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SUMMARY: This paper presents a study on the use of artificial neural networks (ANNs) in preliminary cost 
estimating. The choice and the design of the ANN model significantly affect the results obtained from the model 
and, hence, the accuracy of the estimated cost. The study considered Back Propagation Neural Network (BPNN), 
Probabilistic Neural Network (PNN) and Generalized Regression Network (GRNN) as well as regression 
analysis. Models were developed for order of magnitude cost estimating of low-rise structural steel buildings 
and short-span timber bridges. The study was conducted on actual data for 35 low-rise structural steel buildings 
and their respective cost was estimated using the developed regression and ANN models. These models were 
also applied to estimate the cost of a timber bridge extracted from the literature. The results showed that the 
mean absolute percentage error (MAPE) for the neural network models ranges from 16.83% to 19.35% whereas 
was equal to 23.72% for the regression model. Moreover, the linear regression model was more sensitive to the 
change of the number of the training data and that the PNN network was the most stable network among all the 
other estimating models as the maximum difference in MAPE percentage was only 2.46%. Whereas, the 
maximum difference in MAPE was 19.47%, 17.91%, and 61.45% for BPNN, GRNN and regression models 
respectively. 
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1. INTRODUCTION 
At the conceptual stage of design, it is important to arrive at reliable early cost estimates (Carr, 1998; Dysert, 
2003; Moselhi and Siqueira, 1998; Petroutsatou et al., 2012). The challenge facing estimators is to produce an 
estimate that is an accurate reflection of reality. The estimator then uses the best information available to 
evaluate the costs of performing the required work (Carr, 1989; Hendrickson and Au 2003). According to the 
Association for the Advancement of Cost Engineering International (AACE International, 2005), at each phase 
in the project life cycle different levels of cost estimating accuracy can be achieved based on the information 
available. In particular, the order of magnitude cost estimate is used at the conception phase of the project. The 
estimated cost may vary from –30% to +50% of the actual cost. Practically, the order of magnitude cost estimate 
is calculated using RS Means construction cost data (RS Means 2012). This estimated cost is based essentially 
on the project area while in some cases, the estimated cost is adjusted for perimeter and height of the building.  

Traditional parametric cost estimating techniques have been widely used due to their simple formulation. They 
lead to the development of cost models based on regression analysis to historical data of similar projects to the 
one at hand. A major disadvantage of these techniques is that the mathematical form has to be defined before any 
analysis can be performed (Creese and Li, 1995). Another disadvantage is their unsuitability to account for the 
interaction among the large number of variables present in a construction project (Hegazy and Ayed, 1998). 
These limitations may contribute to the low accuracy of the traditional models and their limited use in 
construction (De la Garza and Rouhana, 1995). On the other hand, ANNs offer an alternative approach to cost 
estimation modeling. They overcome the shortcomings of the traditional cost estimating techniques as they are 
nonparametric estimators and they learn by detecting the hidden relationship between the input parameters and 
the output cost of the training data set. 

Several researches demonstrated the potential use of ANN in construction (Moselhi et al, 1992; Hegazy and 
Ayed, 1998) and their superior performance over traditional regression analysis (De la Garza and Rouhana, 
1995; Creese and Li, 1995; Emsley et al. 2002; Setyawati et al. 2002). There are 3 commonly used ANNs in 
different engineering research fields namely; BPNN, PNN, and GRNN. The choice and the design of the ANN 
model significantly affect the results obtained from the model and, hence, the accuracy of the estimated cost. The 
BPNN is widely used for cost estimating of construction projects. Despite its capabilities, BPNN suffers from 
several problems that make the development of a neural network model a difficult task that is neither simple nor 
straightforward (Moselhi et al., 1991; Hegazy and Moselhi, 1994; Petroutsatou et al., 2012; Setyawati et al., 
2002). The main problem is that there are no fixed rules to determine the appropriate architecture or its 
parameter values. The development of high-quality BPNN is difficult. The process of developing BPNN models 
often involves experimentation and multiple simultaneous development tracks. It often requires iterative 
refinements of network parameters, network redesign, and problem reformulation. Several design factors 
forecasts including: selection of input variables, significantly architecture of the network, and quantity of the 
training data, significantly impact the accuracy of the neural network.  

