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SUMMARY: With the emergence of the new computer science areas of artificial intelligence and neural 
networks, researchers have applied them in the construction industry successfully. This paper presents 
comparative studies of two machine learning models namely backpropagation (BP) and Fuzzy ARTMAP based 
neuro-fuzzy models for handling qualitative fuzzy information of constructability evaluation. These models not 
only perform like traditional machine algorithms, but also handle missing information with better accuracy. 
Performance evaluation of the network has been carried out using traditional statistical tests.  From the study, it 
was found that the Fuzzy ARTMAP model performs much better than the BP model.  
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1. INTRODUCTION 
Construction as a sub-discipline of civil engineering is perhaps at the forefront of testing the applicability of 
Decision Support Systems (DSS) technology. Tasks like design of construction methods, concrete mixing and 
placement, constructability analysis, project planning, scheduling and control, construction quality control, etc. 
are receiving attention as application domains. Among them, developing DSS for constructability analysis is a 
challenging task (Tatum 1987, Eldin, 1988). Constructability is the optimum use of construction knowledge and 
experience to achieve overall project objectives and its success. The constructability analysis will minimize 
change orders, claims and disputes. Maximum benefits from the constructability analysis result when 
constructors, engineers and managers with the requisite experience and knowledge become involved at the very 
beginning of the project. By analyzing the project early on, one can pinpoint areas of potential conflict or 
concern. These points can then be taken care during the design phase versus during the actual construction. 

Computerizing constructability analysis steps is a key to effective construction process automation. However, it 
is impossible to develop DSS for such analysis without acquiring formal constructability knowledge for various 
structural systems. This constructability knowledge cannot be manually acquired because of the complexity of 
problems involved. Also, the domain experts find it extremely difficult, if not impossible, to articulate 
complicated relationship among many design decisions regarding structural system and its constructability. 
Conventional Machine Learning (ML) approach has been applied, but due to its inherent limitations such as, 
inability to learn implicit knowledge, failures in complete information handling etc., there was a need to explore 
new ML model for knowledge acquisition and subsequently to make it an integral part of DSS. 

Chua et al (1997a, 1997b) and Kog et al. (1999) have presented interesting study on identifying key management 
factors that could affect budget performance in a project. They have used field data of project performance to 
build the budget performance model. They have developed a neuro model based on the key determining factors 
related to the project manager, project team and planning and control efforts. The factors were number of 
organizational levels between project manager and craftsmen, project manager experience on similar technical 
scope, detailed design complete at start of construction, constructability program, project team turnover rate, 
frequency of control meetings during construction, frequency of budget updates, and control system budget. 
They found that model could give better performance in the events of either unseen data or incomplete 
information on the key factors.  
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Yu and Skibniewski (1999a) presented a multi-criteria model for qualitative constructability analysis based on 
neuro-fuzzy knowledge based system.  They developed multiplayer information aggregation network to 
incorporate the manager's subjective preference information. A systematic approach was demonstrated for 
constructability problem detection and constructability improvement.  

Yu and Skibniewski (1999b) proposed neuro-fuzzy approach for constructability knowledge acquisition for 
construction technology evaluation. Fuzzy logic based knowledge representation space is developed for neuro-
fuzzy models. They demonstrated learning ability of neuro-fuzzy model combining genetic algorithms (GA) for 
automatic acquisition of constructability knowledge from training examples. Their proposed approach provided a 
mechanism to track back factors causing unsatisfactory construction performance and feedback to construction 
engineers for technology innovation. 

Recently, Ugwu et al. (2004) presented cognitive model study on the acquisition of knowledge, elicitation of 
problems that are associated with managing constructability design knowledge, and understanding organizational 
constructability planning and problem solving methods in the steel structures domain. The selection of an 
example of portal frame was intended to understand construction domain but they stated that the concepts could 
be extended to other infrastructure projects. 

The main objectives of the paper are to explore different neuro-fuzzy models for constructability analysis,  
demonstrate their feasibility for the domain example, and demonstrate the performance of neuro-fuzzy model in 
the event of missing information. In the present work, constructability of a beam in reinforced concrete frames is 
investigated. For this problem, constructability data is acquired from the existing literature (Skibniewski et al., 
1997).  The backpropagation (Haykin, 2000) and the Fuzzy ARTMAP (Carpenter et al. 1992) based neuro-fuzzy 
models are explored. These models used the collected data during learning and testing. The reliability of the 
models is also checked using existing statistical evaluation methods. The incomplete information handling by 
Neuro-fuzzy model is studied. The observations of this systematic study is used to propose future development 
of a larger scale DSS. Next section discusses about problem definition and data collection of constructability 
evaluation.   

