchy of 
artificially created images. One example is shown in Fig. 8. In each level of the pyramid, an original image is 
reduced to a certain percentage in size. It has been already mentioned that the filter can only correctly detect air 
pockets having the similar size. When the size of an original image is reduced, the size of air pockets on this 
image is also reduced similarly. So, air pockets whose size is similar to the size of the filter in the original image 
cannot be detected by the filter any more if the image is reduced enough. As for air pockets whose size is larger 
than the size of the filter in the original image, they had the similar size as the filter and can be successfully 
detected, if an appropriate reduction percentage is selected. This way, both small and large air pockets can be 
detected just with one filter by traversing each level of the pyramid. This point is illustrated in Figure 9. 
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 Low level High level 
 

Figure 8: An image pyramid example with three levels 

 

Low level 

High level 

Filter 
adopted 

Large air 
pocket not 
detected in 
low level Large air 

pocket 
detected in 
high level 

Small air 
pocket not 
detected in 
high level 

Small air pocket detected in low level 

 
Figure 9: Detecting air pockets using an image pyramid 

 

4.3 Visual impact of air pockets 
When applying the filter into the pyramid, high responses in each level of the pyramid are expected. This way, 
the position of air pockets on the concrete surface can be automatically located by finding the position of these 
high responses. The number of air pockets on the concrete surface can be calculated by automatically counting 
the number of these high responses in each level of the pyramid. Also, the size of air pockets detected in one 
level of the pyramid can be calculated through dividing the size of the filter by the reduction percentage this 
level adopted. When the number and the size of air pockets are known, the total area of air pockets occupied on 
the concrete surface can then be deduced as follows. At first the area of air pockets detected in each level of the 
pyramid is calculated through multiplying the number of air pockets by the size of the size of air pockets. Then 
the total actual area of air pockets occupied on the concrete surface is obtained by simply adding these air pocket 
areas in levels.  

For the sake of assessing the quality of concrete surface, two visual impact ratios are further calculated. The first 
one is the percentage of concrete surface that is covered by air pockets over the total area of the concrete surface. 
The other ratio is calculated by dividing the percentage of concrete surface covered by air pockets with the 
number of air pockets on the surface. Both of these two ratios are utilized to measure the impact of air pockets 
on the concrete surface. When the first ratio is small, it means that the area of air pockets on the concrete surface 
is covered a little.  When the first ratio is fixed, if the second ratio is small, it means the number of air pockets on 
the concrete surface is large compared to the surface they occupy. The number of air pockets visible from a 
distance is insignificant in this case. When this ratio is large, it means that the number of air pockets on the 
concrete surface is small compared to the surface they occupy. So, the number of air pockets visible from a 
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distance is significant. In one word, the smaller both of these two ratios are, the higher the quality of the surface. 

5 IMPLEMENTATION AND RESULTS 

5.1 Implementation 
The prototype for detecting air pockets on the concrete surface is written in Visual C++. The prototype also used 
OpenCV (Intel® Open Source Computer Vision Library) as its main image processing toolbox. OpenCV is a 
collection of C functions and C++ classes that implement many popular algorithms about image processing and 
computer vision (Intel, 2007). It is free for both non-commercial and commercial use. 

A series of screenshots (Fig. 10 (a), (b), (c) and (d)) show the major process of detecting air pockets on the 
concrete surface image using the prototype developed in this paper. Among them, Fig. 10(a) shows the main 
interface of the prototype, where the image can be loaded. After that, users are allowed to select the concrete 
surface that need to be inspected, as shown in Fig. 10(b). From the menu, air pockets detection is selected (Fig. 
10(c)) and detection results for air pockets in the selected surface are then displayed in Fig. 10(d). 

           
(a)                                                     (b) 

           

(d)                                                    (c) 
 

Figure 10: Process of detecting air pockets with the prototype; (a) open image file; (b) select detected region; 
(c) select air pockets detection and (d) display detection results 
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5.2 Results 
5.2.1 Detection precision and recall 

Detection precision is the percentage that the number of air pockets correctly detected over the number of air 
pockets detected, while detection recall is the percentage of the number of air pockets correctly detected over the 
number of actual air pockets on the surface. Both of them are useful for measuring the quality of detection 
results. High detection precision means most detected air pockets are actual air pockets and high detection recall 
means most of actual air pockets are correctly detected. Also they can be regarded as criteria to measure the 
preferable type of filters adopted. It is known that different types of filters have different response values when 
the image is filtered, as shown in Fig. 6(b) and Fig. 6(c). So did their detection precision and recall. Fig. 11 
shows the difference in the detection precision and recall of both spot filters described in the previous section. 
Although both of filters can achieve high precision ratios in their detecting results, the recall ratios of these two 
filters are different. The filter composed with three concentric and symmetric Gaussian filters can retrieve 86% 
of actual air pockets in the case of the detection precision:  91%. Almost at the same detection precision (92%), 
the filter composed with two concentric and symmetric Gaussian filters can only retrieve 74% of actual air 
pockets. So, the spot filter formed with a weighted sum of three concentric, symmetric Gaussian filters with 
weights 1, -2, and 1 is preferable.  