There are reported advantages of using GRNN compared to the commonly used BPNN (Petroutsatou et al., 
2012; Specht, 1991). First, it is known for its ability to train quickly with sparse data sets. Second, the output 
converges as the number of sample increases. Finally, the estimate is always bounded by the minimum and the 
maximum of the observations. In addition, PNN has a fast learning scheme and can be retained or updated. It has 
a unique feature that under certain easily met conditions, the decision boundary implemented by PNN 
asymptotically approaches the optimal decision surface (Demuth and Beale, 1998).  

The main objective of this paper is to evaluate the performance of the three types of ANN cited above for 
preliminary cost estimating of construction projects namely; BPNN, PNN and GRNN. This leads to a better 
design of ANN models for cost estimating at the pre-design stage when there is insufficient definition of scope 
and characteristics for detailed estimating. The results of the different NN models are compared with the 
regression analysis and the actual costs of a real data. 

The work in this research has been carried out in two stages: 
• A pilot study was made using data extracted from the literature, where cost variables were 

identified and data is available for (12) timber bridge projects.  
• A full scale study was done using a real data for 35 low-rise structural steel buildings, in which 

more sophisticated models and analysis were developed. 
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2. NEURAL NETWORK APPLICATION FOR COST ESTIMATING PURPOSES 
NNs are widely used for cost estimating of different types of construction projects. BPNN was widely used for 
cost estimating of building projects (Emsley et al., 2002; Kim et al., 2005; Moselhi et Siqueira, 1998; Setyawati 
et al. 2002) and highway projects (Hegazy and Ayed, 1998; Pewdum et al., 2009). BPNN was also used for cost 
estimating of other construction projects such as timber bridges (Creese and Li, 1995), drainage projects (Alex et 
al., 2010). Moreover, Petroutsatou et al. (2012) developed two cost estimating models for road tunnels using two 
types of neural networks, namely BPNN and GRNN.  On the other hand, radial basis neural network was used 
by Williams (2002 and 2005) to estimate the cost of highway projects. The findings of these articles confirmed 
that the effectiveness of NNs for cost estimating of construction. They also demonstrated that the mean average 
percentage error calculated using NN models ranged from 4.63% to 16.6%; depending on selection of input 
variables, NN topology, and quantity of the input data. Moreover, Petroutsatou et al. (2012) showed that GRNN 
provided higher level of accuracy than BPNN. 

Several articles compared the estimates obtained from NNs with those obtained from various linear regression 
models (Emsley et al. 2002; Setyawati et al. 2002; Creese and Li, 1995). The results demonstrated that NN 
models outperform linear regression models given the same training data and the same variables as the major 
benefits of the NNs are their learning and generalization capabilities as well as their ability to model the 
nonlinearity of the data to predict the estimated cost.  

3. PILOT STUDY 
The data used in this part was obtained from previous research conducted by (Creese and Li, 1995) 0for timber 
bridges. Table 1 shows the original timber bridge data. The data includes three input variables namely: the 
volume of the webs, the volumes of the bridge decks, and the weight of the steel used and one output which is 
the actual cost. All data were normalized using the same scale applied by Creese and Li (1995) (i.e. 0.1 to 0.9) to 
enable comparison of results. Three NN models were developed using different input variables to determine the 
practicality of using NNs for cost estimation i.e. PBNN, GRNN and PNN. The same input variables were used in 
the regression analysis as well as the NN models. The BPNN topology was kept as that of Creese and Li (1995) 
0to enable comparison of results. Table 2 summarizes the design characteristics of the different neural networks. 
To compare the accuracy of estimates obtained from the different models, the coefficient of determination R2 
and the Mean Absolute Percentage Error (MAPE) were calculated and presented in Fig. 1 and Fig. 2 and 
summarized in Tables 3 and 4. Fig. 1 shows that R2 values for the neural network models were always greater 
than that in the linear regression model, i.e. the performance of the neural network models outperformed the 
performance of the linear regression model based on least squared error analysis. It also shows that model III 
was better than models I and II, i.e. the estimating error decreased as more input variables were introduced to the 
training. 