2. PROBLEM DEFINITION AND CONSTRUCTABILITY DATA COLLECTION 
There is a potential in developing DSS for constructability evaluation. Some important issues include analysis of 
the constructability of designs, choice of construction material, selection of the best design-function-cost 
combination, choice between prefabricated and in-situ construction, and feedback into the design process. In 
developing DSS, an important issue of knowledge acquisition and implementation comes into picture. Artificial 
Neural Networks (ANN) can be an excellent learning model for DSS. For exploring the possibility of ANN 
application to constructability analysis, the objectives of the current study can be divided into four major issues. 
They are as follows and will be discussed in Sections 3-5:  

• Qualitative constructability analysis data modeling using Neuro-fuzzy models 
• Comparison of Neuro-fuzzy Model with ML generated rules 
• Performance reliability of the Neuro-fuzzy model 
• Missing data handling in Neuro-fuzzy model for constructability analysis 

Data collection: The relevant data for the current study is obtained from literature (Skibniewski et al., 1997). In 
this collection of 31 data examples, each example represents a structural design concept evaluated from the point 
of view of its constructability. This data will be used to train the ANN models. The typical data set (Table 1) 
describes the constructability of a beam in a 12-storied building. There are seven independent attributes 
describing the beam design. The dependent attribute is constructability evaluation (ConEva). It is a measure of 
the constructability of a given design and has been attributed three values: Poor, Good and Excellent. 
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TABLE 1:  Typical Constructability data for the beam design problem (Skibniewski et al., 1997) 
No ReRa CoBeRa1 CoBeRa2 NoSla NoWall BeCha1 BeCha2 ConEva 

1 High High High DiffTwo SameTwo WDchange AllChgeReinf Poor 

2 Average High Average DiffTwo One SliChgereinf WDchange Poor 
3 Average Average High DiffTwo DiffTwo AllChgeReinf None Poor 
4 High Average High SameTwo One AllChange SliChgereinf Poor 
5 Average High Average SameTwo DiffTwo AllChgeReinf AllChange Poor 

 
The independent attributes are described below; 
ReRa represents reinforcement ratio of the beam, and three values are attributed: Low, Average and High. 
CoBeRa1 represents the first beam to column connection with the values attributed as: Low, Average and High. 
CoBeRa2 represents the second beam to column connection with values attributed as: Low, Average and High. 

NoSla represents the number of slabs attached to the beam. The attributed values could be None, One, SameTwo 
and DiffTwo. Value One means one slab is attached to the beam. Value None means no slab is attached to the 
beam. Value SameTwo means two identical slabs are attached to the beam and value DiffTwo means that the two 
slabs attached are not identical. 

NoWall represents the number of walls attached to the beam. The attributed values could be None, One, 
SameTwo and DiffTwo. Value One means one wall is attached to the beam. Value None means no wall is 
attached to the beam. Value SameTwo means two identical walls are attached to the beam and value DiffTwo 
means that the two walls attached are not identical. 

BeCha1 represents the changes in steel reinforcements and size of the beam on the left or first side of the 
considered beam. Five values are used: None, SliChgereinf, AllChgeReinf, WDchange, AllChange. Value None 
means that the beam on the left side of the column has exactly the same shapes and size as that of the beam on 
the right side. Value SliChgereinf means that the beam on the left side has same size but slightly different 
reinforcement as the beam on the right hand side. Value AllChgeReinf means that the beam on the left side has 
same size but different reinforcement as the beam on the right hand side. Value WDchange means that the width 
or depth of the beam on the left side has changed but the reinforcement has not. Value AllChange means that the 
two beams are entirely different in size and reinforcement. 

BeCha2 represents the changes to the beam on the right side as in the previous attribute regarding the beam on 
the left. 

Skibniewski et al. (1997) generated rules using machine learning approach to incorporate in DSS. The examples 
given  by Skibnewski et al. (1997) were analysed using the learning system INLEN based on AQ15 algorithm. 
The algorithm was developed to learn classification rules from a collection of examples. In this collection, each 
example is described by a number of independent attributes and their values and a single independent attribute 
and one of its values. Produced decision rules are the relationships between various groups of independent 
attributes and their dependent attribute. These rules can be used to classify unknown examples to one of the 
categories of the decision attribute. Here two types of learning modes were used, the specialisation  and the 
generalisation modes. In the generalisation mode, the learning system induces rules as general as possible, i.e.,  
they involve the minimum number of attributes, each with the maximum number of attributed values. In the 
specialisation mode, the learning system generates rules as specific as possible, i.e.,  with the maximum number 
of attributes and minimum number of attribute values.   Next section discusses about Neuro-fuzzy Modeling. 