Detection precision and recall for two different
kinds of filters

0%
20%
40%
60%
80%

100%

The filter composed with
three Gaussian filters

The filter composed with
two Gaussian filters

Precision Recall
 

Figure 11: Precision and recall of air pockets detection with two different kinds of filters 

In addition to measuring different types of filters, precision and recall can also be used to determine the optimum 
size of one selected filter. The size of the filter has an important impact on detection results, since the strong 
response of the air pocket to the filter is guaranteed only when the size of the air pocket is similar to that of the 
applied filter. Filters with sizes 5x5, 7x7, 9x9 and 11x11 are tested here and their relationship between the filter’s 
size and their precision and recall ratios is illustrated in Fig. 12. From the figure, it is found that the precision of 
different sized filters increased a bit (91%, 93%, 94% and 93%)) but are still maintained at the same level, while 
the recall ratio is decreasing when the size of the filter increases from 5x5 to 11x11 (83%, 66%, 53% and 43%). 
It is true since the filter with small size can not only detect small air pockets but also large ones in the aid of an 
image pyramid, while the filter with large size can detect large air pockets only. 

Detection precision and recall for different sized filters

0%
20%
40%
60%
80%

100%

5x5 7x7 9x9 11x11

Precision Recall
 

Figure 12: Precision and recall of air pockets detection with different sized filters 
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5.2.2 Detected air pockets distribution 

Besides detection precision and recall ratios, detected air pockets distribution according to their size is also tested 
to measure the degree of approximating actual air pockets on the concrete surface in size with the method 
presented in this paper. To do so, an air pocket distribution table to classify actual air pockets based on their 
diameters is manually given. Air pockets on a concrete surface are classified with the table so that the 
distribution of actual air pockets in the form of the number of air pockets is known. Table 1 shows the 
classification result of one concrete surface image (Fig. 6(a)). Its corresponding distribution of air pockets on the 
surface is shown in Fig. 13. The diameter of actual air pockets in the image is measured in pixels for the 
convenience of comparison between images. 

Table 1: Classification of air pockets according to their diameters 

The diameter of air pockets (X)  
3>X 4>X≥3 5>X≥4 6>X≥5 7>X≥6 8>X≥7 9>X≥8 10>X≥9 11>X≥10 12>X≥11 X≥12

Number of 
air pockets 

39 59 34 24 22 3 2 1 1 1 1 
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9
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11
X≥

12

   

0

100

200

X<6 8>X≥6 X≥8

 
(a)                                                                                (b) 

Figure 13: Distribution of air pockets; (a) distribution in each category and (b) the number of actual air pockets 
in three levels 

Table 2 illustrates the effect of reducing the size of an original concrete surface image (Fig. 6(a)) on the 
detection results of the selected filter. The size of the image (Fig. 6(a)) is reduced to the percentage shown in 
Table 2, and the selected spot filter is directly applied. The air pockets detected are then recorded. In order to 
compare the detection ability of the selected filter on different sized air pockets, those detected air pockets are 
classified according to their diameter in the original image (shown in Table 2(a)). Then, the recall ratio of 
detected air pockets in each category is calculated (shown in Table 2(b)). From the Table 2, it is seen that the 
ability of the filter in detecting air pockets can only be achieved when the size of air pockets is close to the size 
of adopted filter.  For example, the adopted 5x5 spot filter can detect only 86% air pockets with the size between 
6 and 7, but can detect 91% air pockets with the size range between 4 and 5 in the original image. This point can 
also be illustrated in the other way. Still take air pockets with the size between 6 and 7 as an example. When the 
image size is reduced, the number of the detected air pockets in this size range (between 6 and 7) is increased. 
This is because the reduction of the size of the image scales a large air pocket to be a small one. The maximum 
detection ability for those air pockets is achieved when the image size is reduced to 70%. At that time, the size of 
air pockets is actually scaled to approximately between 4.2 (6*0.7) and 4.9 (7*0.7), which is very close to the 
size range between 4 and 5 and the size of adopted filter (5x5). 
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Table 2: Detection results when applying a filter in reduced sized images: (a) the number air pockets detected in 
each category and (b) the detection recall (the detected number of air pockets/the actual number of air pockets) 
in each category 

The diameter of air pockets (X)  
3>X 4>X≥3 5>X≥4 6>X≥5 7>X≥6 8>X≥7 9>X≥8 10>X≥9 11>X≥10 12>X≥11 X≥12 