TABLE 1: Cost and Primary Parameters for Timber Bridges 
# Name of bridge Y1 

Actual Cost ($) 
X1 

Web Volume 
(ft3) 

X2 
Deck Volume 

(ft3) 

X3 
Steel Weight 

(Ib) 
1 Trace Fork Timber 74,982 662.86 542.34 527.98 
2 Trout Run 87,602 791.15 566.72 651.08 
3 Six Mile Creek 45,400 265.58 254.54 352.67 
4 Left Hand Run 92,850 781.41 737.70 676.12 
5 King Lear 75,000 336.88 753.38 434.06 
6 Island Run 60,894 348.05 830.25 394.41 
7 George Branch 61,354 455.18 567.50 535.27 
8 Camp Arrowhead 79,512 1,164.17 892.97 834.72 
9 Dunloup #1 201,600 1,661.65 2,825.00 1,316.25 

10 Dunloup #2 194,599 1,665.04 2,484.38 1,168.81 
11 Nebo 55,113 383.90 403.30 367.00 
12 Light-burn 174,000 2,320.00 1,444.00 1,331.00 
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TABLE 2: Design Characteristics for the different Neural Networks 
Model Input Variables BPNN GRNN PNN 

I X3 1 input, 2 neurons in the hidden 
layer, and one output 

Spread = 0.1 No training parameters 

II X1, X2 2 input, 2 neurons in the hidden 
layer, and one output 

Spread = 0.1 No training parameters 

III X1, X2, X3 3 input, 3 neurons in the hidden 
layer, and one output 

Spread = 0.1 No training parameters 

 

 

 

 

 

 

 

 

 

 

 
FIG. 1: Coefficient of Determination R2 for Different Models 

TABLE 3: Coefficient of Determination R2 for Different Models 
Model Input Variables R2 values 

Linear Regression BPNN GRNN PNN 
I Variable  : X3 0.9072 0.9613 0.9712 0.9772 
II Variables: X1, X2 0.9697 0.9870 0.9864 0.9888 
III Variables: X1, X2, X3 0.9697 0.9914 0.9926 0.9946 

Fig. 2 presents the values of Mean Absolute Percentage Error (MAPE) of the estimated costs for the different 
models compared with the actual costs. It can be seen that the PNN showed the best performance among all 
models. Table 4 shows that the MAPE for the PNN ranges from 1.91% to 6.86% for Models III and I 
respectively. The estimated costs for the best regression model, e.g. model III, neural network models and the 
actual cost are illustrated in Table 5. 

 

 

 

 

 

 

 

 

 

 

 
FIG. 2: Mean Absolute Percentage Error (MAPE) for Different Models 
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TABLE 4: Mean Absolute Percentage Error (MAPE) for Different Models 
Model Input Variables Mean Absolute Percentage Error (MAPE) % 

Linear 
Regression 

BPNN GRNN PNN 

I Variable  : X3 12.95 10.78 9.65 6.86 
II Variables: X1, X2 8.21 6.56 7.37 3.85 
III Variables: X1, X2, X3 8.23 5.09 5.25 1.91 

 

TABLE 5: Cost estimates from the different models ($) 
# 

 
Name of bridge Actual Cost Linear 

Regression 
BPNN PNN GRNN 

1 Trace Fork Timber 74,982 71,136 76,835 75,078 73,719 
2 Trout Run 87,602 77,010 84,060 87,574 85,158 
3 Six Mile Creek 45,400 44,355 45,400 45,400 52,421 
4 Left Hand Run 92,850 83,780 85,817 92,846 87,013 
5 King Lear 75,000 67,789 65,706 75,078 65,282 
6 Island Run 60,894 71,349 65,511 60,825 65,185 
7 George Branch 61,354 64,539 70,978 75,078 68,207 
8 Camp Arrowhead 79,512 104,504 84,450 79,569 80,389 
9 Dunloup #1 201,600 203,603 201,991 201,600 200,595 

10 Dunloup #2 194,599 189,418 194,181 194,571 195,603 
11 Nebo 55,113 54,907 52,624 55,163 57,035 
12 Light-burn 174,000 170,516 173,679 174,070 174,000 