3. NEURO-FUZZY MACHINE LEARNING MODELS 
While fuzzy logic performs an inference mechanism under cognitive uncertainty (Zadeh, 1988), computational 
neural networks offer exciting advantages, such as learning, adaptation, fault-tolerance, parallelism and 
generalization (Wasserman, 1989). To enable a system to deal with cognitive uncertainties in a manner more like 
humans, one may incorporate the concept of fuzzy logic into neural networks. The resulting hybrid system is 
called fuzzy neural, neural fuzzy, Neuro-fuzzy or fuzzy-neuro network. Neural networks are used to tune 
membership functions of fuzzy systems that are employed as decision-making systems for constructability 
evaluation. Although fuzzy logic can encode expert knowledge directly using rules with linguistic labels, it 
usually takes a lot of time to design and tune the membership functions, which quantitatively define these 
linguistic labels. Neural network learning techniques can automate this process and substantially reduce 
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development time and cost while improving performance (Kosko, 1996).  Hence, in hybrid form they can 
provide a perfect platform to take into account changing knowledge. In theory, neural networks and fuzzy 
systems are equivalent in that they are convertible, yet in practice each has its own advantages and 
disadvantages. For neural networks, the backpropagation algorithm automatically acquires knowledge. Fuzzy 
systems are more favorable in that their behavior can be explained based on fuzzy rules and thus their 
performance can be adjusted by tuning the rules. But since, in general, knowledge acquisition is difficult and 
also the universe of discourse of each input variable needs to be divided into several intervals, applications of 
fuzzy systems are restricted to the fields where expert knowledge is available and the number of input variables 
is small.  

3.1 Data Modeling 
Fuzzy Information Presentation: The qualitative data set of constructability evaluation discussed in Section 2 
has to be modeled into quantitative values in order to use in ANN models. The independent and dependent 
attributes were modeled as trapezoidal fuzzy functions and also discrete binary values. Various previous works 
has shown that trapezoidal fuzzy functions can closely imitate the modeled parameters. The modeling of 
dependent and independent attributes (Table 2) for the typical data is given in Fig. 1 and Fig. 2 (Nair, 2000). 

 
 
 
 
 
 
 
 

 
 
(a) Fuzzy represenantion of ReRa, CoBeRe1 and CoBeRe2 variable 

 
 
 
 
 
 
 
 
 

 
 
(b) Fuzzy/binary representation of BeCha1 and BeCha2 variables 

 
 
 

 
 
(c) Binary representation of NoSla and NoWall variables 
 
FIG. 1: Fuzzy/Binary representation of  input variables of neuro-fuzzy models 
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FIG. 2: Fuzzy representation of  output variable of neuro-fuzzy models 
 
TABLE 2: Identified variables for Neuro-fuzzy model input and output parameters 

Variable Name Description Fuzzy Variables 
ReRa Reinforcement Ratio Low, Average, High 
CoBeRe1 First Beam to Column Connection Low, Average, High 
CoBeRe2 Second Beam to Column Connection Low, Average, High 
BeCha1 Change in Steel Reinforcements and Size of the Beam on the 

Left or First Side of the Beam 
None, SliChgeReinf, AllChgeReinf, 
WDchange, AllChange 

BeCha2 Change in Steel Reinforcement and Size of the Beam on the 
Right or Second Side of the Beam 

None, SliChgeReinf, AllChgeReinf, 
WDchange, AllChange 

NoSla Number of Slabs Attached to Beam None, One, SameTwo, DiffTwo 
NoWall Number of Walls Attached to Beam None, One, SameTwo, DiffTwo 
ConEva Constructability Evaluation Poor, Good, Excellent 

 
Incomplete/Missing Data Modeling: Skibniewski et al. (1997) generated constructability decision rules using 
machine learning approach.  Now to implement these rules for ANN model one has to take care of the 
combination of two or more values (e.g. Average or Poor) and empty field(s) of the Tables given by Skibniewski 
et al. (1997). The data in which the ‘or’ estimations were given was modeled by taking the average of the 
attributed values. The empty fields in Tables of Skibniewski et al. (1997) will be treated as missing data for 
ANN modeling purpose. Missing data is considered as the average of all the attribute values associated with that 
attribute data used for training the network. Missing data values are modeled as trapezoidal fuzzy functions and 
the final representation of the missing values are given in Nair (2000). 