100% 24 48 31 21 19 0 0 0 0 0 0 
90% 19 37 30 23 20 0 0 0 0 0 0 
80% 12 36 29 24 21 0 0 0 0 0 0 
70% 9 18 27 22 22 1 0 0 0 0 0 
60% 1 8 17 20 19 2 0 0 0 0 0 
50% 1 5 12 19 19 3 2 0 0 0 0 
40% 1 1 1 9 19 3 2 1 1 1 1 
30% 1 1 2 5 9 1 2 1 1 1 1 
20% 0 0 0 1 2 1 2 0 1 1 1 Th
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10% 0 0 0 0 1 0 0 0 0 1 1       
 (a)      

 

The diameter of air pockets (X)  
3>X 4>X≥3 5>X≥4 6>X≥5 7>X≥6 8>X≥7 9>X≥8 10>X≥9 11>X≥10 12>X≥11 X≥12 

100% 62% 81% 91% 88% 86% 0% 0% 0% 0% 0% 0% 
90% 49% 63% 88% 96% 91% 0% 0% 0% 0% 0% 0% 
80% 31% 61% 85% 100% 95% 0% 0% 0% 0% 0% 0% 
70% 23% 31% 79% 92% 100% 33% 0% 0% 0% 0% 0% 
60% 3% 14% 50% 83% 86% 67% 0% 0% 0% 0% 0% 
50% 3% 8% 35% 79% 86% 100% 100% 0% 0% 0% 0% 
40% 3% 2% 3% 38% 86% 100% 100% 100% 100% 100% 100% 
30% 3% 2% 6% 21% 41% 33% 100% 100% 100% 100% 100% 
20% 0% 0% 0% 4% 9% 33% 100% 0% 100% 100% 100% Th
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10% 0% 0% 0% 0% 5% 0% 0% 0% 0% 100% 100%  
(b) 

When the detection recall ratio of the filter in each air pocket category is retrieved (Table 2(b)), the detection 
ability of the filter can be measured and depicted as a curve shown in Figure 14. For one image, the filter can 
detect most air pockets in a certain size range. Take 100% sized image as an example in Figure 16. The filter can 
mainly detect small air pockets but miss large one. This limitation is solved by adjusting the size of the image. 
For example, when the size of the image is reduced to 40% of the original image (40% sized image), large air 
pockets can be detected. However, small air pockets are missed at that time. Thus, images with different size are 
combined for the filter to detect as many air pockets as possible. Three images are selected here. They are the 
images with 100%, 70% and 40% of the size of the original image. The detection ability of the filter for each 
image is shown in Fig. 14. The detection result using these three images is illustrated in Fig. 15, where the 
detected actual air pockets are represented by red circles.  The larger the air pocket, the bigger the red circle. 
Those detected air pockets are classified into three levels according to the image used for detection. Level 1 is 
for the air pockets detected on the image with 100% of the size of the original image, while Level 3 is for the air 
pockets detected on the image with only 40% of the size of the original image. The number of detected air 
pockets in these three levels is recorded in Fig. 16. Compared with the number of actual air pockets in three 
levels in Fig. 15(b), the distribution of detected air pockets fits the distribution of actual air pockets closely.  
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Figure 14: Air pockets detection recall in three images whose sizes are 100%, 70% and 40% of the original 
image (Figure 6(a))  

 
Figure 15: Detection of air pockets through the spot filter and the pyramid 
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Figure 16: Distribution of detected and actual air pockets 
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5.2.3 Quality of detection results 

A database of concrete surface images is tested in the prototype. One part of test results is shown in Table 3, 
where results are measured using two ratios (detection precision and detection recall). From Table 3, it is seen 
that detection precision ranges from 77.4% to 96.8% and the average detection precision is maintained at 91.1% 
with the standard deviation 5.5%, while detection recall ranges from 77.0% to 92.4% and the average detection 
recall is maintained at 85.6% with the standard deviation 6.0%. At the same time visual impact ratios are also 
calculated. Visual impact ratios can be used to measure the quality of concrete surfaces. For example, although 
both concrete surfaces in image (e) and image (g) are covered with many air pockets (shown in Fig. 17), the 
quality of concrete surface in image (g) is a bit better than that in image (e), because the concrete surface in 
image (e) mainly consist of air pockets with a large size while the concrete surface in image (g) mainly consist of 
air pockets with a small size. Their calculated visual impact ratios also reflect this. Both visual impact ratio 1 and 
2 of the concrete surface in image (e) are higher than those of the concrete surface in image (g). 