4. CASE STUDY: COST ESTIMATION OF STRUCTURAL STEEL BUILDINGS  
This case study also evaluates the performance of the three ANN models against the regression analysis and the 
actual costs using a real data 35 low-rise structural steel buildings, in which more sophisticated models and 
analysis were developed. The data used in developing the neural network models were thirty nine real data for 
low-rise structural steel buildings fabricated and built between 1993 and 1997. A large manufacturer of low-rise 
structural steel buildings in Canada provided all the documents related to the building projects. Four types of 
project documents were collected containing cost data and describing the characteristics of each building for data 
extraction: the contract including project specifications and change orders, blueprint, detailed estimate, and the 
final cost report. The final cost report includes the actual costs of a project with and without the markup. 
Markups may vary considerably due to market conditions, the contractors’ need for work, the number of bidders 
etc. (El-Sawah, 1994; Hegazy and Moselhi, 1994; Hegazy and Moselhi, 1995). It was agreed upon that only the 
direct cost of the buildings (i.e. material, labor and subcontractors’ costs) would be used in the development of 
the neural network models in order to ensure the consistency in cost estimating.  

The collected documents were presented in different formats, reflecting the company’s estimating and 
accounting standards over time. Special care was dedicated to the extraction of data to ensure that the variation 
in type reporting, over the years, would not impact the costs actually incurred. A data entry sheet was designed 
for standardized data collection, organization, indexing, recording and analysis. Data were analyzed for 
consistency and parameter values checked for reasonableness in order to ensure same definition, in terms of 
content. In doing so, individual calculations of the total structural cost per square foot of building area were 
performed. Projects with unique characteristics were identified and excluded. Consequently, non-representative 
projects (4 projects) were accordingly rejected. Accordingly, the data of only 35 projects were used in the 
development of the proposed neural network model. Building area, perimeter, joist span and height were 
identified as the main parameters directly correlated to the fabrication cost of structural steel buildings. Table 6 
shows the statistics of the input and output data used in the model development. 
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TABLE 6: Data Characteristics 
 Area 

(ft2) 
Perimeter 

(ft.) 
Height 

(ft.) 
Joist Span 

(ft.) 
Building Cost ($) 

Minimum 2,356.2 194.4 10.0 25.7 27,838 
Maximum 46,480.0 944.0 45.4 100.0 501,328 

Mean 14,328.6 464.8 20.3 49.9 142,949 
Standard deviation 11,126.9 179.9 5.7 20.9 121,869 

In order to increase the accuracy of the developed models and to take account for the effects of inflation on the 
historical data, the data were indexed to July 1997, using (RS Means, 2012). Moreover, in order to improve the 
performance of the NNs and obtain better results, the original input data were normalized to a scaled data – 
transformed to the interval (1, 10) networks as shown in Fig. 3 This normalization was reported to improve the 
accuracy of the estimates generated (Moselhi and Sequeira, 1998). Upon completing the training, the scaled 
output is transformed back to the original data format. Fig. 3 shows the normalized cost of the buildings versus 
the normalized building area. 

 

 

 

 

 

 

 

 

 

 

 
FIG. 3: Normalized Building Cost versus Normalized Building Area  

5. DESIGN OF NEURAL NETWORK MODELS 
A two-layer architecture with four nodes in the input layer and one node in the output layer was used for the 
BPNN design. The selected parameters used for the design of the BPNN were proved to be the most effective 
parameters by (Demuth H. and Beale M., 1998, Yuce et al., 2014). For example the Levenberg-Marquardt (LM) 
training algorithm used in the present study was reported to have the fastest convergence and best performance 
among other training algorithms. The number of nodes in the hidden layer was calculated according to suggested 
rules introduced by (Hegazy et al., 1994, Moselhi and Sequeira, 1998). Fourteen different architectures of BPNN 
architectures, with the number of nodes in the hidden layer varying from 3 to 16, were developed for the 
identification of the network structure with the best performance. Input and output parameters were normalized 
for confidentiality and effective training of the model being developed (Hegazy and Moselhi, 1994, Moselhi and 
Sequeira, 1998, Setyawati et al., 2002). The input parameters were kept constant in all networks.  