3.2 Neuro-fuzzy Modeling 
Different types of neural networks models are available in literature (Haykin, 2000). A study of two of them is 
carried out in the present investigation.  

• The backpropagation based multilayer perceptron was selected owing to its recognized ability to 
perform regression and classification (Haykin, 2000). The neural network architecture had two 
hidden layers with 48 hidden units (in each layer) having sigmoid activation function in each layer. 
The program was implemented using improved backpropagation in C programming Language in 
Turbo C Environment. After several exercises, keeping compromise between accuracy and 
computational time, sum square error was selected as 0.0001, learning rate as 0.7 and momentum 
rate as 0.9. Note that no optimization of the architecture or training parameters was performed. In 
contrast, common architecture and parameters were selected so that the time consuming exercise 
will take reasonable time (Nair, 2000).  

• Grossberg established a new principle of self-organization known as adaptive resonance theory - 
ART (Carpenter et al., 1992). Basically, the theory involves a bottom-up recognition layer and a 
top-down generative layer. When the input pattern and learned feedback pattern match, a dynamic 
state generated is called 'adaptive resonance'. The fuzzy ARTMAP is a synthesis of fuzzy logic 
and ART. Various supervised ART algorithms are named with the suffix MAP. These algorithms 
cluster both input and outputs, and associate the two sets of cluster. For the present study, we have 
implemented the Fuzzy ART algorithm (Carpenter et al., 1992) in C programming Language in 
Turbo C Environment (Fig. 3). The input vector “a” is applied to ARTa and its correct prediction 
“b” is applied to ARTb module. Now when the prediction of ARTa is disconfirmed at ARTb, 
inhibition of mapfield activation induces a match tracking process. Match tracking raises the ARTa 
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vigilance parameter ρa to just above F1a/F0a match ratio. This triggers to a ARTa search which 
leads to the activation of a ARTa category that correctly predicts “b”. For this study, choice 
parameter (α) and Learning rate parameter (β) were 0.001 and 1 respectively. The vigilance 
parameters considered for the study are given in Table 3.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
FIG. 3:  Fuzzy ARTMAP Architecture 
 
TABLE 3: Fuzzy ARTMAP Vigilance parameter. 

ARTa vigilance parameter (ρa) 0.3 0.35 0.4 0.7 0.75 
ARTb vigilance parameter (ρb) 0.2 0.25 0.3 0.6 0.65 

 
If the vigilance parameter is too high, most examples will fail to match those in storage and network will create a 
new neuron for each one of them. This will lead to poor generalization, as minor variations of the same example 
become separate categories. Conversely, if the vigilance parameter is too low, totally different decisions will be 
grouped together, distorting the stored example until it bears little resemblance to any of them.  
 

 

         A=(a,ac) 

               Xa 

              Ya 

 

                   a 

            B=(b,bc) 

Xb

Yb

 

                   b 

  
                        Xab 

 ρab 

Map field Fab 

ARTa ARTb 

   
       Match      
      tracking 

 
Fa

  Reset   Reset 

ρρ

 
Fa

 
Fa

 
Fb

 
Fb

 
Fb



ITcon Vol. 9 (2004); Barai and Nair, pg. 71 
 

4. MODELS EVALUATION 
The use of ANN in engineering applications has increased dramatically over the last few years. However, by and 
large, the development of such application or their report lacks proper evaluation. The evaluation methods used 
to estimate the performance of ML models in general as well as ANN models in particular are: Resubstitution 
(R), Hold out (H), cross-validation such as leave–one–out (L) or 10-fold cross - validation (K). There is a 
growing interest in the ML community in understanding the properties of these tests. A general discussion on 
evaluation that includes ML models for understanding can be found elsewhere (Reich and Barai, 1999). Using 
these evaluation methods, Neuro-fuzzy models are evaluated and the results obtained during these exercises are 
discussed in next section.   

5. RESULTS AND DISCUSSION 
The various model evaluation techniques discussed in previous section were used to check the performance of 
models. Here the results are discussed in terms of degree of response.  Degree of response is defined as the ratio 
of examples correctly predicted to number of examples tested.   

5.1 Performance evaluation of BP based Neuro-fuzzy model 
Fig. 4 shows performance of Neuro-fuzzy model for constructability analysis.   
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
FIG. 4: Backpropagation neuro-fuzzy model evaluation 

Resubstitution (R):  The resubstitution exercise gave a degree of response equal to 1. All the examples were 
mapped perfectly as expected.  But no model can be recommended as the reliable model by doing the 
resubstitution exercise as discussed by Reich and Barai (1999); it is a highly optimistic method. 