Table 3: Detection precision and recall for 11 images 

Image Number of 
Air Pockets 
Detected 

Actual 
Air 
Pockets 

Number of Air 
Pockets Correctly 
Detected 

Precision Recall Visual 
Impact 
Ratio 1 

Visual 
Impact 
Ratio 2 

(a) 188 190 163 86.7% 85.8% 2% 0.10‰ 
(b) 132 136 124 93.9% 91.2% 3% 0.21‰ 
(c) 139 159 123 88.5% 77.4% 3% 0.24‰ 
(d) 95 106 90 94.7% 84.9% 2% 0.18‰ 
(e) 93 113 87 93.5% 77.0% 4% 0.42‰ 
(f) 126 154 122 96.8% 79.2% 3% 0.20‰ 
(g) 195 226 184 94.4% 81.4% 2% 0.12‰ 
(h) 31 26 24 77.4% 92.3% 2% 0.82‰ 
(i) 181 184 170 93.9% 92.4% 6% 0.31‰ 
(j) 120 118 107 89.2% 90.7% 4% 0.35‰ 
(k) 173 180 160 92.5% 88.9% 4% 0.21‰ 
Average in (a) – (k) 91.1% 85.6% 
Standard deviation in (a) – (k) 5.5% 6.0% 
 

Detection precision - the number of air pockets correctly detected / the number of air pockets detected 
Detection recall - the number of air pockets correctly detected over the number of actual air pockets 

 

        
(a)                                                           (b) 

Figure 17: Comparison between image(e) and image(g); (a) image(e) and (b) image(g) 

The effectiveness of the method in this paper is also compared with the method presented by Suwwanakarn et al 
(2007) using the image Fig. 6(a) as an example. Two cases are explored in the method presented by 
Suwwanakarn et al (2007). The first one is application of 11x11 filter and 5x5 filter type 1 to detect air pockets 
while the other is application of 11x11 filter and 5x5 filter type 2 to detect air pockets. In the former case, the 
detection precision (86.0%) almost equals to the detection precision using the method presented in this paper 
(86.7%), but the corresponding recall (48.4%) is lower than the detection recall using the method presented in 
this paper (85.8%). In the latter case, both detection precision and recall (69.2% and 38.9%) are lower than the 
detection precision and recall using the method presented in this paper. Table 4 illustrates this point. 
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Table 4: Comparison using Figure 6(a) as an example 

The method presented in Suwwanakarn et al (2007)  
11x11 filter + 5x5 filter  
type 1 

11x11 filter  + 5x5 filter  
type 2 

The method presented 
in this paper 

Number of Actual air 
pockets 

190 190 190 

Number of detected 
air pockets 

107 107 188 

Number of correctly 
detected air pockets 

92 74 163 

Precision 86.0% 69.2% 86.7% 
Recall 48.4% 38.9% 85.8%  

 

6 CONCLUSIONS AND FUTURE WORK 
Concrete defects appear on the surface of concrete during construction or within a relatively short time after 
completion. These defects are inevitable within the construction industry. The existence of these concrete effects 
especially surface defects, such as air pockets, not only impairs the normal function of concrete, but also 
undermines the visual uniformity of concrete surfaces. Therefore inspecting them is necessary to guarantee the 
final quality of the project. Currently, manual inspection is widely used; however, manual inspection has its own 
limitations. For example, it is subjective and therefore not always reliable. In addition, it is time-consuming. The 
high requirement of the inspector also aggravates the shortage of work force in the construction industry. 
Automatic inspection can overcome these limitations. 

This paper presents an automatic inspection methodology for detecting air pockets on the concrete surface. The 
methodology consists of four steps. Initially, noise in concrete surface images is removed with the media filter. 
After that spot filters and image pyramids are applied to locate air pockets on these images according to the 
circular characteristic of air pockets. For these detected air pockets, the number of air pockets on the concrete 
surface is calculated by automatically counting the locations that the filter detected. Also, the size of the air 
pockets is approximated from the size of the filter and the level of the pyramid used. Moreover, the total area of 
air pockets covered on the surface is calculated through the calculated size of each air pocket. Finally, two visual 
impact ratios are introduced to measure the surface quality of concrete quantitatively.  

Inspectors can measure the quality of the concrete surface in terms of air pockets with the method presented in 
this paper. Also inspectors can save time in inspecting the quality of the concrete surface and owners will be able 
to use less experienced, lower cost inspectors for this type of inspection, since only taking pictures of the under-
inspection surfaces is needed during the on-site visit. For example, in the City of Lincoln in Canada, this could 
save the City $9 /hr per inspector. The method is implemented using Microsoft Visual C++. OpenCV is used as 
the image processing tool developed by Intel. Experiment results in this paper validated the effectiveness of the 
proposed method. 

The quantitative inspection results are objective, but they are difficulty for people without inspection experience 
to understand. Therefore, future work will establish the relationship between the quantitative inspection results 
and qualitative surface condition ratings currently applied in ACI documents. Moreover the detection of other 
surface defects, such as color variation will also be focused on. 
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