It was decided to use 60% (18), 20% (6), and 20% (6) of the training and testing data to generate training, 
validation, and test sets respectively. The data were split in this way to maximize the cases available to train and 
validate the neural network while still providing sufficient cases to provide an independent test of the network's 
performance. The data was divided randomly by MATLAB. The performance of the networks was evaluated 
based on the Mean Squared Error (MSE) observed in the validation set. The coefficient of determination (R2) 
was then calculated for the fourteen networks. The training of the networks was interrupted when the error falls 
below the user-specified level or when the user-defined number of training iterations was reached. The training 
of the network was based on 10,000 iterations. Fig. 4 and Fig. 5 show the MSE and R2 values for the ten 
networks being considered. 
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FIG. 4: Mean Squared Error (MSE) for different number of nodes in the hidden layer 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIG. 5: R2 Values for different number of nodes in the hidden layer 

It can be seen that the network with 12 nodes in the hidden layer presented the least MSE and the highest R2 
value among all networks indicating the best network performance. Accordingly, it was adopted for the 
developed cost estimating model. The network’s training time was 37 seconds on an IBM compatible computer 
with 2MB RAM and the best validation check was 0.11395. The interruption of the network’s training occurred 
after 1,005 learning epochs. The least MSE associated with the training set was 0.00497.  

Unlike the BPNN, the design of the PNN is straightforward and does not depend on training parameters as in 
BPNN (Demuth and Beale, 1998; Sinha and Pandey, 2002). Similar to PNN is, the design of the GRNN; 
straightforward and does not depend on training parameters, but a smoothing factor is applied after the network 
has been trained. GRNN measures how far a given sample pattern deviates from patterns in the training set. 
When a new pattern is presented to the network; that input pattern is compared to all the patterns in the training 
set to determine its distance from these patterns. The output of the network is a proportional amount of all the 
outputs in the training set (Demuth and Beale, 1998; Specht, 1991). 

The development of the NN models was performed using MATLAB Neural Network Toolbox (Demuth and 
Beale, 1998). For comparison purposes, a regression analysis was also performed using the data set used in the 
trained examples. The performance of the neural network models compared with the actual cost and the results 
of the regression analysis is shown in Fig. 6 and summarized in Table 7. 
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FIG. 6: Cost Comparisons as a Function of Building Area 

Table 7 shows the R2 values for the training set compared with the linear regression model. It can be seen that 
the performance of the neural network models is better than the linear regression model as one of the major 
benefit of NNs is their ability to model the nonlinearity of the data (Emsley et al. 2002). It can also be shown that 
the PNN and the GRNN successfully described the variability of the trained data.  

TABLE 7: Performance of Different Trained Models 
 Regression BPNN GRNN PNN 
R2 Values 0.94622 0.9605 1.0000 1.0000 

6. VALIDATION OF THE NEURAL NETWORK MODELS 
For validation of the developed neural network models, the available sample data were divided into two groups. 
The first group, a training and testing data set, was used for the development of the neural network models. The 
second group, a validation data set, was then used for model to examine the predictive capability of the 
developed models. It was decided that 85% of the data (30 projects) would be a training and testing data set and 
15% of the data (5 projects) is selected randomly for model validation. The data were split in this way to 
maximize the cases available to train and validate the neural network while still providing sufficient cases to 
provide an independent test of the network’s performance.  

For comparison purposes, the trained networks were used to estimate the cost of the projects in the verification 
set. The performance of the neural network models compared with the actual cost and the results of the 
regression analysis is shown in Fig. 7 and summarized in Table 8. Fig. 7 and Table 8 show that the overall neural 
network models performance was more accurate than the linear regression model for the data contained in the 
validation set. The mean absolute percentage error (MAPE) was equal to 16.83%, 19.35%, and 19.29% for the 
BPNN, GRNN, and PNN respectively, whereas, it was equal to 23.72% for the regression model.  
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FIG. 7: Cost Comparisons for Validated Data Set 

TABLE 8: Normalized Cost Estimated by Different Models 
Project 
Area 

Actual 
Cost 

BPNN GRNN PNN Regression 
Cost ($) % Cost ($) % Cost ($) % Cost ($) % 

2.7701 2.9536 2.2577 -23.56 2.5110 -14.99 2.5118 -14.96 2.7134 -8.13 
2.4775 2.8717 2.5086 -12.64 2.6580 -7.44 2.6576 -7.46 2.0513 -28.57 
1.1517 1.1113 1.4081 26.71 1.7690 59.18 1.7656 58.88 1.2135 9.20 
2.4775 2.9690 2.8929 -2.56 3.2880 10.74 3.2881 10.75 1.4982 -49.54 
4.3153 3.4765 2.8268 -18.69 3.3230 -4.42 3.3227 -4.42 4.2817 23.16 