Cross Validation - Leave-one-out (L) & K-fold (K): Cross-validation exercises were carried out 10 times on 
randomly generated data. These exercises gave a mean degree of response equal to .68. The deviation of  results 
was from .74 to .61 as shown in Fig. 4. The uniformity of the results of these two exercises indicates that the 
performance of the model is reliable.  

Holdout (H):  Holdout exercise was carried out 10 times, over randomly generated data. This exercise gave a 
mean degree of response equal to 0.64. The results deviated from .59 to .69. This exercise gave a low degree of 
response, as this is a highly pessimistic approach to check the performance of the model. 

Efficiency of the model: The efficiency of a model can be defined as the degree of response to missing data. The 
ML approach generated 22 rules (Skibniewski et al., 1997). After modeling these data, according to Section 3, 
the performance of backpropagation model was found to be satisfactory. Out of the 22  (10+12) tested examples, 
18 examples mapped correctly. The degree of response is equal to 0.82, i.e., 82% of the total data set had been 
correctly mapped. This of course is a high degree of response of the model, but considering the fact that these 22 
examples are generalized version of the initial 31 examples, a result of 100% mapping could not be achieved due 
to approximation in the qualitative data handling. 
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5.2 Performance evaluation of the Fuzzy ARTMAP based Neuro-fuzzy model 
As discussed in previous section, the Fuzzy ARTMAP model performances were checked. The Fuzyy ARTMAP 
for resubstitution evaluation considering vigilance parameter (Table 3) gave degree of response 1. Further using 
the same dataset, the L, K, and H exercises were carried out for various vigilance parameters given in Table 3. It 
was found that the Fuzzy ARTMAP gave a degree of response of 1. From this exercise, it was found that the 
Fuzzy ARTMAP could run in a very short time and correctly. 

Efficiency of the Model: The efficiency of the model against the missing data was the prime issue for the Fuzzy 
ARTMAP. It was interesting to observe from Table 4 that the Fuzzy ARTMAP could predict all cases correctly 
when the vigilance parameters, ρa and ρb were 0.3 and 0.2 respectively. This observation is very much useful 
from the point of view of missing data handling.  

TABLE 4: Performance of the Fuzzy ARTMAP for missing input data  
Vigilance parameter (ρa)/ (ρb) 0.3/0.2 0.35/0.25 0.4/0.3 0.7/0.6 0.75/0.65 
Degree of response  1 0.77 0.82 0.82 0.77 

6. DISCUSSION 
• The backpropagation (BP) and the Fuzzy ARTMAP based Neuro-fuzzy models were used in ANN 

modeling for constructability analysis. It was found that backpropagation could be trained and 
tested for the data set given in literature (Skibniewski et al., 1997). In addition, Neuro-fuzzy model 
could perform well against hybrid data set (Fuzzy and Binary) of constructability analysis. The 
Fuzzy ARTMAP produced same performance characteristic. 

• In general, Fuzzy ARTMAP model performed much better than BP based model, as it was 
observed that Fuzzy ARTMAP gave degree of response 1 in all situations when Vigilance 
parameters (ρa) and (ρb) were 0.3 and 0.2 respectively. 

• During evaluation stage cross-validation (K-fold and Leave-one-out) gave the probable 
distribution error rates based on data characteristics. This helped in getting a picture of error rate 
variability for constructability analysis data set. Further, it is an indicator of model robustness 
under changing knowledge.  

• Overall, it was found that, proper care at different stages of data modeling and ANN parameter 
selection gave reliable learning. 

• Even though reliable neuro-fuzzy models were obtained, the network architecture, or the learning 
parameters were not optimal. This observed characteristic is attributed to the quality of 
constructability analysis data 

• Neuro-fuzzy models indeed captures the rules generated by ML model.  Hence such models can be 
replaced in DSS. 

• Validation of Neuro-fuzzy models for larger size of constructability evaluation of data is still 
unexplored and   further studies need to be carried out. 

7. CONCLUSION 
Applications of BP and Fuzzy ARTMAP based neuro-fuzzy models for constructability analysis has been 
demonstrated in the present study. The paper addressed the issues related to qualitative constructability analysis 
data modeling using neuro-fuzzy models; comparison of results of neuro-fuzzy models with ML generated rules, 
performance study of the neuro-fuzzy models and also missing data handling in neuro-fuzzy models for problem 
domain. The Fuzzy ARTMAP based neuro-fuzzy model showed better performance in comparison to BP based 
model. The study showed that there is a scope of Fuzzy ARTMAP based model and there is a need to check the 
validity of such model for larger size of data sets. 
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