7. EFFECT OF THE NUMBER OF INPUT TRAINING CASES 
It has been known that the number of input training cases plays an important role in the estimating accuracy 
(Bode, 1998; Bode, 2000; Wang et al., 2000). This statement was investigated by using the same data and 
eliminating some input data each time and using the same network structures. The number of input data was 
changed from 10 to 30 cases and results was compared with the targeted actual outputs for the validated data. 
The performance of the different models is presented in Fig. 8 and summarized in Table 9. Fig. 8 shows that the 
linear regression model is very sensitive to the change of change of the number of the training data as the MAPE 
decreased from 68.36% for 10 training samples to 23.72% for 30 training samples. However, the results obtained 
from neural network models showed that the neural network models less sensitive to the change of change of the 
number of the training data than the linear regression model as the MAPE decreased from 26.28%, 19.59% and 
37.20% for 10 training samples to 16.83%, 19.35% and 19.29% for 30 training samples for BPNN, PNN and 
GRNN network respectively.  

 

 

 

 

 

 

 

 

 

 

FIG. 8: Mean Absolute Percentage Error (MAPE) for the Validated Data 
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Table 9 shows that the PNN network was the most stable network among all the other estimating models as the 
maximum difference in MAPE percentage was only 2.46%. However, the maximum difference in MAPE was 
19.47%, 17.91%, and61.45% for BPNN, GRNN and regression models respectively. Therefore, it can be 
concluded that the PNN network is the most suitable model for cost estimating for cost estimating when there is 
a small number of input data. 

TABLE 9: Range of MAPE for Different Models 
 Mean Absolute Percentage Error (MAPE) 

Regression BPNN GRNN PNN 
Minimum MAPE % 23.72 16.83 19.29 19.35 
Maximum MAPE % 85.17 36.30 37.20 21.81 
Maximum difference in MAPE% 61.45 19.47 17.91 2.46 

8. CONCLUSIONS 
An initial pilot study was made, where potentially cost significant variables were identified and data is available 
for a relatively small number (12) of timber bridge projects. Three different NN models were designed and 
trained with different number of input variables i.e. BPNN, GRNN and PNN. The results are then compared with 
those obtained from a linear regression model using the same input variables. The results showed that the 
estimating error for all models decreased as more input variables were used i.e. 3 variables. It also showed that 
the PNN model showed the best performance among all models. The MAPE for the PNN ranges from 1.91% to 
6.86% and that MAPE for the best models were 8.23%, 5.09%, 5.25%, and 1.91% for regression, BPNN, 
GRNN, and PNN respectively. 

A full scale study was made using a real data for 35 low-rise structural steel buildings fabricated and built 
between 1993 and 1997 in which more sophisticated analysis were developed. Three different neural network 
models have been developed for estimating the direct cost at the pre-design stage when there is insufficient 
definition of scope and characteristics for detailed estimating using BPNN, PNN, and GRNN. The models were 
developed and trained using MATLAB Neural Network Toolbox. Fifteen percent of the projects data were 
randomly extracted to validate the performance of the trained networks. A linear regression analysis was also 
performed using the same trained examples. The results obtained from the neural network models showed that 
the mean absolute percentage error (MAPE) was equal to 16.83%, 19.35%, and 19.29% for the BPNN, GRNN, 
and PNN respectively, whereas, it was equal to 23.72% for the regression model. 

The effect of the number of training input cases was also studied on the performance of the different models 
using the same data and eliminating some input data each time. The number of input data was changed from 10 
to 30 cases and results was compared with the targeted actual outputs for the validated data. The linear 
regression model was more sensitive to the change of the number of the training data than the neural network 
models. The results showed that the PNN network was the most stable network among all the other estimating 
models as the maximum difference in MAPE percentage was only 2.46%. However, the maximum difference in 
MAPE was 19.47%, 17.91%, and61.45% for BPNN, GRNN and regression models respectively. Therefore, it is 
recommended to use the PNN network for cost estimating when there is a small number of input data. 
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